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Abstract
In a connected graph, spanning tree cen-
tralities of a vertex and an edge measure
how crucial they are for the graph to be
connected. In this paper, we propose effi-
cient algorithms for estimating spanning
tree centralities with theoretical guaran-
tees on their accuracy. We experimentally
demonstrate that our methods are orders
of magnitude faster than previous meth-
ods. Then, we propose a novel central-
ity notion of a vertex, called aggregated
spanning tree centrality, which also con-
siders the number of connected compo-
nents obtained by removing the vertex.
We also give an efficient algorithm for
estimating aggregated spanning tree cen-
trality. Finally, we experimentally show
that those spanning tree centralities are
useful to identify vulnerable edges and
vertices in infrastructure networks.

Introduction
Measuring the importance of edges and vertices is a fun-
damental task in network analysis. Many importance no-
tions have been proposed in the literature such as degree
centrality, betweenness centrality [Anthonisse, 1971; Free-
man, 1977], closeness centrality [Bavelas, 1950], and Katz
centrality [Katz, 1953], and they are used in various ap-
plications such as community detection [Girvan and New-
man, 2002; Newman and Girvan, 2004], suppressing the epi-
demics [Barrat et al., 2008], and maximizing the spread of
influence [Kempe et al., 2003].

Among those centralities, in this paper, we focus on span-
ning tree centrality [Teixeira et al., 2013; Qi et al., 2015]. In a
connected graph G = (V,E), the spanning tree centrality of
an edge e 2 E is defined as the probability that e is used in a
uniformly sampled spanning tree. Although the spanning tree
centrality was originally used to reconstruct a phylogenetic
tree from evolutionary relations among species [Teixeira et
al., 2013], it turns out that it measures how crucial an edge
is for the graph to be connected. Similar centrality notion for
vertices was also introduced in [Qi et al., 2015].

Figure 1: Dolphins network. The color of an edge represents
its relative centrality value in the network. Red, green, and
blue edges represent that they have high, medium, and low
centrality values, respectively.

To get intuition, we depicted spanning tree centralities
of edges in a social network formed by bottlenose dol-
phins [Lusseau et al., 2003] in Figure 1. We can observe that
edges on the periphery have high spanning tree centralities
because the network will be disconnected by removing a few
of those edges. On the other hand, edges in the middle of a
community has a small spanning tree centrality because there
are many paths bypassing them, and hence they can be safely
removed without disconnecting the graph.

Spanning tree centrality is a useful notion for identifying
vulnerable edges and vertices. For example, infrastructure
networks such as power grids should be robust against phys-
ical attacks and natural disasters, and it is important to main-
tain its connectivity so that all the users can access the in-
frastructure [Bernstein et al., 2014; Pagani and Aiello, 2013].
Spanning tree centrality directly measures how edges and ver-
tices are important to keep the graph connected. Also, it is
reported that edges of high spanning tree centralities are im-
portant for disseminating information through a social net-
work [Mavroforakis et al., 2015].

Although several exact and approximation methods have
been proposed for computing spanning tree centralities [Teix-
eira et al., 2013; Mavroforakis et al., 2015; Qi et al., 2015],
those methods are not scalable enough to find vulnerable
edges and vertices in large real-world networks, and resolving
this issue is the main motivation of this paper.
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Our Contributions
In this paper, we propose efficient algorithms for estimat-
ing spanning tree centrality with theoretical guarantees on
their accuracy. Our algorithms sample spanning trees uni-
formly at random sufficiently many times using Wilson’s al-
gorithm [Wilson, 1996], and then estimate the spanning tree
centralities of edges or vertices using those samples. Com-
bined with several speeding-up techniques, our algorithms
run orders of magnitude faster than previous methods on real-
world networks. Because of the efficiency of our methods, we
can now identify vulnerable edges and vertices in large net-
works. Then, we experimentally show that protecting edges
and vertices of high spanning tree centralities makes a power
grid network robust against random failures of edges and ver-
tices.

