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Abstract

A widely used method for estimating counterfactu-
als and causal treatment effects from observational
data is nearest-neighbor matching. This typically
involves pairing each treated unit with its nearest-
in-covariates control unit, and then estimating an
average treatment effect from the set of matched
pairs. Although straightforward to implement, this
estimator is known to suffer from a bias that in-
creases with the dimensionality of the covariate
space, which can be undesirable in applications
that involve high-dimensional data. To address this
problem, we propose a novel estimator that first
projects the data to a number of random linear sub-
spaces, and it then estimates the median treatment
effect by nearest-neighbor matching in each sub-
space. We empirically compute the mean square er-
ror of the proposed estimator using semi-synthetic
data, and we demonstrate the method on real-world
digital marketing campaign data. The results show
marked improvement over baseline methods.

1 Introduction

Estimating causal treatment effects from observational (i.e.,
nonexperimental) data is a key problem in various fields
of science [Spirtes et al., 2000; Pearl, 2009b; Morgan and
Winship, 2014]. Our domain of interest is digital market-
ing, where a marketer has access to a collection of observa-
tional data and seeks answers to business critical questions
such as whether a new advertisement attracts more clicks,
whether a new campaign drives more conversions, etc. [Chan
et al., 2010; Dalessandro et al., 2012; Hill et al., 2015;
Barajas er al., 2015; Wang et al., 2015]. Unlike randomized
experiments where the covariate distributions of the treat-
ment and control groups are balanced in expectation, in an
observational study this balance can be distorted by a con-
founding bias that is introduced by the systematic assignment
of the treatment to the units [Rosenbaum and Rubin, 1983;
Pearl, 2010; Hill and Su, 2013]. A simple and popular method
to address this bias is to match the distribution of covari-
ates in the two groups in order to create a subsample that is
more balanced in the covariates [Rubin, 1973a; Stuart, 2010;
Hainmueller, 2012]. The matched counterparts of the treated
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units in the control group are interpreted as counterfactuals,
and the average treatment effect on treated (ATT) is estimated
by comparing the outcomes of every matched pair.

One of the widely used matching methods is Nearest
Neighbor Matching (NNM) [Rubin, 1973al. For each treated
unit, NNM finds its nearest neighbor in the control group
to generate a matched pair, and the ATT is then estimated
from the set of matched pairs. Different NNM methods are
characterized by the choice of a distance measure for de-
termining such a match. Some of the popularly used dis-
tance measures are Exact Matching and its variant Coars-
ened Exact Matching (CEM) [lacus et al., 2011], Maha-
lanobis distance matching [Rubin, 1979], and Propensity
Score Matching (PSM) [Rosenbaum and Rubin, 1983]. Al-
though these estimators have been widely applied, they usu-
ally exhibit poor performance in high-dimensional data. For
example, Exact Matching has to discard a lot of data in or-
der to attain a good matching when a large set of covariates
is present and hence it can result in a large bias [Rosen-
baum and Rubin, 1985]. Mahalanobis distance matching
uses the empirical covariance of the data, but this effec-
tively imposes parametric assumptions on the data and there-
fore is prone to a bias in high dimensions [Gu and Rosen-
baum, 1993]. PSM summarizes each covariate vector by
a single number, namely the probability of being treated,
but it also suffers from a model misspecification problem
in the high-dimensional case [Caliendo and Kopeinig, 2008;
King and Nielsen, 2016]. More generally, theoretical results
show that the bias of a nearest-neighbor matching estimator
increases with the dimensionality of the data [Abadie and Im-
bens, 2006], which can limit the applicability of matching es-
timators in real-world domains such as digital marketing.

