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Abstract
Learning video representation is not a trivial task,
as video is an information-intensive media where
each frame does not exist independently. Locally,
a video frame is visually and semantically similar
with its adjacent frames. Holistically, a video has
its inherent structure—the correlations among video
frames. For example, even the frames far from each
other may also hold similar semantics. Such context
information is therefore important to characterize
the intrinsic representation of a video frame. In
this paper, we present a novel approach to learn
the deep video representation by exploring both lo-
cal and holistic contexts. Specifically, we propose
a triplet sampling mechanism to encode the local
temporal relationship of adjacent frames based on
their deep representations. In addition, we incorpo-
rate the graph structure of the video, as a priori, to
holistically preserve the inherent correlations among
video frames. Our approach is fully unsupervised
and trained in an end-to-end deep convolutional neu-
ral network architecture. By extensive experiments,
we show that our learned representation can sig-
nificantly boost several video recognition tasks (re-
trieval, classification, and highlight detection) over
traditional video representations.

1 Introduction
Video has become ubiquitous. This has encouraged the devel-
opment of advanced techniques to video understanding for a
wide variety of applications. One of the fundamental problems
is how to learn a “good” representation for a video. A valid
question is then what are the generic priors for learning the
intrinsic representation of a video that can deal with complex
variations without specifying any task.

In general, video is a sequence of frames with large content
variance and complexity. There are two kinds of contextual
information to be exploited for learning video representations:
local temporal coherence and holistic graph structure. First,
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Figure 1: Two generic priors for learning video representa-
tions: local temporal coherence and holistic graph structure
preservation. Taking the feature learning for frame st as an
example, the temporal coherence can preserve the visual and
semantical similarity among adjacent frames, shown in the
same color, i.e., {st�1, st, st+1}. Moreover, we can observe
some non-adjacent frames also contain similar semantics with
st, e.g., st�p�1, st�p, and st�p+1. Such inherent semantic
correlations is expected to be encoded for learning the repre-
sentation for the frame st.

the adjacent video frames are usually visually and semantically
coherent. This can be regarded as an intrinsic property of video
to learn a possibly “good” representation with respect to the
large variations in a video. Such temporal coherence context
has been successfully applied to metric learning, as a regular-
izer in both the supervised learning [Mobahi et al., 2009] and
unsupervised learning [Wiskott and Sejnowski, 2002].

Second, in addition to the local temporal coherence, a video
has its inherent structure over the entire sequence where the
frames far from each other may also exhibit similar seman-
tics. Such holistic structure can be viewed as a graph con-
structed on all the video frames. In this context, learning the
graph structure amounts to estimating the similarity matrix on
the representations of video frames. It offers the advantages
with respect to learning directly from the video and reveals
the correlations between video frames. Therefore, another
generic prior for learning the “good” video representations
is to preserve the graph structure estimated on the learned
representations of video frames.

Figure 1 shows an intuitive example of the two priors in
video representation learning. By jointly integrating the tem-
poral coherence and graph structure preservation, we present
a novel Temporal and Graph-structured Feature Learning
(TGFL) approach to learning the representations of video
frames. Specifically, a video is represented by a sequence of
frames. The temporal coherence is then characterized with
a set of frame triplets. Each triplet contains a query frame,
a positive frame, and a negative frame, where the positive
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frame is visually similar with and adjacent to the query frame
while the negative one is dissimilar with and far from the
query. Meanwhile, the graph structure of the video is esti-
mated on a similarity matrix among all the video frames. The
spirit of TGFL is to learn the video representation in a deep
architecture by simultaneously exploiting the local relative
similarity ordering in the triplets and preserving the holistic
structure in the entire video. It is worth noticing that our
proposed approach to feature learning is generic and appli-
cable to any other sequence data. Different from previous
methods for video feature learning which predominantly fo-
cus on modeling temporal coherence [Goroshin et al., 2014;
Ranzato et al., 2014; Srivastava et al., 2015], we explore both
the local (temporal coherence) and holistic (graph structure)
contexts to learn the intrinsic video representation.

