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Abstract

Microblogging platforms are an ideal place for
spreading rumors and automatically debunking ru-
mors is a crucial problem. To detect rumors, ex-
isting approaches have relied on hand-crafted fea-
tures for employing machine learning algorithms
that require daunting manual effort. Upon facing
a dubious claim, people dispute its truthfulness by
posting various cues over time, which generates
long-distance dependencies of evidence. This pa-
per presents a novel method that learns continuous
representations of microblog events for identifying
rumors. The proposed model is based on recur-
rent neural networks (RNN) for learning the hidden
representations that capture the variation of contex-
tual information of relevant posts over time. Ex-
perimental results on datasets from two real-world
microblog platforms demonstrate that (1) the RNN
method outperforms state-of-the-art rumor detec-
tion models that use hand-crafted features; (2) per-
formance of the RNN-based algorithm is further
improved via sophisticated recurrent units and ex-
tra hidden layers; (3) RNN-based method detects
rumors more quickly and accurately than existing
techniques, including the leading online rumor de-
bunking services.

1 Introduction

Social psychology literature defines a rumor as a story or
a statement whose truth value is unverified or deliberately
false [Allport and Postman, 1965]. False rumors are damag-
ing as they cause public panic and social unrest. For example,
on August 25th of 2015, a rumor about “shootouts and kid-
nappings by drug gangs happening near schools in Veracruz”
spread through Twitter and Facebook!. This caused severe
chaos in the city involving 26 car crashes, because people left
their cars in the middle of a street and rushed to pick up their
children from school. This incident of a false rumor high-
lights that automatically predicting the veracity of informa-
tion on social media is of high practical value.
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Figure 1: Some shallow patterns signaling rumors along
events’ timelines (in # of hours since initial tweets), where the
size of the shapes is the strength of their relative frequency

Debunking rumors at an early stage of diffusion is partic-
ularly crucial to minimizing their harmful effects. To distin-
guish rumors from factual events, individuals and organiza-
tions often have relied on common sense and investigative
journalism. Rumor reporting websites like snopes.com and
factcheck.org are such collaborative efforts. However, be-
cause manual verification steps are involved in such efforts,
these websites are not comprehensive in their topical cover-
age and also can have long debunking delay.

Existing rumor detection models use learning algorithms
that incorporate a wide variety of features manually crafted
from the content, user characteristics, and diffusion pat-
terns of the posts [Castillo et al., 2011; Yang et al., 2012;
Kwon et al., 2013; Liu et al., 2015; Ma et al., 2015;
Wu et al., 2015], or simply exploited patterns expressed using
regular expressions to discover rumors in tweets [Zhao et al.,
2015]. Feature engineering is critical, but it is painstakingly
detailed, biased, and labor-intensive. For example, two time
series plots in Figure 1 depict the typical shallow patterns of
rumor signals from [Zhao et al., 2015]. Although they could
demonstrate temporal traits of rumor and non-rumor events,
differences between the two cases are neither clear-cut nor
strong for feature engineering.

On the other hand, deep neural networks have demon-
strated clear advantages for many machine learning prob-
lems [Sutskever et al., 2011; 2014; Devlin et al., 2014;
Kombrink et al., 2011; Cho et al., 2014]. In this research,
we explore opportunities to automatically discover and ex-
ploit deep data representations for efficient rumor detection.
We posit that given the sequential nature of text streams in
social media, recurrent neural networks (RNN) are suitable
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for rumor detection. This is because the connections between
units in an RNN form a direct cycle and create an internal
state of the network [LeCun et al., 2015, Figure 5] that might
allow it to capture the dynamic temporal signals characteristic
of rumor diffusion.

Utilizing RNN, we model the social context information
of an event as a variable-length time series. We assume peo-
ple, when exposed to a rumor claim, will forward the claim
or comment on it, thus creating a continuous stream of posts.
This approach learns both the temporal and textual represen-
tations from rumor posts under supervision. Extensive exper-
iments on two real-world microblog datasets demonstrate that
the RNN-based method yields outstanding performance. The
model is also shown to be effective for early detection of ru-
mors, where adequate accuracy could be achieved just several
hours after the initial propagation.

The contributions of this paper are threefold:

To the best of our knowledge, this is a first study using a
deep learning model for rumor detection on microblogs.
RNN-based model achieves significant improvements over
state-of-the-art learning algorithms that rely on on hand-
crafted features. The model is furhter extensible and can
detect rumors more accurately than existing methods via
sophisticated recurrent units and extra hidden layers.

