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Abstract

Inspired by the progress of deep neural network
(DNN) in single-media retrieval, the researchers
have applied the DNN to cross-media retrieval.
These methods are mainly two-stage learning: the
first stage is to generate the separate representa-
tion for each media type, and the existing meth-
ods only model the intra-media information but ig-
nore the inter-media correlation with the rich com-
plementary context to the intra-media information.
The second stage is to get the shared representa-
tion by learning the cross-media correlation, and
the existing methods learn the shared representa-
tion through a shallow network structure, which
cannot fully capture the complex cross-media cor-
relation. For addressing the above problems, we
propose the cross-media multiple deep network
(CMDN) to exploit the complex cross-media cor-
relation by hierarchical learning. In the first stage,
CMDN jointly models the intra-media and inter-
media information for getting the complementary
separate representation of each media type. In
the second stage, CMDN hierarchically combines
the inter-media and intra-media representations to
further learn the rich cross-media correlation by
a deeper two-level network strategy, and finally
get the shared representation by a stacked net-
work style. Experiment results show that CMDN
achieves better performance comparing with sev-
eral state-of-the-art methods on 3 extensively used
cross-media datasets.

1

With the rapid growth of multimedia information, the cross-
media data, like image, text, video and audio, has been the
main form of big data, and the demand of cross-media re-
trieval is greatly spurred. For example, if users are on a visit
to Buckingham Palace, by submitting a photo of it, they can
get the relevant images, videos and text at the same time.
In the last decades, content-based information retrieval has
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been widely studied [Lew et al., 2006]. However, much re-
search effort is devoted to the single-media retrieval, like im-
age retrieval, video retrieval and audio retrieval. To further
model multimedia data, some methods are proposed to com-
bine different media types of data as [Znaidia er al., 2012;
Liu et al., 2010], which can provide diverse information, and
users can get results with more than one media type. In these
methods, the retrieval results and the user query must share
the same media type. For instance, users submit an image/text
pair, and get the relevant pairs as the results, which restricts
the flexibility of information retrieval. As digital media can
be found and generated everywhere, users would like to sub-
mit queries of any media type, and get the relevant results
with all media types.

Under this situation, the cross-media retrieval has become
increasingly important, which makes it possible for users
to submit any media types at hand, and get the relevant
results with different media types. The traditional cross-
media retrieval methods mainly lie on the common space
learning. A representative method is the canonical correla-
tion analysis (CCA) [Hotelling, 1936], which learns a sub-
space to maximize the correlation between data of differ-
ent media types, and is widely used for modeling multime-
dia data [Hardoon et al., 2004; Bredin and Chollet, 2007;
Klein et al., 2015]. Some CCA-based methods attempt to
combine CCA with other information, such as semantic cat-
egories [Rasiwasia et al, 2010]. An alternative method
is Cross-modal Factor Analysis (CFA) approach [Li et al.,
2003]. This method finds the projection functions for differ-
ent media types, by which it minimizes the Frobenius norm
between the pairwise data in the common space. Zhai et
al. [Zhai et al., 2013] propose to learn projection functions
by the metric learning, and this method is further improved
as Joint Representation Learning (JRL) [Zhai et al., 2014]
by adding other information such as semantic categories and
semi-supervised information. Some methods for image an-
notation as [Weston et al., 2011] also learn a common space.
The above methods obtain promising improvement, but they
are mostly based on linear projection, which cannot fully
model the intrinsic correlation of cross-media data. Another
kind of method aims to extend the single-modal topic model
for the joint distribution of topics in different media types,
such as Correspondence LDA (corr-LDA) [Blei and Jordan,
2003], but they mostly take strong assumptions on the topic



distribution, which may not be satisfied under the real condi-
tion.