The effect of vertex failures in infrastructure networks is
often assessed by the resulting number of connected compo-
nents [Bernstein et al., 2014]. We introduce a novel notion,
called aggregated spanning tree centrality, which measures
the importance of vertices with respect to this criteria. Then,
we give an efficient algorithm for estimating aggregated span-
ning tree centrality with theoretical guarantee on its accuracy.
Using a power grid network, we experimentally show that the
failures of vertices with high aggregated spanning tree cen-
tralities indeed result in a large number of connected compo-
nents compared to other centrality notions.

Related Work
The notion of spanning tree centrality for edges was intro-
duced in [Teixeira et al., 2013] for reconstructing a phylo-
genetic tree from evolutionary relationships among species.
Their exact method is based on Kirchhoff’s matrix-tree the-
orem and computes determinants of matrices polynomially
many times. This makes their algorithm slow, and it can only
handle graphs of tens of thousands of edges within an hour.

An approximation algorithm based on dimension reduc-
tion through the Johnson-Lindenstraus lemma [Johnson and
Lindenstrauss, 1984] was proposed by [Spielman and Srivas-
tava, 2011]. A more practical version of this algorithm was
given by [Mavroforakis et al., 2015]. Their algorithm uses
an almost linear-time algorithm for solving symmetric diago-
nally dominant (SDD) systems [Koutis et al., 2011]. Despite
these sophisticated techniques, their algorithm can only han-
dle graphs of million edges within an hour. We will exper-
imentally show that our algorithms can accurately estimate
spanning tree centrality on graphs of millions of edges within
a minute.

Spanning tree centrality for vertices was introduced in [Qi
et al., 2015]. Their method is also an exact method based on
Kirchhoff’s matrix-tree theorem and hence impractical.

A spanning centrality of an edge is often called effective
resistance as it corresponds to effective resistance when we
regard a graph as an electrical circuit. See [Lovász, 1993] for
consequences of this interpretation and connections with ran-
dom walk. Theoretically, the spanning tree centrality of an
edge can be well approximated in almost linear time [Spiel-
man and Srivastava, 2011] and is used as a building block of
designing almost linear time algorithms for other problems

such as spectral sparsifier construction [Spielman and Srivas-
tava, 2011] and approximate maximum flow [Kelner et al.,
2014].

Preliminaries
In this section, we introduce basic notions used throughout
this paper and review several concentration inequalities.

For an integer k 2 N, [k] denotes the set {1, 2, . . . , k}. For
a, b 2 R and ✏ > 0, a = b ± ✏ means b � ✏  a  b + ✏.
For a probabilistic event X , [X] denotes its indicator, that is,
[X] = 1 if X holds and 0 otherwise.

Let G = (V,E) be a graph. For a vertex v 2 V , dG(v)
denotes the degree of v. For a set of vertices S ✓ V , G[S]
denotes the subgraph of G induced by S.

We call an edge a bridge if the number of connected com-
ponents increases by removing it. Similarly, we call a vertex
an articulation point if the number of connected components
increases by removing it. A graph is called biconnected if it
does not have any articulation point. A biconnected compo-
nent of a graph is its maximal biconnected subgraph.

Symbols n and m will denote the number of vertices and
edges, respectively, of the input graph.

Spanning Tree Centrality
Let G = (V,E) be a connected graph. We define µG as the
uniform distribution over spanning trees of G. By T ⇠ µG,
we mean that we sample a spanning tree T from µG. We in-
troduce three kinds of spanning tree centralities, one for edges
and the other two for vertices.
Definition 1 (Teixeira et al. 2013). Let G = (V,E) be a
connected graph. The spanning tree centrality of an edge e 2
E, denoted by stG(e), is defined as PrT⇠µG [e 2 T ].
Definition 2 (Qi et al. 2015). Let G = (V,E) be a connected
graph. The spanning tree centrality of a vertex v 2 V , denoted
by stG(v), is defined as PrT⇠µG [dT (v) � 2].
Definition 3. Let G = (V,E) be a connected graph. The ag-
gregated spanning tree centrality of a vertex v 2 V , denoted
by astG(v), is defined as ET⇠µG [dT (v)].