The RNN-based model further allows for early detection,
demonstrating a clear efficacy when compared to existing
baselines such as leading online rumor debunking services.

We constructed two microblog datasets with ground truth
labels for the task, in total containing more than 5,000
claims that scale to five million relevant microblog posts.
We make this large rumor dataset fully public to be used
for research purposes?.

2 Related Work

Automatic rumor detection from social media is based on
traditional classifiers that detect misinformation stemming
from the pioneering study of information credibility on Twit-
ter [Castillo er al., 2011]. In following works [Yang et al.,
2012; Liu et al., 2015; Ma et al., 2015; Wu et al., 2015],
different sets of hand-crafted features were proposed and in-
corporated to determine whether a claim about an event is
credible. Most of these prior works attempted to classify the
veracity of spreading memes using information other than the
text content, for instance, the popularity of a post (e.g., the
number of retweets or replies of the post), the features rele-
vant to determine a user’s credibility, etc. However, feature
engineering is painstakingly labor intensive. Our RNN-based
method disregards this completely, yet can achieve better per-
formance due to the effective representation learning capacity
of deep neural models.

Some prior studies focused on capturing the temporal traits
of rumors during their propagation. Kwon et al. [2013] intro-
duced a time-series-fitting model based on the temporal prop-
erties of a single feature — tweet volume. Ma, et al. [2015]
extended the model using dynamic time series to capture the

*http://alt.qcri.org/~wgao/data/rumdect.zip
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variation of a set of social context features over time. Frig-
geri, et al. [2014] characterized the structure of misinforma-
tion cascades on Facebook by analyzing comments with links
to rumor debunking websites. We also use the temporal prop-
erties of the representations, but the features are learned auto-
matically via an RNN given the fundamental term represen-
tation in each time segment.

Zhao, et al. [2015] worked on early rumor detection using
cue terms such as “not true”, “unconfirmed” or “debunk” to
find questioning and denying tweets. Our RNN learns rep-
resentations that are significantly more complex than these
explicit signals; these representations can capture the hidden
implications and dependencies over time.

Our work is also related to, but different from, stud-
ies detecting spammers [Lee er al, 2013; Wang, 2010;
Hu et al., 2013] and fake images on Twitter [Gupta et al.,
2013], and the “Truthy” system [Ratkiewicz et al., 2011a;
2011b] that differentiates whether a meme is spreading or-
ganically or is being spread by an “astroturf” campaign.

3 RNN: Recurrent Neural Network

An RNN is a type of feed-forward neural network that can
be used to model variable-length sequential information such
as sentences or time series. A basic RNN is formalized as
follows: given an input sequence (z1, . .., xT), for each time
step, the model updates the hidden states (h1,...,hr) and
generates the output vector (o1, ...,0r), where T depends
on the length of the input. From ¢ = 1 to 7', the algorithm
iterates over the following equations:

ht = tanh(U;vt + Wht,1 + b)

O = Vht +c (1)
where U, W and V are the input-to-hidden, hidden-to-hidden
and hidden-to-output weight matrices, respectively (see Fig-
ure 2(a) for the parameters of basic tanh-RNN), b and ¢ are
the bias vectors, and tanh(.) is a hyperbolic tangent nonlin-
earity function.

Typically, the gradients of RNNs are computed via back-
propagation through time [Rumelhart er al., 1986]. In prac-
tice, because of the vanishing or exploding gradients [Bengio
et al., 1994], the basic RNN cannot learn long-distance tem-
poral dependencies with gradient-based optimization. One
way to deal with this is to make an extension that includes
“memory” units to store information over long time peri-
ods, commonly known as Long Short-Term Memory (LSTM)
unit [Hochreiter and Schmidhuber, 1997; Graves, 2013] and
Gated Recurrent unit (GRU) [Cho et al., 2014]. Here, we
briefly introduce the two structures.