Inspired by the progress of DNN in single-media retrieval
and classification such as image classification [Krizhevsky A,
2012], the DNN has been applied to cross-media retrieval
for converting the cross-media data to the shared represen-
tation, which is used to measure the similarity of cross-media
data. Ngiam et al. [Ngiam er al., 2011] apply an extension
of Restricted Boltzmann Machine (RBM) to get the shared
representation. In this work, Bimodal Autoencoders (Bi-
modal AE) is proposed, in which the inputs of different me-
dia types pass through a shared code layer to get the shared
representation. Following this idea, some similar network
structures are proposed, and achieve progress in modeling
the cross-media data [Zhang et al., 2014; Kim et al., 2012;
Srivastava and Salakhutdinov, 2012b; Wang et al., 2015]. De-
ViSE [Frome et al., 2013] uses a linear projection layer to
project the image representations to the text representations
from a pre-trained visual model and a language model. Deep
CCA [Andrew et al., 2013; Yan and Mikolajczyk, 2015] is a
non-linear extension of CCA, which learns two separate cor-
related deep encodings. Feng et al. [Feng et al., 2014] pro-
pose Correspondence Autoencoder (Corr-AE) to simultane-
ously model the reconstruction error and the correlation loss,
and Wang et al. [Wang et al., 2014] propose to use Stacked
Autoencoders (SAE) for cross-media retrieval, which has two
coupled subnetworks like [Feng et al., 2014].

These methods are mainly two-stage learning methods: the
first stage is to generate the separate representation for each
media type, and the existing methods only model the intra-
media information but ignore the inter-media correlation as
[Srivastava and Salakhutdinov, 2012a; Feng et al., 2014] with
the rich complementary context to the intra-media informa-
tion. The second stage is to get the shared representation by
learning the cross-media correlation, and the existing meth-
ods learn the shared representation through a shallow net-
work structure, which cannot fully capture the complex cross-
media correlation. For addressing the above problems, we
propose the cross-media multiple deep network (CMDN) to
exploit the complex and rich cross-media correlation by hi-
erarchical learning. In the first stage, CMDN jointly learns
two kinds of complementary separate representation for each
media type, instead of only intra-media separate representa-
tion of the previous work. Cross-media retrieval focuses on
the correlation between different media types, so the inter-
media representation can provide important hints and should
be preserved. In the second stage, as there are two comple-
mentary separate representations for each media type, we hi-
erarchically combine the separate representations in a deeper
two-level network so that the inter-media and intra-media in-
formation can be jointly modeled to generate the shared rep-
resentation. Compared to our approach, the existing meth-
ods only adopt a single-level network with only intra-media
information as input. In addition, we learn the shared repre-
sentations in a stacked network style to fully mine the com-
plex cross-media correlation, which has better learning ability
than only a shallow network structure of the existing methods.
Experiment results show that the proposed CMDN model
achieves better performance comparing with 7 state-of-the-
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Figure 1: The Multimodal DBN and Bimodal Autoencoders.

art methods on 3 extensively used datasets (Wikipedia, NUS-
WIDE-10k and Pascal Sentences).

2 Background

Various deep networks have been applied to cross-media re-
trieval. Considering the generality of cross-media retrieval,
we adopt relatively general models for the features of differ-
ent media types. Deep Belief Network (DBN) and autoen-
coders are the basic models chosen in CMDN according to
our motivation of separate representation learning and hier-
archical combination. Specifically, CMDN uses Multimodal
DBN [Srivastava and Salakhutdinov, 2012a] and Stacked Au-
toencoders (SAE) [Vincent et al., 2008] to model the intra-
media information and inter-media correlation for learning
complementary separate representations. Then CMDN ap-
plies joint RBM to combine the inter-media and intra-media
separate representations, and uses Bimodal Autoencoder (Bi-
modal AE) [Ngiam ez al., 2011] in a stacked style to generate
the shared representations for cross-media retrieval. In this
section, we review these models briefly, which form the basis
of our proposed CMDN model in Section 3.

The Multimodal Deep Belief Network (Multimodal
DBN) has been widely used for learning a shared represen-
tation of multimodal data. It models data of each media
type with a separate two-layer DBN, using image and text
feature as input to model the distribution by Gaussian Re-
stricted Boltzmann Machine (RBM) and Replicated Softmax
model[Salakhutdinov and Hinton, 2009], which are widely
used in cross-media retrieval [Srivastava and Salakhutdinov,
2012a; Feng et al., 2014]. RBM is an undirected graphical
model with visible units v and hidden units h connected to
each other. An energy function and the joint distribution are
defined as follows:

E(v,h;0) = —aTv —bTh —oTWh (1)

2

P(v,h;0) = 20

exp(—FE(v, h;0))

where 0 contains three parameters a, b, w and Z () is the nor-
malizing constant. To form a Multimodal DBN, it combines
the two DBN by learning a joint RBM on the top of them to
get a shared representation. As shown in the left subfigure of
Figure 1, the Multimodal DBN can model the joint distribu-
tion over data of multiple media types, which makes it pos-
sible to capture the inter-media correlation and will be used
for the inter-media representation learning in the first stage of
our CMDN model.
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Figure 2: An overview of our CMDN model.