The contributions of this paper are as follows. First, we
study the generic priors which lead to a “good” representation
of video frames. Second, we propose a novel approach for
learning frame-level video representations in a deep network
architecture, which aims to incorporate both temporal coher-
ence and graph structure preservation. Our approach is fully
unsupervised and trained in an end-to-end fashion. Specif-
ically, we design a novel deep neural network architecture
integrating the proposed temporal and graph-structured loss
layer to optimize the whole deep convolutional neural net-
work (DCNN) structure. Third, we demonstrate by extensive
experiments that our proposed feature learning outperforms
several state-of-the-art representations in three video recogni-
tion tasks.

2 Related Work
We group the related work into two categories: feature learning
for videos, and graph structure preservation models. The first
category reviews the research in feature learning for videos
by exploiting spatio-temporal properties, while the second
investigates a variety of models considering graph structure
preservation.

Feature learning for videos. Learning feature represen-
tation for videos is a fundamental yet challenging prob-
lem. Le et al. use Independent Subspace Analysis (ISA)
to learn spatio-temporal feature from unlabeled video data
[Le et al., 2011]. Wiskott and others propose that the invari-
ant feature representation can be learnt by maximizing the
temporal coherence in video [Wiskott and Sejnowski, 2002;
Hurri and Hyvärinen, 2003]. Recently, the work in [Goroshin
et al., 2014] utilizes the auto-encoder to learn video features
with a temporally and semantically coherence metric. In addi-
tion, the Recurrent Neural Networks (RNN) which can model
sequence dynamics is also explored for feature learning in
video. In [Ranzato et al., 2014], the proposed RNN-based
model for feature learning in video explored both spatial and
temporal correlations of videos. A Long Short Term Mem-
ory (LSTM) Encoder-Decoder model is proposed for feature
representation learning and the prediction of video frame [Sri-
vastava et al., 2015].

Graph structure preservation models. Graph structure
preservation models aim to preserve the global topological
properties of the input graph-structured data, which have

shown effective for dimensionality reduction [Tenenbaum et
al., 2000; Yan et al., 2007], semi-supervised learning [Melacci
and Belkin, 2011; Qi et al., 2012], image search [Pan et al.,
2014], video annotation [Moxley et al., 2010] and transfer
learning [Long et al., 2014]. In addition, there are also several
works considering such graph structure in the deep network
architecture. For example, the work in [Bruna et al., 2013] ex-
ploits the global structure of graph with the spectrum of Graph
Laplacian to generalize convolution operator in the CNN ar-
chitectures. Furthermore, the spectral network introduced in
[Bruna et al., 2013] is extended to deep network architectures
with small learning complexity on non-Euclidean domains by
incorporating a graph estimation procedure.

Summary. We focus on learning feature representation
for video. Different from previous methods for video feature
learning which predominantly focus on modeling temporal
coherence, we explore both the local (temporal coherence) and
holistic (graph structure) contexts to learn the intrinsic video
representation.

3 Approach: Temporal and Graph-structured
Feature Learning

Our proposed Temporal and Graph-structured Feature Learn-
ing (TGFL) approach is to build an embedding space in which
the feature representations for frames can be encoded with
both temporal coherence and graph structure contexts. The
training of TGFL is performed by simultaneously minimiz-
ing the triplet ranking loss to characterize temporal coherence
among adjacent frames, and preserving the holistic graph struc-
ture relationships among all the video frames. Therefore, the
objective function of the TGFL consists of of two components,
i.e., triplet ranking loss based on the sampled triplets and the
graph structure preservation in videos.