3.1 Long Short-Term Memory (LSTM)

Unlike the traditional recurrent unit whose state is overwrit-
ten at each time step (equations 1), an LSTM unit maintains
a memory cell ¢; at time ¢. The output h; of an LSTM
unit is computed by the following equations [Hochreiter and



Schmidhuber, 1997; Graves, 2013]:

iy = o(xeWi + he—1 U + ¢i—1 V)
[t U(l‘th—i-ht_lUf—Fct_lVf)
6t tanh(xth + ht—l Uc)

¢t = frei—1 + i

or = o(xiWo + hi—1U, + ¢4 Vo)

he = oy tanh(cy)

where o is a logistic sigmoid function. The input gate ¢; de-
termines the degree to which the new memory is added to
the memory cell. The forget gate f; decides the extent to
which the existing memory is forgotten. The memory c¢; is
updated by forgetting part of the existing memory and adding
new memory ¢;. The output gate o, is the amount of output
memory.

3.2 Gated Recurrent Unit (GRU)

Similar to an LSTM unit, a GRU has gating units that mod-
ulate the flow of the content inside the unit, but a GRU is
simpler with fewer parameters. The following equations are
used for a GRU layer [Cho et al., 2014]:

Zt = J(.’L‘tUZ + ht,lwz)

re = O’(l’tUr + ht_lwr)

hi = tanh(z;Up, + (he_1 - 7¢)Wh)
ht:(]-*zt)'ht—1+zt'ilt

where a reset gate r; determines how to combine the new in-
put with the previous memory, and an update gate z; defines
how much of the previous memory is cascaded into the cur-
rent time step, and h; denotes the candidate activation of the
hidden state h;.

4 RNN-based Rumor Detection

We present the details of our RNN-based model for classify-
ing microblog events into rumors and non-rumors. First, we
introduce a method that converts the incoming streams of mi-
croblog posts as continuous variable-length time series, and
then describe RNNs with different kinds of hidden units and
layers for classification.

4.1 Problem Statement

Individual microblog posts are short in nature, containing
very limited context. A claim is generally associated with
a number of posts that are relevant to the claim. We are not
interested at the individual level, but at the aggregate level.
Therefore, predicting the veracity of each post is not our fo-
cus here. Instead, we concentrate on detecting rumors at the
event-level, comprised of a set of relevant posts.

We define a set of given events as £ = {E;}, where each
event E; = {(m; ;,t; ;)} consists of ideally all relevant posts
m; ; at timestamp ¢, ;, and the task is to classify each event
as a rumor or not.

)
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4.2 Variable-length Time Series

We could model each post as an input instance and construct
an RNN modeling the time series with a sequence length
equal to the number of posts. However, there could be tens
of thousands of posts in a popular event. We have only a sin-
gle output unit indicating the class at the last time step of each
event. Back propagation through a large number of time steps
with only a final-stage loss will be computationally expensive
as well as ineffective. Hence, we batch posts into time inter-
vals and treat them as a single unit in a time series that is then
modeled using an RNN sequence. A reference length of RNN
sequence is adopted for constructing the time series.

Time spans representing densely populated with posts in
the diffusion should be captured properly; the number of time
intervals adopted approximates the reference length of RNN.
Algorithm 1 describes the procedure. Initially, we divide the
entire timeline equally into N intervals (i.e., N is the refer-
ence length). Then, our system tries to discover the set of
non-empty intervals U’ (i.e., each interval in U’ has at least
one tweet) by removing the empty ones in the set Uy, from
which those continuous intervals whose overall time span is
the longest are chosen into the set U. If the number of in-
tervals in U is lower than /N and the number of intervals is
more than that of the previous round, we halve the intervals
and continue partitioning; otherwise, it returns the discovered
continuous intervals given by U. Note that the length of en-
tire time series, though is close to [V, varies among different
events, whereas the length of individual intervals in an event
is equal.

Input : Relevant posts of E; = {(m; ;,t; ;)}
Reference length of RNN N
Output: Time intervals I = {Iy, I5,...}

T
j:17

/+ Initialization
L(i) = tin, —tigs L=
while true do
k ++;
Uy, < Equipartition(L(7),£);
Uy < {empty intervals} C Uy;
U] + Uy — Up;
Find Uy, C U}, such that U}, contains continuous
intervals that cover the longest time span;
if|Uk| < N && |Uk| > ‘Uk-_1| then
/+ Shorten the intervals
?{=0.5-¢
else
/+ Generate output
I = {IO S Uk|Il7 NN 7I|Uk‘},
return /;
end

L(). .
N k._ov

*/

10
*/
11
12
13

14 end

15 return /;

Algorithm 1: Algorithm for constructing variable-
length time series given the set of relevant posts of
an event and the reference length of RNN
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Figure 2: Our RNN-based rumor detection models.