We omit subscripts when they are clear from the context.
Below, we explain intuitions behind those definitions.

The spanning tree centrality of an edge measures how it is
like a bridge. Indeed, if an edge e = (u, v) is a bridge, then
e is used in any spanning tree and hence st(e) = 1. On the
other hand, if there are many other paths between u and v
that bypass e, then e is unlikely used in a uniformly sampled
spanning tree, and hence st(e) will be small.

The spanning tree centrality of a vertex measures how it
is like an articulation point. Indeed, if a vertex v is an artic-
ulation point, then v cannot be a leaf in a spanning tree and
hence st(v) = 1. On the other hand, if v is contained in a
tightly connected community and is not an articulation point,
then st(v) becomes small. For example, if v is a vertex in a
complete graph of n vertices, then by Kirchhoff’s matrix tree
theorem, we can easily show that st(v) = 1�(1�1/n)n�2

!

1� 1/e (n!1).
The aggregated spanning tree centrality of a vertex in-

corporates the number of connected components obtained
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by removing the vertex. To see this, note that ast(v) =P1
i=1 PrT⇠µG [dT (v) � i]. Here, PrT⇠µG [dT (v) � i] can

be seen as a generalization of st(v) in the sense that it mea-
sures how v is like an articulation point such that the number
of connected components increases by at least i � 1 by re-
moving v.

Concentration Inequalities
We will use following Hoeffding’s inequality in our analysis.
Lemma 4. Let X1, . . . , Xq be independent random variables
in [0, 1] and X =

P
i2[q] Xi. Then for any 0 < ✏ < 1, we

have
Pr[|X �E[X]| > ✏q]  2 exp(�2✏2q).

We say that random variables X1, . . . , Xq are negatively
correlated if Pr[

V
i2[q] Xi] 

Q
i2[q] Pr[Xi]. Even when ran-

dom variables are dependent, if they are negatively correlated,
then the following concentration inequality holds:
Lemma 5 (Panconesi and Srinivasan 2006). Let X1, . . . , Xq

be random variables in {0, 1} that are negatively correlated
and X =

P
i2[q] Xi. Then for any 0 < ✏ < 1, we have

Pr

⇥
X > (1 + ✏)E[X]

⇤


⇣ e✏

(1 + ✏)1+✏

⌘E[X]
,

Pr

⇥
X < (1� ✏)E[X]

⇤
 exp(�✏2 E[X]/2).

For an edge e 2 E, let Xe be the indicator corresponding
to the event that e is used in a spanning tree sampled from
µG. Then, we have the following fact.
Lemma 6 (Burton and Pemantle 1993). Let G = (V,E) be
a connected graph. Random variables {Xe}e2F for any F ✓
E are negatively correlated.

Hence, we can apply Lemma 5 to the set {Xe}e2F for any
set of edges F ✓ E.

Algorithms
In this section, we explain our algorithms for estimating span-
ning tree centralities.

Spanning Tree Centrality of Edges
Our algorithm for estimating spanning tree centralities of
edges is based on Wilson’s algorithm [Wilson, 1996], which
samples a spanning tree uniformly at random. We need sev-
eral notions to explain Wilson’s algorithm.

Let G = (V,E) be a graph and P = (v1, . . . , v`) be a path
in G, that is, {vi, vi+1} 2 E for each i 2 [`�1]. We define the
loop erasure of P , denoted by LE(P ), as the path obtained
from P by removing cycles. More formally, we define indices
ij inductively using the following rule: i1 = 1 and ij+1 =

max{i 2 [`] : vi = vij} + 1. The induction stops when we
have vij = v` for the current j. Let `0 be the last index j
for which ij is defined. Then, LE(P ) is defined as the path
(vi1 , . . . , vi`0 ).