The above motivates an approach that maintains the prac-
tical advantages of NNM while addressing its sensitivity to
the high dimensionality of the data. In this work we propose
a new estimator that matches the data in a low-dimensional
subspace of the original space. Intuitively, a good estima-
tor should preserve as much as possible the neighborhood
relationships of the units in the input space, which moti-
vates projections that provide guarantees of that sort. For
a total number N of treated and control units, the Johnson-
Lindenstrauss (JL) lemma [Johnson and Lindenstrauss, 1984;
Ailon and Chazelle, 2006] guarantees that a random linear
projection to O(log N') dimensions preserves (withing a con-



trollable factor) all pairwise distances of the points in the
high-dimensional input space. Motivated by the JL lemma,
we propose a new matching estimator that works as follows.
(1) We first project the data to multiple random linear sub-
spaces of dimension O(log N). (2) Then we estimate the
treatment effect by simple nearest neighbor matching in each
subspace. (3) Finally we compute the median value of the es-
timated effects. A theoretical treatment of the statistical prop-
erties of the new estimator is out of the scope of this paper, but
we provide a careful empirical calculation of the mean square
error of the estimator on semi-synthetic data, following a re-
cently proposed experimental design that employs real data
to compute statistical properties of ATT estimators [Frolich
etal., 2015]. As we demonstrate on semi-synthetic as well as
real data from digital marketing campaigns, the proposed es-
timator is very robust and it consistently improves over base-
line methods.
In summary, the main contributions of our work are:

e We propose the estimation of average treatment effects
from observational data by means of dimensionality re-
duction. To the best of our knowledge, this is the first
attempt to estimate treatment effects by matching in a
low-dimensional subspace of the data.

We evaluate the proposed estimator on semi-synthetic
data as well as real-world data from digital marketing,
and show its robustness against baseline methods. To
the best of our knowledge, this is the first application of
nearest-neighbor matching in the domain of digital mar-
keting. Our approach can also be applied in other do-
mains that involve high-dimensional observational data,
such as text analysis [Roberts er al., 2015] and public
health [Glass et al., 20131.

2 Background and Related Work

The dominant paradigm for causality in the Al literature is
the structural causal model of Pearl [Pearl, 2009b], with its
do(-) notation for interventions and semantics drawn from
the structural equation models and graphical models for
probabilistic reasoning [Spirtes er al., 2000]. A contender
to the Pearl’s paradigm is the counterfactual or potential-
outcome framework of Neyman-Rubin [Neyman, 1923; Ru-
bin, 1974]. The key distinction between Pearl’s framework
and the counterfactual framework is that the latter allows
expressing counterfactual queries as standard probabilistic
queries on some probability space defined on both hypotheti-
cal and real events, subject to certain consistency constraints
between the two types of events [Pearl, 2009a)]. The fact that
causal queries can be formulated in the familiar probability
language has contributed to the popularity of the counterfac-
tual framework for practical applications [Morgan and Win-
ship, 20141, but the framework has also been criticized for
its lack of flexibility or intuitiveness when dealing with com-
plex settings [Pearl, 2009al. The counterfactual framework is
sufficient for demonstrating the key ideas of our work, so we
have adopted it throughout.

The key assumption of the counterfactual framework is
that each individual in the population of interest has a poten-
tial outcome under each (binary) treatment state, even though
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each individual is observed in only one treatment state at any
point in time [Morgan and Winship, 2014]. More specifically,
for individual (unit) 4 there are two possible outcomes, Y;(1)
if it undergoes treatment 7', and Y;(0) if it does not. The
treatment effect for individual ¢ is defined as

7 = Yi(1) - Y;(0), (1)

and one of the two terms is always missing in the data, since
for each individual 7 we observe either Y;(1) (if 4 is treated)
or Y;(0) (if ¢ is in the control group). A naive idea for solving
the missing data problem is to directly compare the treated
and control groups. This can work if the two groups have bal-
anced distributions, which is approximately the case in ran-
domized trials [King and Nielsen, 2016]. In observational
studies, however, the assumption of balanced distributions is
unrealistic due to the systematic assignment of treatments.

The idea of matching as a method to estimate causal ef-
fects from observational data began as early as the 1940s but
gained widespread attention with the work by Rubin [Rubin,
1973a; 1973b; 1974]. Since then it has been widely stud-
ied and applied in several fields of science [Stuart, 2010;
Morgan and Winship, 2014]. In the methodological litera-
ture, matching is typically used as a method to form quasi-
experimental contrasts by sampling comparable treatment
and control cases from among two larger pools of such cases
[Morgan and Winship, 2014]. Matching methods can be
broadly classified into nearest neighbor matching, weight-
ing, and subclassification. In this work we focus on Nearest
Neighbor Matching (NNM): For each treated unit 7, NNM
finds the nearest neighbor of 7 in the control group in terms of
a given distance measure in the covariate space, and discards
the unmatched control units. The average treatment effect on
the treated (ATT) is then estimated by

ATT = o 3 (V1) - Ti(0)).