(b) 1-layer LSTM/GRU + embedding

(c) 2-layer GRU + embedding

E' is the word embedding weight matrix, U, W, V correspond to the

parameters of hidden layers and output layers. R means rumor and N means non-rumor.

4.3 Structures of Models

Based on the times series constructed in Section 4.2, the re-
current units of RNN naturally fit the time intervals. In each
interval, we use the tf * idf values of the vocabulary terms
in the interval as input. We prune the vocabulary by keep-
ing the top-K terms according to their ¢ f * i¢df value, so the
input dimension is K. We develop RNNs of three different
structures as shown in Figure 2. Note that the output unit is
associated with the last time step, which uses softmax for the
probabilistic output of the two classes.

tanh-RNN is the fundamental structure, where the hidden
units are not gated. Therefore, it may capture the context
across the time intervals in a limited way.

Let g., where c denotes the class label, be the ground-truth
2-dimensional multinomial distribution of an event. Here, the
distribution is of the form [1, 0] for rumors and [0, 1] for non-
rumors. For each training instance (i.e., each event), our goal
is to minimize the squared error between the probability dis-
tributions of the prediction and ground truth:

min Y (ge ~pe)? + 31162

c
where g. and p. are the gold and predicted distributions,
respectively, 6; represents the model parameters to be esti-
mated, and the L2-regularization penalty is used for trading
off the error and the scale of the problem. The tanh-RNN is
shown in Figure 2(a).

Single-layer LSTM and GRU. Long-distance dependen-
cies are important for capturing the patterns in rumors and
hidden signals over the life cycle of the event. We mod-
ify the recurrent unit into the gated units using LSTMs and
GRUs. The gated-unit RNNs are shown in Figure 2(b). The
gated units not only keep the content of the current time step
but also inject the inter-dependent evidence from its previous
steps.

However, the scale of parameters is significantly enlarged
because of the gated units. For instance, GRUs triple the orig-
inal parameter space due to the introduction of reset gates and
update gates. To reduce the complexity, we add an embed-
ding layer (with a fixed length of 100) between the input and
hidden layers so that the overall scale of parameters becomes
much smaller. Including the embedding layer converts the

sparse input word vectors into low-dimensional representa-
tions. Instead of using pre-trained vectors based on external
collections, we learn the embedding matrix F ourselves with
our model.

Multi-layer GRU. We further develop a multiple layer
structure based on GRUs by adding a second GRU layer that
captures higher-level feature interactions between different
time steps. Considering the more complex parameter set of
LSTMs, we only extend GRUs into multiple layers. Fig-
ure 2(c) illustrates its structure. The state values of hidden
units are calculated using equations 2-4, where the embed-
ding layer is given as Equation 2, and the first and second
GRU layers are given as Equations 3 and Equations 4, re-
spectively.

Te = 14 E ()
zgl) 0’( +ht1)1W ))

rgl) =0 ( U(l) + h W(1)>

3)

h(l) = tanh (xPU(l) + (h(i) -T(l))WEll))

WD (1= 2 D) D 40 R
o =0 (MU + 2 W)
= o (U + nZ W) “
W2 = tanh (h 1)U(Q) t2)1 i) W(z))
4P = (o) 2,4

where E is the word embedding weight matrix, (U (1), 17(1))
and (U, W(?)) are the weight connections inside the GRU
units for the first and the second hidden layers, respectively.
Model Training. We train all the RNN models by employ-
ing the derivative of the loss through back-propagation [Col-
lobert et al., 2011] with respect to all of the parameters. We
use the AdaGrad algorithm [Duchi ez al., 2011] for parameter
update. We empirically set the vocabulary size K as 5,000,
the embedding size as 100, the size of the hidden units as 100
and the learning rate as 0.5. We iterate over all the training
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Table 1: Statistics of the datasets

Statistic | Twitter Weibo

Users # 491,229 2,746,818
Posts # 1,101,985 3,805,656
Events # 992 4,664

Rumors # 498 2,313
Non-Rumors # 494 2,351

Avg. time length / event | 1,582.6 Hours  2,460.7 Hours
Avg. # of posts / event 1,111 816

Max # of posts / event 62,827 59,318

Min # of posts / event 10 10

events in each epoch and continue until the loss value con-
verges or the maximum epoch number is met.