Wilson’s algorithm is given in Algorithm 1. It takes a graph
G = (V,E) and a vertex r 2 V , called the root, as its input.
Let v1, . . . , vn�1 be an arbitrary ordering of V \{r}. We start
with a tree T consisting of a single vertex r. Then, for each

Algorithm 1 Wilson’s algorithm
1: procedure WILSON(G, r)
2: T  the tree consisting of a single vertex r.
3: Let v1, . . . , vn�1 be an arbitrary ordering of V \ {r}.
4: for i = 1 to n� 1 do
5: Let P be a random walk from vi to T .
6: Add the loop erasure LE(P ) to T .
7: return T .

Algorithm 2 Spanning Tree Centrality for Edges
1: procedure ST-EDGE(G, r, ✏, �)
2: q  dlog(2m/�)/(2✏2)e.
3: for i = 1 to q do
4: Ti  WILSON(G, r).
5: for each e 2 E do
6: e

st(e) 1
q

P
i2[q][e 2 Ti].

7: return {

e
st(e)}e2E .

i 2 [n�1], we perform a random walk from vi until it reaches
some vertex in T , and then add to T the loop erasure LE(P )

of the obtained random walk P . Note that, if vi is already a
vertex in T , then P is a walk consisting of a single vertex vi,
and hence T does not change. It is clear that Wilson’s algo-
rithm always returns a spanning tree when G is connected.
Indeed the following holds.
Theorem 7 (Wilson 1996). For a connected graph G =

(V,E) and a vertex r 2 V , WILSON(G, r) uniformly sam-
ples a spanning tree of G. The expected running time isP

u2V \{r} ⇡G(u)G(u, r).

Here, ⇡G(u) denotes the probability of staying at a vertex
u 2 V in the stationary distribution of a random walk on G,
and G(u, v) denotes the commute time between two vertices
u, v 2 V , that is, the expected number of steps in a random
walk starting at u, before v is visited and then u is reached
again. Note that ⇡G(u) = dG(u)/2m, where m is the number
of edges, as we consider undirected connected graph.

The choice of the root r and the vertex ordering
v1, . . . , vn�1 much affect the practical performance. We will
discuss several strategies later.

With the aid of Wilson’s algorithm, we can efficiently esti-
mate spanning edge centralities of edges by sampling a suffi-
cient number of spanning trees and then counting how many
of them use a particular edge (Algorithm 2). We have the fol-
lowing guarantee on its accuracy and time complexity:
Theorem 8. Let G = (V,E) be a connected graph, r 2 V
be a vertex, and 0 < ✏, � < 1. With probability at least
1� �, ST-EDGE(G, r, ✏, �) outputs {est(e)}e2E with e

st(e) =
st(e) ± ✏ for every e 2 E. The expected running time is
dlog(2m/�)/(2✏2)e ·

P
u2V ⇡G(u)G(u, r).

Proof. By Hoeffding’s inequality, for each edge e 2 E, the
probability that est(e) = st(e) ± ✏ holds is at least 1 � �/m.
By union bound, the probability that est(e) = st(e)± ✏ holds
for every e 2 E is at least 1� �.

The time complexity is immediate from Theorem 7.
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Algorithm 3 Spanning Tree Centrality for Vertices
1: procedure ST-VERTEX(G, r, ✏, �)
2: q  dlog(2n/�)/(2✏2)e.
3: for i = 1 to q do
4: Ti  WILSON(G, r).
5: for each u 2 V do
6: e

st(u) 1
q

P
i2[q][dTi(u) � 2].

7: return {

e
st(u)}u2V .