Ty =1

2

where Np = Zfil T; is the number of treated samples, and
T; is a binary treatment indicator. Y;(1) is the observed out-

come of the treated unit ¢, and Yl(O) is the counterfactual con-
trol outcome of unit ¢, which is estimated from the matched
counterpart of unit ¢ in the control group.

Early work on NNM focused on estimating the ATT
when dealing with a single covariate [Rubin, 1973a; 1973b;
Cochran and Rubin, 1973]. Various distance measures defin-
ing the similarity between two units while matching have
been proposed in the literature. A straightforward way is
to perform exact matching on the covariates, but this clearly
becomes impractical when dealing with a large number of
covariates or covariates containing continuous values. Ma-
halanobis distance matching computes the Mahalanobis dis-
tance between every pair of controlled and treated units in
the covariate space and then matches the units accordingly.
This is known to work well when there are relatively few co-
variates [Rubin, 1979], but it can fail when the number of
covariates is large or when the covariates are not normally
distributed [Gu and Rosenbaum, 1993].

A key development in this area was the introduction of
Propensity Score Matching (PSM) [Rosenbaum and Rubin,



1983]. PSM estimates the probability of receiving treatment
(aka propensity score) for each unit, without looking at the
outcomes in the sample. The units are matched by simply
grouping individuals with similar propensity scores, moti-
vated by the fact that, asymptotically, at each value of the
propensity score the distribution of the covariates defining
the score is the same in the two groups. PSM has emerged
as a very popular method for causal analysis mainly due
to its simplicity [Dehejia and Wahba, 2002; Peikes er al.,
2008]. However, PSM is reported to be overly sensitive to
the choice of model for the propensity score [Caliendo and
Kopeinig, 2008], it can increase the imbalance between the
two groups [King and Nielsen, 2016], and other issues [Heck-
man et al., 1998; Bryson et al., 2002; King and Zeng, 2006;
Pearl, 2009b].

In a key paper, Abadie and Imbens [Abadie and Imbens,
2006] analyzed the bias of NNM estimators theoretically, and
found that the dimensionality of the data can have a negative
effect on the bias of the estimator. In particular, they showed
that the bias grows, roughly, at a rate O (N -1/ d), where N is
the sample size and d is the number of covariates. This im-
plies that, for finite samples, the bias will increase with the
dimensionality of the data. This result has motivated our ap-
proach in which matching is performed in a reduced dimen-
sion, as we describe next.

3 Randomized Nearest Neighbor Matching

Our approach hinges on the very simple idea that matching
can be performed in a reduced subspace of the original co-
variate space. The principal motivation for such ‘matching
via dimensionality reduction’ is a statistical one, namely to
soften the dependence of the estimation bias to the data di-
mension [Abadie and Imbens, 2006]. As we demonstrate in
the experiments section, this idea turns out to be solid.

As we are primarily interested in ‘big data’ applications
such as digital marketing, we are constrained by compu-
tational considerations to the use of linear dimensional-
ity reduction algorithms. Candidate algorithms here would
be Principal Component Analysis (PCA) [Jolliffe, 20021,
and Locality Preserving Projections (LPP) [He and Niyogi,
2004]. The LPP algorithm, in particular, aims at preserving
the local neighborhood structure of the data in the embedding,
and hence it seems a good choice for our problem. However,
LPP relies on the choice of a kernel (that would be expensive
to optimize over) and moreover it is not clear how to set the
dimension of the reduced subspace. We have tried both PCA
and LPP in our experiments, and we report the results in the
next section.