5 Experiments and Results
5.1 Data Collection

We construct two microblog datasets using Twitter (www.
twitter.com) and Sina Weibo (weibo.com). For the Twit-
ter data, we confirmed rumors and non-rumors from www.
snopes.com, an online rumor debunking service. We ob-
tain 778 reported events during March-December 2015,
of which 64% are rumors. For each event, we ex-
tract the keywords from the last part of the Snopes URL,
e.g., http://www.snopes.com/pentagon-spends-powerball-
tickets. We refine the keywords by adding, deleting or re-
placing words manually, and iteratively until the composed
queries can have reasonably precise Twitter search results.
We use scripts to download the “Live” search results from
Twitter. To balance the two classes, we further added some
non-rumor events from two public datasets [Castillo et al.,
2011; Kwon et al., 2013]. The resulting dataset contains 498
rumors and 494 non-rumors.

For Weibo data, we obtain a set of known rumors from
the Sina community management center®, which reports var-
ious misinformation. The Weibo API can capture the orig-
inal messages and all their repost/reply messages given an
event. We also gather a similar number of non-rumor events
by crawling the posts of general threads that are not reported
as rumors. The resulting dataset consists of 2,313 rumors and
2,351 non-rumors. Table 1 provides more details.

5.2 Experimental Settings and Results

We compare the following approaches with our models:

SVM-TS: Ma, et al., [Ma et al., 2015] proposed the linear
SVM classifier that uses time-series structures to model the
variation of social context features. We replicate their hand-
crafted features based on contents, users and propagation pat-
terns.

DT-Rank: Zhao, Resnick, and Mei proposed a decision-
tree-based ranking model to identify trending rumors [Zhao
et al., 2015]. They search for enquiry phrases and cluster
disputed factual claims, and rank the clustered results based
on statistical features. We implement their enquiry phrases
and features.

*http://service.account.weibo.com
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DTC and SVM-RBF': The Twitter information credibility
model using Decision Tree Classifier [Castillo et al., 2011]
and the SVM-based model with RBF kernel [Yang er al.,
2012], both using hand-crafted features based on the overall
statistics of the posts, rather than temporal information.

RFC: Kwon, etal., [Kwon et al., 2013] proposed a Random
Forest Classifier using three parameters to fit the temporal
tweets volume curve. We extend it to fit the curves of the
same set of hand-crafted features used by SVM-TS.

Our models: (1) tanh-RNNs is the basic RNN structure
with a single hidden layer. (2) LSTM-1 and GRU-1 are config-
ured with one-layer of LSTM and GRU hidden units, respec-
tively, each with an embedding layer on the top of the input
layer. (3) GRU-2 is enhanced with an extra GRU hidden layer
for capturing higher-level feature interactions.

We implement DTC and RFC using Weka*, SVM models
using LibSVM?> and RNN models with Theano®. We hold
out 10% of the events in each dataset for model tuning, and
the rest of the events are split with a ratio of 3:1 for training
and test. We use accuracy, precision, recall and F-measure as
evaluation metrics. IV is empirically set to 50.

Table 2 shows the performance of all the systems. Our
models outperform all the baselines on both datasets. The
simplest RNN model, tanh-RNN, achieves 82.7% accuracy
on Twitter and 87.3% on Weibo. This result indicates that the
basic RNN can learn discriminative features effectively. All
the baselines resort to hand-crafted features or rules; hence,
they are limited with respect to learning deep latent features
and their correlations.

SVM-TS and RFC outperform other baselines because of
the temporal structure they use, but they are still obviously
worse than RNN-based models. The DT-Rank method uses
a set of regular expressions. Only 1.63% Weibo posts and
10.9% tweets in our datasets contain these expressions. That
is why the results of DT-Rank are not satisfactory.

For the four RNN-based models, the superiority of the
gated units (LSTM and GRU) over the tanh unit is clear.
This result implies that the gated units can capture the long-
distance dependencies among the signals, which may reside
in any time step. GRU-1 and LSTM-1 perform well; GRU-1
is slightly better.

The extent of improvement made by GRU-2 over GRU-1
is different on two datasets. The Twitter data is much more
noisy than its Weibo counterpart. The extra hidden layer can
help overcome the noise by capturing higher-level interac-
tions more accurately. This observation also explains the ob-
viously lower baseline accuracies on Twitter than on Weibo.
The performance of the RNN models varies just a little across
the two datasets.

Figure 3 shows the learning curves of RNN-based meth-
ods. In both datasets, the GRU and LSTM converge faster
with lower loss than tanh-RNN.