Algorithm 4 Aggregated Spanning Tree Centrality
1: procedure AST-VERTEX(G, r, ✏, �)
2: ✏0  e

⇥(✏/ log(n/�)). (e⇥(·) hides the log factor.)
3: q  e

⇥(log(n/�)/✏02).
4: for i = 1 to q do
5: Ti  WILSON(G, r).
6: for each u 2 V do
7: f

ast(u) 1
q

P
i2[q] dTi(u).

8: return {

f
ast(u)}u2V .

We will see that, in real-world networks, most edges have
large spanning tree centralities, say, more than 0.1. Hence, we
can detect important edges by choosing ✏ a small constant,
that is, a value independent of the graph size.

Spanning Tree Centrality of Vertices
Our algorithm for estimating spanning tree centralities of ver-
tices is very similar to the one for edges (Algorithm 3). We
have the following guarantee:
Theorem 9. Let G = (V,E) be a connected graph, r 2 V
be a vertex, and ✏, � > 0. Then with probability at least 1 �
�, ST-VERTEX(G, r, ✏, �) outputs {

e
st(u)}u2V with e

st(u) =

st(u) ± ✏ for every u 2 V . The expected running time is
dlog(2n/�)/(2✏2)e ·

P
u2V ⇡G(u)G(u, r).

As the proof of Theorem 9 is quite similar to that of Theo-
rem 8, we omit the details.

Aggregated Spanning Tree Centrality of Vertices
In this section, we explain our algorithm for estimating ag-
gregated spanning tree centralities of vertices. Our algorithm
is given in Algorithm 4. It simply samples a sufficient num-
ber of spanning trees, and then computes the average degree
of each vertex in those spanning trees.

If we simply apply Hoeffding’s inequality, then we can
only guarantee that, with high probability, f

ast(u) approxi-
mates ast(u) to within ✏dG(u) for every u 2 V . We want a
stronger guarantee because ast(u) is typically much smaller
than dG(u). To this end, we use the fact that edges in a uni-
formly sampled spanning tree are negatively correlated, and
we get the following guarantee:
Theorem 10. Let G = (V,E) be a connected graph, r 2
V be a vertex, and ✏, � > 0. Then with probability at
least 1 � �, AST-VERTEX(G, r, ✏, �) outputs {

f
ast(u)}u2V

with f
ast(u) = ast(u) ±

�
✏(1 + ast(u)) + �

�
for every

u 2 V . The expected running time is eO(log

3
(n/�)/✏2 ·P

u2V ⇡G(u)G(u, r)).

Proof. We fix a vertex u 2 V . We show that the algorithm
outputs f

ast(u) with f
ast(u) = ast(u) ±

�
✏(1 + ast(u)) + �

�

with probability 1 � �/n. Then, the first claim follows by
union bound.

Let Yi = dTi(u) for each i 2 [q]. Let N � ast(u) be a
parameter determined later, and we define Yi,N = Yi · [Yi 

N ] and Yi,>N = Yi · [Yi > N ] for each i 2 [q]. Note that
Yi = Yi,N + Yi,>N holds. Hence, f

ast(u) =

1
q

P
i Yi =

1
q

P
i Yi,N +

1
q

P
i Yi,>N holds. By Hoeffding’s bound,

1

q

X

i

Yi,N =

1

q

X

i

E[Yi,N ]± ✏0N

holds with probability at least 1� �/(2n).
Let ✏00 = N/ast(u)�1. Note that ✏00 � 0 because we chose

N � ast(u). For any i 2 [q], by Lemma 5, we have

Pr[Yi > N ] 

e✏
00ast(u)

(1 + ✏00)(1+✏00)ast(u)


eN

(N/ast(u))N
.

By choosing N = max{2e · ast(u), log(2qn/�)}, the proba-
bility of having Yi > N becomes at most �/(2qn). Then by
union bound, with probability at least 1 � �/(2n), we have
Yi  N for every i 2 [q]. In other words, Yi,>N = 0 for
every i 2 [q].