Figure 2 shows the overview of our approach. In the follow-
ing, we will first define the video sequence and the represen-
tation of each video frame in the embedding space, followed
by constructing the two learning components (temporal co-
herence and graph structure) for feature learning. It is worth
noticing that to precisely measure the temporal coherence,
we present a triplet sampling mechanism from the viewpoint
of mutual reinforcement between the temporal structure and
visual similarity among frames. Then, we formulate the joint
objective function and provide the optimization strategy in a
deep learning framework. Specifically, we design a novel deep
neural network architecture consisting of multiple convolution-
pooling layers and a fully connected layer, followed by the
proposed temporal and graph-structured loss layer to optimize
the whole DCNN structure.

3.1 Notation
As our feature learning approach is unsupervised, a large
collection of videos is desired. Suppose we have a collection
of videos V where each video v 2 V can be represented as a
temporal sequence of N sampled frames (uniform sampling)
{s1, s2, . . . , sN}. Let S denote the frame space. The goal of
feature learning for video frames is to construct a mapping
f : S ! Rd, such that each frame can be mapped into a
d-dimensional embedding space. Note that with the mapping
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Figure 2: The overview of our TGFL framework for learning
intrinsic video representation (better viewed in color). The
temporal coherence is to characterize the relative temporal
relationships through frame triplet set, while the holistic graph
structure is to preserve the inherent correlations among frames.
Both of the two priors are simultaneously exploited in our
designed temporal and graph-structured loss layer, which is
designed on the top of full connected fc6 layer in AlexNet.
Our feature learning is fully unsupervised and trained in an
end-to-end fashion.

function f(s), the entire sequential frames of video v are
projected into this embedding space, which are represented as
F = [f1, f2, . . . , fN ]> 2 RN⇥d.

3.2 Modeling Temporal Coherence
Given a sequence of frames, we aim to exploit the temporal co-
herence as one generic prior to learn effective representations
for video frames. The prior is that the temporally adjacent
frames are more likely to be semantically similar than those
non-adjacent frames. Therefore, when measuring the represen-
tations of video frames in the embedding space, the similarity
between a pair of temporally adjacent frames should be higher
than that of the pair of non-adjacent frames.

We first define the similarity of two frames fi and fj accord-
ing to their Euclidean distances in the embedding space:

D (fi, fj) = kfi � fjk22 . (1)

Then, we characterize the temporal coherence of a temporal se-
quence by the ranking loss measured on a set of triplets, which
can be easily fed into the feature learning framework. Denote
T as the set of triplets generated from temporal sequence, and
each triplet as hfi, f+j , f�mi consisting of the query frame fi,
positive frame f+j and negative frame f�m. Accordingly, the
triplet ranking loss is defined by

`triplet(fi, f
+
j , f�m) = max{0, D(fi, f

+
j )�D(fi, f

�
m) + 1} (2)

The triplet ranking loss exploits the margin ranking loss [Her-
brich et al., 2000] which is widely used in feature learning

[Pan et al., 2015; Wang et al., 2014]. By minimizing the
ranking loss on the set of triplets T , the relative distance
relationship on the feature representations of frames in the
embedding space is preserved to present the temporal coher-
ence. Specifically, for each triplet hfi, f+j , f�mi, we aim to make
the embedding features in close proximity of fi and f+j , and
simultaneously obtain a large distance between fi and f�m.

The triplet ranking loss is convex and its gradients with
respect to fi, f

+
j , f�m are

@`triplet

@fi
= (2f�m � 2f+j )⇥ ID

(

fi,f
+
j )

�D
(

fi,f
�
m)

+1>0

@`triplet

@f+j
= (2f+j � 2fi)⇥ ID

(

fi,f
+
j )

�D
(

fi,f
�
m)

+1>0

@`triplet

@f�m
= (2fi � 2f�m)⇥ ID

(

fi,f
+
j )

�D
(

fi,f
�
m)

+1>0

. (3)

The indicator function IC = 1, if the condition C is true (i.e.,
D

�
fi, f

+
j

�
�D (fi, f�m) + 1 > 0); otherwise IC = 0.

To learn and construct this embedding space, we incorpo-
rate the triplet ranking loss as a regularization in learning the
mapping function.