“http://www.cs.waikato.ac.nz/ml/weka/
Shttps://www.csie.ntu.edu.tw/~cjlin/libsvm/
®http://deeplearning.net/software/theano/



Table 2: Rumor detection results (R: Rumor; N: Non-rumor)
(a) Twitter dataset
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5.3 Early Detection Performance

For early detection, we make as a deadline the delay from
the initial broadcast. Given a detection deadline, all the posts
after it are invisible during the test. We use the mean of-
ficial report time of rumors as a reference, i.e., the average
report time over the rumors given by the debunking services
of Snopes and Sina community management center.

Figure 4 shows the accuracy of our models versus SVM-
TS (the best baseline in Table 2) and DT-Rank (an early-
detection-specific algorithm) for various deadlines. In the
first few hours, the accuracy of the RNN-based methods
climbs more rapidly and stabilize more quickly, indicating
superior early detection performance of our method. Par-
ticularly, GRU-2 can detect rumors with 83.9% accuracy for
Twitter and 89.0% for Weibo within 12 hours, which is much
earlier than the baselines and the mean official report times.

Further analysis shows that events correctly detected as ru-
mors by RNN demonstrate complex signals indicative of ru-
mors. Table 3 gives a detected rumor about “Obama compil-
ing a secret racial database”, in which many questioning and
denial signals (underlined) can be observed in the first few
hours. Such indicators could be learned by the RNNs, while
they are difficult to be accurately hand-crafted beforehand.
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Figure 3: Learning curves of RNN-based models
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Figure 4: Results of rumor early detection

Table 3: An example of the early detected rumor

21:21:20 | false messiah shepard justice plain wrong joke no fear
21:27:48 | what a wicked shocker! who ever would have guessed?
1st hr 21:30:17 | terrifying, if true as if
21:41:22 | wtf?! mt
21:43:56 | what fresh hell
21:45:08 | what do you think about this
22:00:07 | if this is true, he is coming for you and me
22:04:49 | truely evil!
ond hr 23:16:20 | do you really believe honestly? truly?
22:16:04 | wow. a must read. if this is true, god help us
22:35:38 another unbelievable hoping is not true
22:52:10 | wtf? new york post
23:06:07 | imagine "wrong” hands not to like
23:09:11 do you have to see christians to believe this?
3rd hr 23:55:30 | what could possibly go wrong?
00:26:06 | do you honestly believe?
00:34:05 | you hope this isn’t true.

6 Conclusion

Most existing work on rumor detection from social media fo-
cus on extracting features or rules manually. In this research,
we propose a deep learning framework for rumor debunking.
Our method learns RNN models by utilizing the variation
of aggregated information across different time intervals re-
lated to each event. We empirically evaluate our RNN-based
method with three widely used recurrent units, tanh, LSTM
and GRU, which perform significantly better than the state-
of-the-arts. For further improvement, we add multiple hidden
layers and embedding layers. There is still room to improve
the method. To understand better how deep learning helps the
rumor detection, more thorough experiments will be required
in the future. In addition, we can also develop unsupervised
models due to massive unlabeled data from social media.



Acknowledgement

Kam-Fai Wong was concurrently affiliated with MoE Key
Laboratory on High Confidence Software Technologies
(CUHK Sub-Lab), China and partly support by CUHK di-
rect grant (4055055). Meeyoung Cha was partly sup-
ported by the National Research Foundation of Korea (NRF-
2015K1A3A1A16002183)

References

[Allport and Postman, 1965] G.W. Allport and L.J. Postman.
The psychology of rumor. Russell & Russell, 1965.

[Bengio ef al., 1994] Yoshua Bengio, Patrice Simard, and
Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. /EEE Transactions on Neu-
ral Networks, 5(2):157-166, 1994.

[Castillo ef al., 2011] Carlos Castillo, Marcelo Mendoza,
and Barbara Poblete. Information credibility on twitter.
In Proceedings of WWW, 2011.

[Cho er al., 2014] Kyunghyun Cho, Bart van Merriénboer,
Dzmitry Bahdanau, and Yoshua Bengio. On the proper-
ties of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259, 2014.

[Collobert et al., 2011] Ronan Collobert, Jason Weston,
Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from
scratch. Journal of Machine Learning Research, 12:2493—
2537, 2011.