The Stacked Autoencoders (SAE) is a neural network
which consists of multiple layers of autoencoders and re-
quires less prior knowledge from the training data. SAE has
several autoencoders which are trained in a bottom-up and
layer-wise manner. The bottom autoencoder uses the original
media features as input, and the high layer autoencoder uses
the output generated from the bottom autoencoder. All these
autoencoders are trained in turn as a pre-training stage, and
then the whole neural network is fine-tuned based on a pre-
trained model. SAE can get the high-level semantic repre-
sentations and will be used for the intra-media representation
learning in the first stage of our CMDN model.

The Bimodal Autoencoders (Bimodal AE) is a deep au-
toencoder network, as shown in the right subfigure of Figure
1, which takes multiple media types as input and has a middle
layer generating the shared representation. The network aims
to reconstruct both media types such as image and text, which
minimizes the reconstruction error between the input features
and the reconstruction representation. Bimodal AE can ef-
ficiently learn the higher-order correlations between differ-
ent media types, and preserve the reconstruction information
within each media type, which is useful for the shared repre-
sentation learning in the second stage of our CMDN model.

3 Our CMDN Model

As shown in Figure 2, our CMDN model can be divided
into two stages: in the first learning stage, we use Multi-
modal DBN to model the inter-media separate representation
and SAE to model the intra-media separate representation for
each media type. In the second learning stage, we use the
two-level network including the joint RBM and Bimodal AE
to get the final shared representation for each media type of
the cross-media data.

Formally, given a dataset D = {D® D®} with the
labeled multimedia content consists of m + n media ob-
jects of two media types which are image and text. Here

D) = {ch), y;(;i)} denotes the image data, and D(*) =
p=1
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image data, and x((;) S Rdm is the g-th text data, which are

labeled as yl(f) and y,(]t). And d@, d® are the dimension of
the image and text feature. The cross-media retrieval aims
to retrieve relevant text y given the query of image z in the
unlabeled dataset of text 7" = {y, ..., y;} and vice-versa.

denotes the text data. z) € R?"” is the p-th
1

3.1 Inter-media and Intra-media Separate Repres-
entation Learning

Multiple deep networks are used for the complementary inter-
media and intra-media representation learning in the first
stage.
Inter-media separate representation learning. We use
a Multimodal DBN [Srivastava and Salakhutdinov, 2012a]
for inter-media separate representation learning. First, we
model each media type with a separate two-layer DBN, where
Gaussian RBM is used to model the distribution over im-
age features X (V) = {atg) , and Replicated Softmax is used
(t)}
P
Then, to capture the inter-media correlation, we learn a joint
RBM on the top of them to combine the two separate DBN,
which can model the joint distribution over the data of two
media types. We can perform alternating Gibbs sampling
through the joint layer with the following conditional distri-
butions:

to model the distribution over text features X *) = {x

P | b)) = oW 0P + ay) 3)
P | b)) = oW 0P + ay) (4)

where o(z) = 1/(1 4+ e~ ®). The sample h§3) and h§3) can
be used to generate a distribution over each media type, the
output of which would be denoted as X?,,.,. and X}, used
to be the inter-media separate representation.

Intra-media separate representation learning. We adopt
the SAE [Vincent et al., 2008] for intra-media separate repre-
sentation learning. We obtain one SAE for each media type



and train each SAE independently. The input features X (*)
and X are the same with the Multimodal DBN , while X 52)

and X;Z) are the reconstruction of X9 and X (). The SAE
for image and text data which consists of h layers of autoen-
coders can be trained separately by minimizing the objective
function as follows:

h
i i % 2 2
LX) = Lo(XD, X5 + S (IWEIS + W12
p=1

&)

h
LX) = L(XO, X0 + 83 (IWEI5 + [Wh3)
p=1

(6)
where the average reconstruction error is denoted as
Lo(X®D, Xy and L.(X®, XY, while W;,, W4 and
Wie, Wyq are the parameters of the activation function of the
encoder and decoder. By minimizing the reconstruction error,
we can get the latent features to be the intra-media separate
representation X/, for image, and X!, ,,., for text, which
can preserve the original characteristic of each media type
and get the high-level semantic representation.