Triplet Sampling. When generating triplet set T from
the temporal sequence, one natural way is to randomly se-
lect triplets according to the temporal structure based on the
assumption that the adjacent frames should be semantically
similar while the non-adjacent frames (i.e., with a large time
interval) are more likely to be dissimilar in semantics. How-
ever, in practice, due to camera shaking or movement, there
usually exists the situation that the adjacent frames may have
totally different semantics. In addition, it is also possible to
find the similar semantics between two frames even with a long
time interval. To avoid injecting negative triplets with noise
into our feature learning framework, we propose a triplet sam-
pling mechanism from the viewpoint of mutual reinforcement
between temporal structure and visual relationships among
frames. Given a query frame fi, we firstly generate a ranking
list for all the frames in this temporal sequence based on their
Euclidean distances to fi. Then, only the frames which are
both temporally close to the query frame and visually similar
at the top of the ranking list will be selected as positive frames
f+j . Meanwhile, we choose the negative frames f�m which are
distant from the query frame and visually dissimilar at the bot-
tom of the ranking list. Note that during each update process
of training, the distance ranking list need to be updated based
on the features from pervious iteration to generate evolved
triplet set.

Therefore, with this rigorous triplet sampling mechanism,
the triplet set is collected by considering both temporal struc-
ture and visual relationships among the video frames. Our
model is benefited from this mechanism to better learn video
representations.

3.3 Graph Structure Preservation
Graph structure preservation can be regarded as another regu-
larization indicating that similar points in the original space
should be mapped into the positions closely in the embedding
space. Technically, we view the holistic structure of video as a
graph constructed on the frames in the whole video sequence.
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The estimation of the underlying graph structure can be mea-
sured by the appropriate pairwise similarity between the video
frames, which is given by:

`graph =

NX

i,j=1

Sij kfi � fjk22, (4)

where S 2 RN⇥N denotes the affinity matrix defined on the
entire frames among the temporal sequence. Under the graph
structure preservation criterion, it is reasonable to minimize
Eq. (4), as it will incur a heavy penalty if two visually similar
frames are mapped far away in the learnt embedding space.

There are many ways of defining the affinity matrices S. In-
spired by [Fang and Zhang, 2013], the elements are computed
by Gaussian functions in this work, i.e.,

Sij =

(
e

�
kf̃i�f̃jk2

2
�2

if f̃i 2 Nk(f̃j) or f̃j 2 Nk(f̃i)
0 otherwise

, (5)

where � is the bandwidth parameter. It should be noted that f̃i
denotes the learnt frame-level feature from pervious iteration
in training and Nk(f̃i) represents the set of k nearest neighbors
of f̃i.

By defining the graph Laplacian L = D� S, where D is a
diagonal matrix with its elements defined as Dii =

P
j Sij ,

Eq. (4) can be rewritten as

`graph = tr(F>LF), (6)

and its gradient with respect to F is

@`graph

@F
= 2LF. (7)

By minimizing this term, the inherent structure between
frames can be preserved in the learnt embedding space. We
additionally include this regularizer in our framework.

3.4 Formulation
The overall objective function integrates both the triplet rank-
ing loss in Eq. (2) on the triplet set T and the graph structure
preservation in Eq. (6). Hence we get the following overall
loss objective

` = �

X

t2T

`

(t)
triplet + (1� �)`graph, (8)

where � 2 [0, 1] is the tradeoff parameter.
With this overall loss objective, the crucial goal for its

optimization is to learn the mapping function f . Inspired
by the success of DCNN on feature learning for image
[Krizhevsky et al., 2012; Wang et al., 2014; Feng et al.,
2016] and video [Ramanathan et al., 2015; Zha et al., 2015;
Gan et al., 2015] tasks, we employ a deep neural network ar-
chitecture to learn the feature representation for video frames.
Specifically, the embedding feature representation is leant on
top of the fully connected fc6 layer of AlexNet [Krizhevsky
et al., 2012], which is pre-trained on ImageNet ILSVRC12
dataset [Russakovsky et al., 2014]. In the training stage, to
solve the optimization according to overall loss objective in
Eq. (8), we design a temporal and graph-structured loss (TGL)