Since we are aiming at a purely nonparametric approach,
a natural choice for dimensionality reduction is via random
projections. The technical tool we need is the Johnson-
Lindenstrauss (JL) lemma [Johnson and Lindenstrauss, 1984]
that states that we can (linearly) project high-dimensional
data onto a randomly generated subspace of suitable dimen-
sion while approximately preserving the original distances
between points:

Johnson-Lindenstrauss (JL) lemma. For any 0 < € < 1/2
and z1,--- ,on € R? there exists a mapping f : R? — R,

Algorithm 1. Randomized Nearest Neighbor Matching
Input: Treated group X7 € RT¥M
Control group X¢ € R**Ne
Number of random projections m
Response variables Y7 and Yo
Total sample size N
1: Choose the dimension of subspace k ~ O(log N)
2: for i from 1 tom
3:  Generate a random projection P; € R4**¥
4: Project X7 and X¢ using P;
Zt = P Xr, ZL = P Xc.
5:  Perform NNM between Z% and Z,
6: Estimate the ATT A(z) from (2)
7: end for
Output: Return median(A)

with k = O(e~2?log N), such that
Vi, j (L= e)llwi —a;|* < 1f(2:) = f@)I* < (1+e)llzi — ).

It is known that the mapping f can be linear, giving
rise to particularly simple algorithms for dimension reduc-
tion [Hegde et al., 2008; Maillard and Munos, 2012].

Our approach, dubbed Randomized Nearest Neighbor
Matching, defines an ATT estimator by means of several ran-
dom projections of the input covariates to subspaces of size
O(log N) in accordance with the JL lemma. In particular, let
Xr € R¥>Nt and X € R¥*Ne denote the treatment and
control groups, where d is the dimensionality of data, /V; is
the size of the treatment group, and NN, is the size of the con-
trol group.

The proposed estimator involves the following steps:

1) First, we construct m independent random linear pro-
jections, Py,---, P, € R*™* where k is chosen accord-
ing to the JL lemma. Each entry in P; is drawn from a
univariate Gaussian distribution N(0,1) (or other distribu-
tions [Achlioptas, 2001; Bingham and Mannila, 2001]). Each
column of P; is normalized to unit norm.

2) Second, we project X and X to low-dimensional sub-
spaces using each of the generated projections. For the i-th
subspace, this reads Z% = P," Xr, Z% = P,' X, where Z1,
and ZI. are the low-dimensional representations of X7 and
X, respectively. We then perform nearest neighbor match-
ing on Z% and Z{,, and estimate a corresponding ATT A(i)
using (2). The vector A € R™*! contains the estimated ATT
in all m subspaces.

3) Finally, we choose the median value of the entries of the
vector A as our estimate. This enhances the robustness of the
estimator and is expected to reduce its total bias (an insight
that was corroborated by our experiments).

The above steps are summarized in Algorithm 1. Note
that, according to the JL lemma, the embedding dimension
k does not depend on the original dimensionality of data.
This makes the approach applicable to very high-dimensional
data. Moreover, an attractive feature of random projec-
tions is that they preserve the privacy of data, which can
be critical in applications such as digital marketing where
the customer information is sensitive (we do not elaborate
on this issue further here; see [Lindell and Omri, 2011;
Ahmed et al., 2013]).
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4 Experiments

In this section we empirically validate the proposed estimator
on synthetic, semi-synthetic, and real-world digital marketing
Campaign data.

4.1 Synthetic Dataset

The synthetic dataset is generated by following the proce-
dures introduced in [Sun er al., 2015]. In particular, the
sample size N is set to 1000, and the number of features
d is set to 200. We define the following basis functions:
fi(z) = —2sin(2x), fa(z) = 2% — 1/3, f3(x) = = — 0.5,
Ja(z) = e —el — L fs(z) = (x — 0.5)* +2, fe(2)
Toso0, fr(x) = e7%, fs(x) = cos(z), fo(zr) = 22, and
f1o(z) = x. The features z1, 2, - - , x4 are drawn indepen-
dently from the normal distribution A/(0, 1). The binary treat-
ment variable T is defined as T'|z = 1 if Z?Zl fi(xz;) >0
and T'|z 0 otherwise. Finally, the model for generating
outcome is Y|z, T ~ N(Z?=1 fj+5(xj)+T,1). In this syn-
thetic dataset, the first five features are correlated to the treat-
ment and outcome, simulating a confounding effect, while the
rest of the features are noisy covariates. The true causal effect
(i.e., the ground truth value of ATT) in this dataset is 1.