3.2 Cross-media Shared Representation Learning
with Two-level Networks

In the second learning stage, we have already obtained
the multiple complementary separate representations X7, ...,
X! ..and X! . X! .  foreach media type, which cap-
ture both the inter-media and intra-media information in the
first learning stage. To get the shared representation, we hi-
erarchically combine the separate representations by a new
learning method which contains a deeper two-level network.
It can also be divided into inter-media level and intra-media
level.

On the first level of the network, we consider combining
the inter-media and intra-media representations of each media
type with a joint RBM. It jointly models the distribution over
the representation captured from Multimodal DBN and SAE
of one media. The joint distribution can be defined as follows:

>

AN AC)

> P | h{Y) x Y Pl | hyY).

h(ll) hgl)

P(vy,v2) = P, nY h®)x

@)

where v; denotes the inter-media separate representation
Xi er While vo denotes X7, . for image. And as for the
text media, this joint distribution are adopted on the inter-
media separated representation X/, ., and X! , = for text.
We can collect these joint distributions as the intermediate
representation of each media type, which are denoted as Y (¥
for image and Y'® for text, and they will be used as the input
of the next level in the network.

On the second level of the network, we need to learn the
shared representation for different media types. We use sev-

eral Bimodal AE [Ngiam et al., 2011] which can model the
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cross-media correlation at joint layer as well as the recon-
struction information at the top layer. For training the net-
work, we propose a stacked learning method having n (can
be adjusted dynamically) Bimodal AE trained in a bottom-up
method following [Ngiam er al., 2011], and also added the
additional label information. We use the intermediate repre-
sentation Y Dand Y® as input for the bottom Bimodal AE,
() and z")

and its output Z will be used as the input to prop-

1) €]
agate to the higher network so as to get Z ((;)), Z ((;; as output

and reduce the dimension to the half of the input at the same

time, until we get Z ((:L)) and Z ((:L)) to be the final shared rep-
resentation. The amount n of the network to be stacked in
learning process can be adjusted according to the validation
set.

We get the final shared representation through n stacked
Bimodal AE which has better learning ability than only one
Bimodal AE, so that the complementary inter-media and
intra-media information can be jointly modeled to mine the
complex cross-media correlation.

4 Experiment

In this section, we will introduce our experiments conducted
on 3 cross-media datasets (Wikipedia, NUS-WDIE-10k and
Pascal Sentences) with 7 state-of-the-art methods. In this pa-
per, image and text are chosen for experiments because all the
3 datasets which are widely-used in multi-modal and cross-
media research only include these two media types. However,
our CMDN can perform the cross-media retrieval across var-
ious media types, such as video, audio and 3D model. To
objectively and fully evaluate the results, we conduct two
retrieval tasks: retrieving text by image (Image—Text) and
retrieving image by text (Text—Image). For further verify-
ing the effectiveness of our CMDN model, we also conduct
experiments with two baseline methods: CMDN with only
intra-media separate representation learning and CMDN with
only inter-media separate representation learning. We can see
from the experimental results that our method achieves con-
sistently inspiring improvement on all retrieval tasks with all
3 datasets, which shows the generality of our method.

4.1 Datasets

Now the 3 datasets will be briefly introduced as follows. It
should be noted that for fair comparison, in our experiments,
the feature extraction and dataset partition of the training,
testing and validation set are strictly according to [Feng et
al., 2014], and are also exactly the same with our approach
and all the compared methods in the experiments.
Wikipedia dataset [Rasiwasia et al., 2010]. Wikipedia
dataset is from “feature articles” of Wikipedia with 10 se-
mantic categories. The dataset contains a total of 2,866
image/text pairs, and is randomly split into a training set
of 2,173 documents, a testing set of 462 documents and
a validation set of 231 documents following [Feng et al.,
2014]. The image features are the concatenation of three
parts: 1000 dimensional Pyramid Histogram of Words, 512
dimensional GIST, and 784 dimensional MPEG-7. The text
representation is 3000 dimensional bag of words vector. The



dataset has been extensively used in the cross-media re-
trieval as [Rasiwasia et al., 2010; Zhai et al., 2013; 2014;
Feng et al., 2014].