Algorithm 1 The Training of TGL Layer
1: Given a tradeoff parameter �.
2: Forward Pass:
3: Fetch input batch F with N sample frames in one video.
4: Generate selected triplet set T .
5: Compute all the triplet ranking losses on T via Eq. (2).
6: Update affinity matrices S.
7: Compute graph structure preservation loss via Eq. (6).
8: Compute overall loss output with tradeoff parameter �.
9: Backward Pass:

10: Compute gradient w.r.t input for triplet ranking loss via Eq. (3).
11: Compute gradient w.r.t input for graph structure preservation

via Eq. (7).
12: Backward the overall gradient w.r.t input with tradeoff parameter

� to lower layers.

layer on the top of fully connected fc6 layer in AlexNet. It
is also worth noticing that we use L2 normalization layer to
normalize the output of fc6 layer and then feed the normalized
results into our TGL layer. The TGL layer does not have any
parameter. During learning, it evaluates the model’s violation
of two generic priors of temporal coherence and graph struc-
ture preservation, and back-propagates the gradients to the
lower layers so that the lower layers can adjust their parame-
ters to minimize the overall loss. The training process of TGL
layer is given in Algorithm 1.

4 Experiments
We evaluate our video representation by conducting three
video recognition tasks (retrieval, classification, and highlight
detection) on two popular video datasets, i.e., Columbia Con-
sumer Videos (CCV) [Jiang et al., 2011] which is a bench-
mark of consumer video retrieval and classification tasks,
and YouTube Highlight [Sun et al., 2014] which is an un-
constrained first person video dataset for highlight detection.

4.1 Dataset and Settings
CCV. CCV dataset contains 9, 317 videos collected from
YouTube. It consists of 20 semantic classes including popular
events, e.g., “birthday party,” “cats,” “playground,” and “gradu-
ation ceremony.” For the video retrieval task, given a test query
frame, the task is to estimate the similarity between each frame
and query frame measured on their learned representations.
Furthermore, for each query frame, we order all the frames
based on the similarity scores. In the experiments, we use a
subset of 5, 803 videos whose durations are at least 25 sec with
2, 903 videos for training and 2,900 videos for testing. The
ground truth data are carefully generated on the testing videos.
Specifically, following [Goroshin et al., 2014], videos in the
test set are automatically segmented into scenes by detecting
large L2 changes among adjacent frames. We randomly select
2,000 scenes from testing videos and use the middle frame
from each scene as the test query frame. The entire pool for
retrieval consists of 1.13 million sampled frames from both
the training and testing videos. For each test query frame, only
the temporal neighbors from the same scene are defined as
semantically similar samples. The other frames in the pool
are all used as dissimilar ones w.r.t the test query frame. For
the video classification task, we use the same train/test splits
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Method VR VC VHD
fc6 67.52% 62.82% 42.89%
fc7 64.89% 62.18% 42.41%
TE [Ramanathan et al., 2015] 68.42% 63.15% 44.98%
Temporal Coherence (TC) 70.24% 64.27% 47.06%
Graph Structure (GS) 70.26% 63.36% 46.02%
TGFL 72.13% 65.26% 48.08%

Table 1: MAP of different methods for Video Retrieval (VR),
Video Classification (VC), and Video Highlight Detection
(VHD) tasks.

as retrieval task (i.e., 2, 903 videos for training and 2, 900 for
testing).

YouTube Highlight. This dataset is collected from
YouTube for six domains including “skating,” “gymnastics,”
“dog,” “parkour,” “surfing,” and “skiing.” Each domain con-
tains about 100 videos with various lengths. The total duration
is 1, 430 minutes. After removing unvalid and no-highlight
videos, the dataset is partitioned into two parts: a training
set with 352 videos and a testing set with 110 videos. For
each testing video, the ground-truth highlighted moments are
human labeled on Amazon Mechanical Turk.