Since Yi  n, we have E[Yi,>N ]  n · �/(2qn) = �/(2q),
which means that E[Yi,N ] = ast(u)�E[Yi,>N ] � ast(u)�
�/(2q). Also, it is clear that E[Yi,N ] = ast(u)�E[Yi,>N ] 

ast(u).
Combining arguments above, with probability at least 1 �

�/n, we have

f
ast(u) =

1

q

X

i

Yi =
1

q

X

i

Yi,N =

1

q

X

i

E[Yi,N ]± ✏0N

= ast(u)±
�
� + ✏0 max{2e · ast(u), log(2qn/�)}

�
.

By choosing ✏0 = ✏/
�
2e log(2qn/�)

�
, we have f

ast(u) =

ast(u) ±

�
� + ✏(1 + ast(u))

�
. Note that the depen-

dency between ✏0 and q is cyclic because we need q =

⇥(log(n/�)/✏02). However, this recurrence has a solution
✏0 = e

⇥(✏/ log(n/�)) and q =

e
⇥(log(n/�)/✏2).

The analysis of the time complexity is obvious.

Speeding-up techniques
In this section, we discuss several techniques for speeding up
our algorithms.

Biconnected-component decomposition
Let G = (V,E) be a connected graph. Suppose that bicon-
nected components C1, . . . , Ck are attached at an articulation
point u 2 V . Then, we can uniformly sample a spanning
tree T of G by uniformly sampling spanning trees T1, . . . , Tk

of G[C1], . . . , G[Ck], respectively, and attaching them at u.
This means that stG(e) = stG[Ci](e) for any edge e 2 G[Ci].
Hence, it suffices to process smaller graphs G[C1], . . . , G[Ck]

separately.
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[Mavroforakis et al., 2015] proposed to reduce the input
graph to its 2-core, a maximal subgraph of the minimum de-
gree at least two. Our decomposition technique surpasses the
reduction to the 2-core because after splitting the graph at
articulation points, we get bridges and biconnected compo-
nents, which are subgraphs of the 2-core.

Vertex ordering
We consider the following strategies for the vertex order-
ing strategies used in Wilson’s algorithm: Random, De-

gree, Distance, and Reverse. In the first three strategies,
we choose a vertex with the highest degree as the root. Other
vertices are randomly shuffled, sorted in decreasing order of
degrees, and sorted in increasing order of distances from the
root in Random, Degree, and Distance, respectively. In
Reverse, a vertex with the lowest degree is chosen as the root
and other vertices are sorted in increasing order of degrees.

Experiments
In this section, we demonstrate the efficiency of our methods
and the effectiveness of spanning tree centralities for finding
vulnerable edges and vertices in real-world networks.

Environment All the proposed methods were implemented
in C++11 and compiled with gcc 4.8.3 with -O3 option. Un-
less stated otherwise, we used biconnected-component de-
composition and Distance strategy for vertex ordering. The
implementation of the algorithm proposed by [Mavroforakis
et al., 2015], which we refer to the MGKT algorithm, was
obtained from authors’ website1. All experiments were con-
ducted with a single thread on a Linux server with Intel Xeon
X5675 3.07GHz CPU and 288GB Memory.

Datasets We conducted all experiments on real-world so-
cial, road, and infrastructure networks. All datasets used in
our experiments can be downloaded from Stanford Network
Analysis Project [Leskovec and Krevl, 2014]. Table 1 shows
the information of datasets.

Spanning Tree Sampling Performance
We first evaluate the runtime of sampling spanning trees with
our speed-up techniques. Note that the runtime of our central-
ity estimation algorithms is dominated by the time for sam-
pling spanning trees. Therefore, the overall running time is
easily obtained by multiplying the time for sampling a span-
ning tree and the number of required spanning trees, which is
determined by the error parameter ✏.