NUS-WIDE-10k dataset [Chua et al., 2009]. NUS-
WIDE-10k is a subset of NUS-WIDE dataset. NUS-WIDE
has about 270,000 images and their corresponding tags, cat-
egorized into 81 classes. NUS-WIDE-10k is constructed by
selecting 10000 image/text pairs evenly from the 10 largest
categories. In [Feng et al., 2014], they randomly select 8000
documents for training, 1000 documents for testing and 1000
documents for validation evenly from the 10 categories, and
the same partition is adopted in our experiment. The image
features are the concatenation of 64 dimensional color his-
togram, 144 dimensional color correlogram, 73 dimensional
edge direction histogram, 128 dimensional wavelet texture,
225 dimensional block-wise color moments and 500 dimen-
sional SIFT-based bag of words features. The text is repre-
sented by a 1000 dimensional bag of words vector.

Pascal Sentences [Farhadi et al., 2010]. Pascal Sentences
dataset is an image/text dataset selected from 2008 PASCAL
development kit. In this dataset, each image is described by
5 sentences. It has 1000 image/text pairs belonging to 20
categories totally. From each category we randomly select
40 documents for training, 5 documents for validation and 5
documents for testing following [Feng er al., 2014]. The im-
age representation is the same with Wikipedia dataset, and the
text representation is 1000 dimensional bag of words vector.

4.2 Details of the Deep Architecture

Here we will introduce the details of our architecture in the
experiment. The implementation of our CMDN model is
based on deepnet !. As shown in Figure 2, our CMDN model
mainly has three components and none of them is special for a
single media. After feature extraction, any media can be rep-
resented as feature vectors and serve as the input of CMDN
for cross-media retrieval.

In the inter-media separate representation learning, Mul-
timodal DBN is used to model the inter-media correlation.
For image input, there is a two-layer DBN which has 2048
hidden units on the first layer and 1024 hidden units on the
second layer. For text input, we also use a two-layer DBN
with 1024 hidden units on both layers. The joint layer is a
joint RBM with 2048 hidden units taking the output of the
two separate DBN as input. In the intra-media separate rep-
resentation learning, we take the SAE model with three lay-
ers of autoencoder. For each media type, we first pre-train a
1024 dimensional single-layer autoencoder. The pre-trained
autoencoder is used to initialize the first and third layer of our
SAE model, and then the middle layer is initialized by the
constant value of 512 dimensional number. As for the shared
representation learning, on the first level, there are two joint
RBM with 1024 hidden units for combining the inter-media
and intra-media separate representations. On the top of each
joint RBM, there is a three-layer feed-forward neural net with
a Softmax layer, and the dimensional number of each layer is
1024. On the second level, we use BAE for getting the fi-
nal shared representation. The reconstruction layers have the

"https://github.com/nitishsrivastava/deepnet
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same dimensional numbers with the input. The dimensional
number of the joint layer is half of the input, from which we
get the final shared representation. In addition, there is also
a Softmax layer connected to the joint layer for further opti-
mization. As mentioned in Section 3, the number of BAE is
adjusted according to the validation set.

In the training stage, the text and image input data should
be organized as the pairs, but in the test stage they are actually
independent. In addition, the numbers of the hidden units or
dimensional numbers mentioned above are for the Wikipedia
dataset as an example, which has 2296 dimensional image
representation and 3000 dimensional text representation, and
they need to be adjusted for other datasets according to the
dimensional number of inputs. Except the above details, the
other parameters remain the same with the already existing
network implementation in deepnet.

4.3 Compared Methods and Evaluation Metrics

As the 3 datasets all have 2 media types (image and text),
two retrieval tasks are conducted: retrieving text by im-
age query (Image—Text) and retrieving image by text query
(Text—Image). For example, in the Image—Text task, we
take each image in the test set to retrieve all the text in the
test set. For comparison purpose, we adopt 7 state-of-the-art
cross-media retrieval methods, namely CCA, CFA, KCCA,
Bimodal AE, Multimodal DBN, Corr-AE and JRL. The CCA,
KCCA and CFA are the classical baselines. Multimodal
DBN, Bimodal AE and Corr-AE are the DNN-based cross-
media retrieval methods proposed recently. It should be noted
that the source codes of the 3 DNN-based methods (Multi-
modal DBN, Bimodal AE and Corr-AE) are all from [Feng
et al., 2014] and they need validation set as input. JRL is the
state-of-the-art method based on linear projection. Addition-
ally, we use mean average precision (MAP) for all results for
fully comprehensive evaluation, instead of MAP for the top
50 results in [Feng er al., 2014]. The 7 compared methods
are briefly introduced as follows:

CCA [Hotelling, 1936]. CCA learns a common sub-
space for different media types, which is able to maxi-
mize the correlation of them.