Settings. In the experiments, we uniformly pick up three
frames every second and compose N = 256 frames of each
video. For a long video, only the first selected N frames are
represented as a temporal sequence. All the positive frames are
selected from the adjacent frames within one second around
the query frame. The k nearest neighbors preserved in Eq. (5)
and tradeoff parameter � in Eq. (8) are both determined by
using a validation set for each task. Finally, for both retrieval
and classification tasks, k = 10 and � = 0.4. For highlight
detection task, we set k = 8 and � = 0.5. In video retrieval
task, we retrieve the frames in the whole dataset according
to their cosine similarities w.r.t the query frame measured on
our learned representation. In video classification task, fol-
lowing [Ramanathan et al., 2015], we uniformly sample four
frames per video and perform “mean pooling” process over
all sampled frames to generate the video representation. The
linear Support Vector Machine (SVM) is adopted to classify
the videos. In video highlight detection task, following the
pairwise ranking model proposed in [Sun et al., 2014], we
utilize the same linear ranking SVM to rank and detect video
highlights.

4.2 Compared Methods
In video retrieval task, we use mean average precision (MAP)
to evaluate the retrieval quality for test query frames. For video
classification task, following [Jiang et al., 2011], the average
precision (AP) is used to measure performance for each class
and MAP is adopted to report the overall performance. For
highlight detection task, within each video, the best method
should first detect the ground truth highlighted moments rather
than other moments. Hence, we also calculate AP of highlight
detection for each testing video and use MAP to evaluate the
learnt feature to highlight detection.

To evaluate our model, we compare the following methods
on retrieval, classification, and highlight detection tasks:

(1) fc6 and fc7: feature extracted from the top of the fully
connected fc6 or fc7 layer in AlexNet pre-trained on ImageNet
ILSVRC12 dataset [Russakovsky et al., 2014].

(2) Temporal Embedding (TE) [Ramanathan et al., 2015]:
feature learning in a margin ranking loss based embedding
framework to make the contextual representations in close
proximity to the target frame and simultaneously dissimilar to
other negative frames in a pairwise manner.

(3) Temporal and Graph-structured Feature Learning
(TGFL) based on our proposal presented in Algorithm 1. Two
slightly different runs are named as Temporal Coherence (TC)
and Graph Structure (GS), which consider individual tempo-
ral coherence or graph structure preservation in the overall
objective (Eq. (8)), respectively.

4.3 Performance Comparison
Evalution of video retrieval. Table 1 shows the MAP per-
formances of six runs on three tasks. Overall, for video re-
trieval task, our TGFL consistently outperforms the other runs.
In particular, the MAP of TGFL can achieve 72.13%, which
makes the improvement over fc6 by 6.8%. Furthermore, TGFL
can be further improved with large quantities of unlabeled
videos, which are largely available and freely accessible on
Web. There is a clear performance gap between the two runs
TC and TE. Though both runs involve utilization of temporal
context, they are fundamentally different in the way that the
learnt representations of TE are as a result of embedding the
target frame by its contextual representations in a pairwise
manner, and TC is by characterizing relative temporal rela-
tionships through a set of frame triplets. The results basically
indicate the advantage of learning video representations by
exploiting temporal coherence. Moreover, TGFL by further
preserving graph structure is superior to TC, which indicates
that the two principles of temporal coherence and graph struc-
ture reinforce each other in feature learning. Figure 3 further
illustrates the top eight retrieved video frames in response
to query frame based on the learnt representations by differ-
ent methods. We can clearly see that the proposed TGFL
gets more satisfying ranking results and retrieves five relevant
video frames in the returned top eight frames.

Evaluation of video classification. The MAP perfor-
mances for video classification task are reported in the third
column of Table 1. Our TGFL still consistently outperforms
other baselines, which makes the improvement over fc6 by
3.9%. The performance gain can be attributed to the video
feature learning by exploiting both temporal coherence and
graph structure simultaneously.