We compare our matching estimator with the following
baseline methods: Raw Space (Euclidean distance), Maha-
lanobis, PSM, PCA, and LPP. The first two baselines match
units in the high-dimensional space by using different dis-
tance measures. PSM estimates the propensity score of each
unit using logistic regression, and matches units with similar
scores. The latter two perform nearest neighbor matching in
low-dimensional subspaces computed by PCA and LPP, re-
spectively.

To test the quality of each estimator, we carried out the
above data generation process 1000 times and we estimated
the ATT for each estimator. In Figure 1 we report the mean
square error (MSE) of each estimator. (The standard error is
also shown as error bars). For our Randomized NNM, we
set the number of random projections m to 50 (we got sim-
ilar results for a wide range of values for m; results omit-
ted.) From Figure 1 we observe that the proposed estimator
achieves lower MSE than all other methods when the dimen-
sion is lower than 60. The JL bound for N = 100 is about 7,
which is consistent with Figure 1; our estimator achieves the
lowest MSE when the dimension varies from 5 to 10.

4.2 Digital Marketing Campaign Data

We also evaluate the performance of our estimator and base-
lines on a real-world digital marketing campaign dataset.
The dataset contains some covariates, such as customer pro-
file and purchase activities, which are encoded by 209-
dimensional binary vectors. It also includes the responses of
customers to various promotions offered during the period of
about one month. During this period, many campaigns were
launched that involved sending promotions to customers via
email, aiming at convincing the customers to purchase. In
particular, several related promotions were sent to different
groups of customers at about the same time. Specifically,
two promotional emails were separately sent to two groups
of customers, with the only difference between them being
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Figure 1: MSE of different estimators on the synthetic

dataset. Note that Raw Space and Mahalanobis only involve
matching in the original 200 dimensional data space.

the offered discount: The first group involved offers with low
discount, while the second group high discount. Due to the
non-randomized (and unknown to us) assignment of promo-
tions to customers, it is challenging to answer questions such
as which promotion actually performed better than the other.
Even worse, we may obtain confusing or misleading results if
directly counting the average customer responses in the raw
data. To see this, in the above example there were 0.8 mil-
lion customers who received low discount, and 1.2 million
customers who received high discount. The click response
rate in the 0.8-million group was 2.24%, while this rate in
the other group was only 1.16%. Without a careful causal
analysis these rates could give the false impression that cus-
tomers who received low discount were actually more likely
to click the advertisement than those who received high dis-
count, which is counter-intuitive and probably a wrong con-
clusion.

We apply matching estimators to this campaign data in or-
der to infer the true causal effect of different promotions.
Customers who received high discount promotion form the
treatment group, and those with low discount form the con-
trol group. The question that we want to answer (and which
is very relevant to a marketer) is whether the high discount
promotion attracts more responses (e.g., open advertisements,
click offers) than the low discount one. We design two em-
pirical studies to compare the performance of our estimator
against the baselines. First, we conduct a semi-synthetic ex-
periment by virtue of pseudo-treated samples and we estimate
the MSE of each estimator (here the ground truth is known).
Second, we perform matching on the campaign data with real
responses and we estimate the ATT (here the ground truth is
unknown).
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Figure 2: MSE of semi-synthetic experiment on Campaign Data. Note that the Raw Space and Mahalanobis only perform

nearest matching in the original 209 dimensional data space.

Semi-synthetic Experiments

We follow the experimental design in [Frolich et al., 2015]
that goes as follows. First, for each treated sample (i.e.,
the customer who received high discount promotion), we
find its nearest neighbor in the control group (i.e., customers
who received low discount promotion) in terms of Euclidean
distance of the covariate vectors. The treated samples are
then discarded and do not play any further role in the ex-
periment. The matched control samples form the pseudo-
treated ‘population’, and the remaining control samples form
the control ‘population’. Then, we repeatedly draw samples
with replacement out of the ‘populations’, consisting of 50%
pseudo-treated and 50% controlled units. Note that the true
causal effect in this experiment is zero, as the pseudo-treated
units did not (by default) receive any treatment.