CFA [Li et al., 2003]. CFA learns linear projection func-
tions to project the cross-media data to one common
space, which minimizes the Frobenius norm between the
pairwise cross-media data.

KCCA [Hardoon et al., 2004]. KCCA holds the idea of
first projecting the data into a higher-dimensional feature
space and then performing CCA. In our experiments, the
kernel functions used are polynomial kernel (Poly) and
radial basis function (RBF).

Bimodal AE [Ngiam ef al., 2011]. Bimodal AE is com-
posed by a deep autoencoder network which takes mul-
tiple media types as input. It has a middle layer for the
shared representation and is also required to reconstruct
both media types.

Multimodal DBN [Srivastava and Salakhutdinov,
2012a]. Multimodal DBN learns a joint representation
of multimodal data, which models each media type with



a separate two-layer DBN, and combines the two net-
works by learning a joint RBM on the top of them.

Corr-AE [Feng et al., 2014]. Corr-AE simultaneously
models the reconstruction error and correlation loss by
two subnetworks coupled at their code layers. Corr-AE
has two extensions: Corr-Cross-AE and Corr-Full-AE.
In our experiments, we adopt the best performance of
the three models for comparison on MAP scores.

JRL [Zhai er al., 2014]. JRL simultaneously learns lin-
ear projections for different media types with semantic
information, semi-supervised regularization and sparse
regularization.

After obtaining the cross-media shared representation by
our method and the compared methods, we get the ranking list
of all the result with the cosine distance metric. The results
will be evaluated by MAP scores and PR (precision-recall)
curves, which can fairly and comprehensively evaluate the
performance of our method and the compared methods. For
fair and comprehensive evaluation, it should be noted that we
adopt the MAP score and PR curves to compute all the re-
turned results for our approach and all compared methods in
the experiments. In [Feng er al., 2014], they only take rhe
first 50 returned results for evaluation, while the rest returned
results are not considered. In our experiments, we use the
source codes provided by [Feng et al., 2014] for Bimodal AE,
Multimodal DBN and Corr-AE, and adopt the MAP score and
PR curves of all the returned results for them, which is the
same with other compared methods and our CMDN model.

4.4 Experimental Results

Table 1 shows the MAP scores of our CMDN model and
the compared methods on the 3 datasets. On the Wikipedia
dataset, compared with the state-of-the-art method JRL,
CMDN achieves inspiring MAP improvement from 0.311 to
0.359. NUS-WIDE-10k dataset is relatively large in the 3
datasets with 10000 data, and CMDN achieves the best re-
sults so far, improving the MAP score from 0.294 to 0.374.
On the Pascal Sentences dataset, the 3 DNN-based com-
pared methods have much better performance than that on
Wikipedia dataset and NUS-WIDE-10k dataset, and our pro-
posed CMDN model remains the best. Although the 3
datasets all have image and text, they have different data,
feature dimensions and kinds. CMDN achieves consistently
improvement on all retrieval tasks with all 3 datasets, which
shows the generality of our method. Figures 3, 4 and 5 show
the PR curves on the 3 datasets. Our proposed CMDN shows
clear advantage over the compared methods in all figures,
which demonstrates the effectiveness of hierarchy learning
with CMDN model.