Speed-up by the biconnected-component decomposition
Table 2 shows the average runtime of sampling a spanning
tree, where we sampled 1,000 spanning trees in total. Note
that we can sample a spanning trees in less than 2 seconds on
Orkut, which is a large social network with over one million
edges. Biconnected components decomposition consistently
reduces the runtime of sampling a spanning tree. In particular,
we can sample spanning trees more than 40% faster on sparse
networks such as DBLP and Youtube.

1http://cs-people.bu.edu/cmav/centralities

Table 1: Statistics of datasets. We denote the number of ver-
tices and edges in the largest biconnected component of the
original graph by n0 and m0, respectively. STe denotes the
spanning edge centrality of the vertex with 100,000-th highest
centrality value except US-PowerGrid. For US-PowerGrid,
STe denotes that of the vertex with 3,000-th highest centrality
value since US-PowerGrid has only 6.6K edges.

Dataset n m n0 m0 STe

US-PowerGrid 4.9K 6.6K 3.0K 4.6K 0.77
Gnutella 63K 148K 34K 119K 0.20
Epinions 76K 509K 36K 365K 0.17
Slashdot 77K 905K 47K 439K 0.13
DBLP 426K 1.0M 211K 884K 0.60
Youtube 1.2M 3.0M 452K 2.3M 1.00
RoadNet-TX 1.4M 1.9M 1.1M 1.6M 1.00
Skitter 1.7M 11M 1.4M 11M 1.00
Pokec 1.6M 22M 1.5M 22M 1.00
Orkut 3.1M 117M 3.0M 117M 0.51

Table 2: The average runtime of sampling a spanning tree. TG

and TBC denote the runtime in milliseconds when we sample
spanning trees from the whole graph and from each bicon-
nected component, respectively.

Dataset TG TBC TBC/TG

DBLP 132.1 78.7 0.60
Youtube 297.1 133.1 0.45
RoadNet-TX 1288.2 997.9 0.77
Skitter 494.0 371.2 0.75
Pokec 652.0 574.5 0.88
Orkut 1462.9 1380.6 0.94

Slashdot DBLP Youtube RoadNet-TX Skitter101

102

103

104

Ti
m

e
(m

s)

Random
Degree
Distance
Reverse

Figure 2: Effect of vertex ordering strategies.

Vertex ordering strategies
We examined how vertex ordering strategies affect the effi-
ciency of sampling spanning trees. Figure 2 shows the av-
erage runtime for each strategy to sample a spanning tree,
where we sampled 1,000 spanning trees in total. We can ob-
serve that Distance is the fastest among the four strategies on
almost all datasets. Apparently, this is because we can avoid
long unnecessary random walks in the early stage of Wilson’s
algorithm by starting random walks from vertices close to the
root.

Edge Centrality Estimation Performance
Among the three spanning tree centralities, we take the span-
ning tree centrality for edges as an example, and compare
our method with the previous MGKT algorithm. We obtained
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Figure 3: The runtime of our method and the MGKT algo-
rithm under a given error parameter ✏.

similar results for other centralities.
We compare the runtime of our method and the MGKT

algorithm on several small networks. We chose the failure
probability � = 1/n. For an error parameter ✏, our method
samples dlog(2m/�)/(2✏2)e spanning trees and guarantees
e
st(e) = st(e)±✏ for every edge with probability at least 1��
and the MGKT algorithm guarantees (1�✏)2st(e)  e

st(e) 
(1+✏)2st(e) for every edge with probability at least 1��. We
cannot directly compare those algorithms because our method
guarantees absolute error whereas the MGKT algorithm guar-
antees relative error. However, as shown in Table 1, the im-
portant edges have large centrality values, say, more than 0.1,
and hence we can claim that our method with ✏ = 0.05 gives a
sufficient accuracy in comparison with the MGKT algorithm
with ✏ = 0.25. Under this setting, our method runs orders
of magnitude faster than the MGKT algorithm as shown in
Figure 3.