Evaluation of video highlight detection. The fourth col-
umn in Table 1 shows the MAP values of different approaches
for video highlight detection task. Overall, TGFL consistently
exhibits better performance than other approaches. Compared
to fc6, TGFL raises the MAP from 42.89% to 48.08%, mak-
ing the improvement by 12.1%. Similar to the observations in
video retrieval and classification tasks, TC exhibits better per-
formance than TE, but shows worse performance than TGFL.
Figure 4 shows eight segments uniformly sampled from a
video of “surfing,” “parkour,” “skating,” and “gymnastics.”
Each segment is represented by one sampled frame. As illus-
trated in the figure, the eight segments are ranked according to
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fc6

fc7

TE

TC

GS

TGFL

Figure 3: Examples showing the top eight video frames re-
trieval results based on the learnt representations by different
methods in response to query frame. In each row, the first
frame with a red bounding box is the query frame and the
similar video frames in the retrieved list are enclosed in blue
bounding boxes.

High Low

High Low

High Low

High Low

Figure 4: Examples of segments ranking from low (right)
to high (left) according to our predicted highlight scores for
“surfing,” “parkour,” “skating,” and “gymnastics” categories.

their predicted highlight scores on the learnt representations
by our TGFL and we can easily see that the ranking order
reflects the relative degree of interest within a video.

4.4 Effect of the number of nearest neighbors k
In order to show the relationship between the performance and
the number of nearest neighbors, we conducted experiments
to evaluate the performance of our TGFL framework with the
number of nearest neighbors in range of {5, 6, 7, 8, 9, 10, 11,
12}. The MAP with different number of nearest neighbors are
shown in Figure 5. As illustrated in the figure, TGFL achieves
the best results when we choose Top-10 nearest neighbors
on video retrieval and classification tasks while the optimal
k = 8 in video highlight detection task. Furthermore, the
performance difference by using different number of nearest
neighbors is within 0.01 on all three tasks, which basically ver-
ifies that our TGFL has a good property of being affected very
slightly when choosing different number of nearest neighbors.

4.5 Effect of the tradeoff parameter �
A common problem with multiple regularization terms in a
joint optimization objective is the need to set the parameters
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Figure 5: The MAP performance curves with different num-
bers of nearest neighbors on (a) video retrieval and video
classification and (b) video highlight detection, respectively.
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Figure 6: The MAP performance curves with different tradeoff
parameter � on (a) video retrieval and video classification and
(b) video highlight detection, respectively.

to tradeoff each component. In the previous experiments, the
tradeoff � is optimally set in order to examine the performance
of � on video retrieval, classification, and highlight detection
irrespective of the parameter influence. We further conducted
experiments to test the sensitivity of � towards the three video
recognition tasks.

Figure 6 shows the MAP performance with respect to dif-
ferent values of �. We can see that all the performance curves
are smooth when � varies in a range from {0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The performances fluctuate within
the range of 0.02 on three tasks. Thus, it is not sensitive to
the change of the tradeoff parameter. More importantly, the
fusion of temporal coherence and graph structure by any trade-
off weights consistently leads to a performance boost against
individual component (� = 0 or � = 1.0). The result again
confirms the advantage of exploiting both principles of tempo-
ral coherence and graph structure which are complementary
for feature learning.

5 Conclusions
We have showed that learning a good video representation
should take both the local temporal coherence from adjacent
video frames and holistic intrinsic structure among all the
frames into consideration. We present a temporal and graph-
structured feature learning approach to learn the intrinsic rep-
resentation of video frames by exploiting such context in-
formation. We also validate the effectiveness of the learned
representation through extensive experiments on three video
recognition tasks. Our future works include: 1) using RNN
to better model the temporal coherence, and 2) investigating
different pooling schemes for transferring our frame represen-
tation to video-level representation.
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