Table 2 shows the MAP scores of our baselines and the
complete CMDN model. Intra-CMDN means CMDN with
only intra-media separate representation learning, and Inter-
CMDN means CMDN with only inter-media separate repre-
sentation learning. In these two baselines, the Intermediate
Representation in Figure 2 is the inter-media or intra-media
representation, and the other architectures remain the same
for fair comparison. The compared methods (DNN-based
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Task
Dataset Method Image—Text | Text—Image | Average
CCA 0.124 0.120 0.122
CFA 0.236 0.211 0.224
KCCA(Poly) 0.200 0.185 0.193
Wikipedia KCCA(RBF) 0.245 0.219 0.232
dataset Bimodal AE 0.236 0.208 0.222
Multimodal DBN 0.149 0.150 0.150
Corr-AE 0.280 0.242 0.261
JRL 0.344 0.277 0.311
our CMDN Model 0.393 0.325 0.359
CCA 0.120 0.120 0.120
CFA 0.211 0.188 0.200
KCCA(Poly) 0.150 0.149 0.150
NUS-WIDE KCCA(RBF) 0.232 0.213 0.223
-10k Bimodal AE 0.159 0.172 0.166
dataset Multimodal DBN 0.158 0.130 0.144
Corr-AE 0.223 0.227 0.225
JRL 0.324 0.263 0.294
our CMDN Model 0.391 0.357 0.374
CCA 0.099 0.097 0.098
CFA 0.187 0.216 0.202
KCCA(Poly) 0.207 0.191 0.199
Pascal KCCA(RBF) 0.233 0.249 0.241
Sentences Bimodal AE 0.245 0.256 0.251
dataset Multimodal DBN 0.197 0.183 0.190
Corr-AE 0.268 0.273 0.271
JRL 0.300 0.286 0.293
our CMDN Model 0.334 0.333 0.334

Table 1: The MAP scores of our CMDN model and the com-
pared methods.

Task

Dataset Method Image—Text | Text—Image | Average
Wikipedia Intra-CMDN 0.303 0.284 0.294
dataset Inter-CMDN 0.303 0.294 0.299
our CMDN Model 0.393 0.325 0.359
NUS-WIDE Intra-CMDN 0.360 0.317 0.339
-10k Inter-CMDN 0.334 0.330 0.332
dataset our CMDN Model 0.391 0.357 0.374
Pascal Intra-CMDN 0.280 0.242 0.261
Sentences Inter-CMDN 0.242 0.218 0.230
dataset our CMDN Model 0.334 0.333 0.334

Table 2: The MAP scores of our CMDN model and the base-
line methods.

methods as [Feng et al., 2014]) also adopt network combi-
nation and nonlinear projection, but our CMDN still outper-
forms the compared methods, showing that the combination
of two complementary representations learning is the key ele-
ment for result improvement. It should be noted that the Intra-
media and Inter-media CMDN also outperform most of the
compared methods, which demonstrates the effectiveness of
the stacked network style in the shared representation learn-
ing.

‘The experimental results of image->text on the Wikipedi
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Figure 3: The PR curves on Wikipedia dataset.
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Figure 4: The PR curves on NUS-WIDE-10k dataset.
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Figure 5: The PR curves on Pascal Sentences dataset.

From the above results, we can see that our proposed
CMDN model has stable advantages. Compared to the meth-
ods without DNN (as CCA and CFA), our CMDN can ef-
fectively model the intrinsic correlations of cross-media data
for the better learning ability of DNN. As for the DNN-based
method (as Bimodal AE and Multimodal DBN), they only
model the intra-media information in the first stage and con-
struct the shallow networks for shared representation learn-
ing in the second stage, which limits their performance of
cross-media retrieval. In addition, although JRL is based
on linear projection, it can effectively incorporate semantic
information with semi-supervised and sparse regularization,
so achieves relatively high accuracy. However, our CMDN
model outperforms JRL. This is because in the first stage,
CMDN jointly models the intra-media and inter-media in-
formation for getting the complementary separate represen-
tation of each media type. In the second stage, CMDN hi-
erarchically combines the inter-media and intra-media repre-
sentations to further learn the intrinsic and rich cross-media
correlation by a two-level network strategy, and finally get
the shared representation by a stacked network style. Com-
pared with the existing methods, CMDN can fully exploit the
intra-media and inter-media information, so it can improve
the retrieval accuracy.

5 Conclusion

In this paper, we have proposed CMDN model to get the
cross-media shared representation by hierarchical learning.
In the first learning stage, CMDN jointly models the intra-
media and inter-media information for getting the comple-
mentary separate representation of each media type. In the
second learning stage, CMDN hierarchically combines the
inter-media and intra-media representations to further learn
the rich cross-media correlation by a deeper two-level net-
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work strategy, and finally get the shared representation. Ex-
periment results show the effectiveness of our method com-
pared with state-of-the-art methods on 3 datasets. The future
work lies in two aspects. First, we intend to incorporate semi-
supervised information into our learning process, which will
be helpful to get better high-level semantic representations
to enrich the training data. Second, different representations
can be obtained by different networks, we will still focus on
applying and combining other deep networks to improve the
retrieval results.
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