[Devlin et al., 2014] Jacob Devlin, Rabih Zbib, Zhonggiang
Huang, Thomas Lamar, Richard Schwartz, and John
Makhoul. Fast and robust neural network joint models
for statistical machine translation. In Proceedings of ACL,
2014.

[Duchi et al., 2011] John Duchi, Elad Hazan, and Yoram
Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning
Research, 12:2121-2159, 2011.

[Friggeri et al., 2014] Adrien Friggeri, Lada A Adamic,
Dean Eckles, and Justin Cheng. Rumor cascades. In Pro-
ceedings of ICWSM, 2014.

[Graves, 2013] Alex Graves. Generating sequences with re-
current neural networks. arXiv preprint arXiv:1308.0850,
2013.

[Gupta er al., 2013] Aditi Gupta, Hemank Lamba, Ponnu-
rangam Kumaraguru, and Anupam Joshi. Faking sandy:
characterizing and identifying fake images on twitter dur-
ing hurricane sandy. In Proceedings of WWW companion,
2013.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jiirgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997.

[Hu et al., 2013] Xia Hu, Jiliang Tang, Yanchao Zhang, and
Huan Liu. Social spammer detection in microblogging. In
Proceedings of 1JCAI, 2013.

3824

[Kombrink et al., 2011] Stefan Kombrink, Tomas Mikolov,
Martin Karafiat, and Lukds Burget. Recurrent neural net-
work based language modeling in meeting recognition. In
Proceedings of INTERSPEECH, 2011.

[Kwon et al., 2013] Sejeong Kwon, Meeyoung Cha, Ky-
omin Jung, Wei Chen, and Yajun Wang. Prominent fea-
tures of rumor propagation in online social media. In Pro-
ceedings of ICDM, 2013.

[LeCun et al., 2015] Yann LeCun, Yoshua Bengio, and Ge-
offrey Hinton. Deep learning. Nature, 521(7553):436—
444, 2015.

[Lee eral., 2013] Kyumin Lee, James Caverlee, and Steve
Webb. Uncovering social spammers: Social honeypots +
machine learning. In Proceedings of SIGIR, 2013.

[Liu et al., 2015] Xiaomo Liu, Armineh Nourbakhsh,
Quanzhi Li, Rui Fang, and Sameena Shah. Real-time
rumor debunking on twitter. In Proceedings of CIKM,
2015.

[Ma et al., 2015] Jing Ma, Wei Gao, Zhongyu Wei, Yueming
Lu, and Kam-Fai Wong. Detect rumors using time series
of social context information on microblogging websites.
In Proceedings of CIKM, 2015.

[Ratkiewicz et al., 2011a] Jacob  Ratkiewicz, Michael
Conover, Mark Meiss, Bruno Gongalves, Alessandro
Flammini, and Filippo Menczer. Detecting and tracking
political abuse in social media. In Proceedings of ICWSM,
2011.

[Ratkiewicz et al., 2011b] Jacob  Ratkiewicz, Michael
Conover, Mark Meiss, Bruno Gongalves, Snehal Patil,
Alessandro Flammini, and Filippo Menczer. Truthy:
mapping the spread of astroturf in microblog streams. In
Proceedings of WWW, 2011.

[Rumelhart ef al., 1986] David E Rumelhart, Geoffrey E
Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. Nature, 323:533-536, 1986.

[Sutskever et al., 2011] Tlya Sutskever, James Martens, and
Geoffrey E Hinton. Generating text with recurrent neural
networks. In Proceedings of ICML, 2011.

[Sutskever er al., 2014] Tlya Sutskever, Oriol Vinyals, and
Quoc VV Le. Sequence to sequence learning with neu-
ral networks. In Proceedings of NIPS, 2014.

[Wang, 2010] Alex Hai Wang. Don’t follow me - spam de-
tection in twitter. In Proceedings of SECRYPT, 2010.

[Wu et al., 2015] Ke Wu, Song Yang, and Kenny Q Zhu.
False rumors detection on sina weibo by propagation struc-
tures. In Proceedings of ICDE, 2015.

[Yang e al., 2012] Fan Yang, Yang Liu, Xiaohui Yu, and
Min Yang. Automatic detection of rumor on sina weibo.
In Proceedings of the ACM SIGKDD Workshop on Mining
Data Semantics, 2012.

[Zhao et al., 2015] Zhe Zhao, Paul Resnick, and Qiaozhu
Mei. Enquiring minds: Early detection of rumors in so-
cial media from enquiry posts. In Proceedings of WWW,
2015.