Effectiveness of Spanning Tree Centralities
We now demonstrate the effectiveness of (aggregated) span-
ning tree centralities of edges and vertices.

Connectivity
We first show that, using US-PowerGrid, which is a real-
world infrastructure network, spanning tree centralities of
edges/vertices are useful to identify important edges/vertices
for maintaining connectivity. In our experiments, we pro-
tected a certain fraction of edges/vertices with the high-
est centrality values in terms of spanning tree centrality
or betweenness centrality, and removed each unprotected
edge/vertex with a certain probability. Then, we examined the
probability that the network remained connected. The results
are shown in Figure 4 and 5. We can see that show spanning
tree centrality is a better measure for identifying important
edges and vertices to maintain connectivity.

Number of connected components
Finally, we examine the effectiveness of aggregated spanning
tree centrality by considering the number of connected com-
ponents. For clarity, this time, instead of protecting vertices,
we removed vertices from the ones with higher centrality val-
ues. Figure 6 illustrates the result. We used the largest con-
nected component of US-PowerGrid as the initial graph. For
each different centrality measure, we removed the vertices
with highest centrality values from the graph, and then com-
puted the numbers of connected components. Larger result-
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Figure 4: The probability that US-PowerGrid remained con-
nected after edge removal among 500 trials.
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Figure 5: The probability that US-PowerGrid remained con-
nected after vertex removal among 500 trials.
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Figure 6: Number of connected components after vertex re-
movals. Each removed vertex is considered as one connected
component.

ing numbers of connected components mean that removed
vertices are key vertices to connect many different parts of
the graph. From Figure 6, we clearly see that our aggregated
spanning tree centrality performs best in this experiment.

Conclusions
In this paper, we gave efficient algorithms for estimating
spanning tree centrality. Our algorithms are orders of mag-
nitude faster than previous methods. By experiment, we con-
firmed that spanning tree centralities are to identify vulnera-
ble edges and vertices in infrastructure networks.
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A. Vespignani. Dynamical processes on complex
networks. Cambridge University Press, Cambridge, MA,
2008.

[Bavelas, 1950] Alex Bavelas. Communication patterns in
task-oriented groups. The Journal of the Acoustical Soci-
ety of America, 22(6):725–730, 1950.

[Bernstein et al., 2014] Andrey Bernstein, Daniel Bienstock,
David Hay, M Uzunoglu, and Gil Zussman. Power grid
vulnerability to geographically correlated failures – analy-
sis and control implications. In INFOCOM, pages 2634–
2642, 2014.

[Burton and Pemantle, 1993] R Burton and R Pemantle. Lo-
cal characteristics, entropy and limit theorems for span-
ning trees and domino tilings via transfer-impedances. The
Annals of Probability, 21:1329–1371, 1993.

[Freeman, 1977] Linton C Freeman. A set of measures of
centrality based on betweenness. Sociometry, 40(1):35,
1977.

[Girvan and Newman, 2002] M Girvan and M E J New-
man. Community structure in social and biological net-
works. Proceedings of the National Academy of Sciences,
99(12):7821–7826, 2002.

[Johnson and Lindenstrauss, 1984] W B Johnson and J Lin-
denstrauss. Extensions of Lipschitz mappings into a
hilbert space. Contemporary Mathematics, 26(189):189–
206, 1984.

[Katz, 1953] Leo Katz. A new status index derived from so-
ciometric analysis. Psychometrika, 18(1):39–43, 1953.

[Kelner et al., 2014] Jonathan A Kelner, Yin Tat Lee,
Lorenzo Orecchia, and Aaron Sidford. An almost-linear-
time algorithm for approximate max flow in undirected
graphs, and its multicommodity generalizations. In SODA,
pages 217–226, 2014.

[Kempe et al., 2003] David Kempe, Jon Kleinberg, and Éva
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