In our experiment, the pseudo-treated ‘population’ con-
tains 250,000 samples and the control ‘population’ contains
350,000 samples. We randomly choose subsamples from the
populations for evaluation. We consider two different sample
sizes, N = 750 and N = 3000, and we draw 4000 times
for N = 750 and 1000 times for N = 3000 (those numbers
are suggested by [Frolich ef al., 2015] based on theoretical
arguments; we refer to their paper for details).

We considered two types of responses, open and click. The
former one indicates whether a customer is attracted by the
promotion, and the latter one implies a stronger incentive for
purchase. We note that the responses in this campaign data
are very sparse. The sparsity of open and click responses were
98.05% and 86.77%, respectively. In Figure 2 we show the
MSE of different matching estimators for the two responses.
We observe the following:

e Matching in the original high-dimensional space (such
as Raw Space and Mahalanobis) gives poor results in
general, which is consistent with the theory [Abadie and
Imbens, 2006]. It validates the necessity of reducing the
dimensionality of the data prior to matching.

e PCA and LPP can sometimes achieve good perfor-
mance, but they are quite sensitive to the choice of re-
duced dimension, which makes them unstable and hence
impractical for real-world applications.

e The proposed Randomized NNM estimator achieves the
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Figure 3: ATT estimated by different methods on 20K Cam-
paign Data. Note that the Raw Space only performs nearest
matching in the original 209 dimensional data space.

lowest MSE in every case. Interestingly, the largest
gap to the other methods seems to appear close to the
JL bound. For example, in the case of N=3000 in the
Open Response, the JL bound is log(3000) ~ 8, which
is roughly the value at which the curve of Randomized
NNM is peaked, see Figure 2(c).

Experiments on Data with Actual Treatments

Finally, we quantitatively analyze the performance of differ-
ent estimators on the above campaign data using the actual
treatments. That is, we estimate the causal effects of the cam-
paign by matching the actual treated samples to the control
samples. As the ground truth of the causal effect is unknown,
we show the estimated ATT for Open and Click responses in
Figure 3 (a) and (b), respectively. The sample size is 20,000,
which consists of 8,000 treated samples and 12,000 control
samples. We also examine the performance of the various
estimators by drawing a larger sample set of 200,000 data
points, while maintaining the ratio of treated to control sam-
ples. Figure 4 shows the results in this case. (LPP is not in-
cluded because of its large computational cost on large-scale
data.)

From Figure 3 and Figure 4 we observe that the original
values of ATT (blue curves) are negative, which were calcu-
lated by (naively) comparing the response rates in two groups
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(see discussion in the first paragraph of this section). Such an
estimated value of ATT would (wrongly) indicate that the low
discount promotion is more effective than the high discount
one. All the other baselines estimators also achieve negative
ATT values. Only our estimator attains positive ATT, for em-
bedding dimensions that are consistent with the JL. lemma.
This provides further evidence that the proposed estimator
can draw meaningful causal conclusions in practice and it is
robust under different settings.

5 Conclusions

We proposed a new matching estimator for estimating causal
effects in digital marketing and related applications. The pro-
posed estimator is very simple. It projects the data to sev-
eral random linear subspaces, and estimates the median treat-
ment effect by nearest-neighbor matching in each subspace.
The Johnson-Lindenstrauss lemma guarantees that the neigh-
borhood structure of the data is approximately preserved in
each low-dimensional embedding, and hence matching can
be done in the reduced spaces without loss. We evaluated
the new estimator, as well as several baselines, on synthetic,
semi-synthetic, and real-world experiments. The results attest
to the quality of the proposed estimator over baseline meth-
ods.

Several important problems remain to be addressed in fu-
ture work, such as dealing with the lack of common support
between the treatment and control distributions [Hill and Su,
2013], identifying critical subsets of covariates [Entner et al.,
2013; Silva and Evans, 2014], and dealing with highly sparse
responses (e.g., purchases in digital marketing campaigns).
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