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Abstract

Information diffusion in online social networks
has attracted substantial research effort. Although
recent models begin to incorporate interactions
among contagions, they still don’t consider the
comprehensive interactions involving users and
contagions as a whole. Moreover, the interactions
obtained in previous work are modeled as latent
factors and thus are difficult to understand and in-
terpret. In this paper, we investigate the contagion
adoption behavior by incorporating various types
of interactions into a coherent model, and pro-
pose a novel interaction-aware diffusion framework
called IAD. IAD exploits the social network struc-
tures to distinguish user roles, and uses both struc-
tures and texts to categorize contagions. Experi-
ments with large-scale Weibo dataset demonstrate
that IAD outperforms the state-of-art baselines in
terms of Fl-score and accuracy, as well as the run-
time for learning. In addition, the interactions ob-
tained through learning reveal interesting findings,
e.g., food-related contagions have the strongest ca-
pability to suppress other contagions’ propagation,
while advertisement-related contagions have the
weakest capability.

1 Introduction

During recent years online social networks have become
ubiquitous in our life, and information diffusion in social net-
works has proved to play important and decisive roles in some
situations, such as viral marketing. Specifically, a contagion
is posted by some node in the network and exposed to its
neighbors. If a neighbor forwards that contagion, infection
occurs and the contagion begins to spread over the network.
To better understand the information dynamics in social
networks, massive efforts have been devoted to this research
area. However, most studies concentrate on the scenario
that only a singe piece of information spreads in the net-
work at a time [Kempe et al., 2003; Goldenberg et al., 2001;
Hethcote, 2000; Newman, 2003; Du et al., 2013; Cohen et al.,
2014; Tang et al., 2015]. Recently approaches have started to
consider interactions among contagions [Weng et al., 2012;
Myers and Leskovec, 2012; Rong and Mei, 2013; Bi et al.,
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2013; Coscia, 2013; Valera and Gomez-Rodriguez, 2015;
Pathak et al., 2010; Prakash et al., 2012; Karrer and Newman,
2011], whereas the interactions among explicit categories
of contagions are rarely inferred. In [Myers and Leskovec,
2012] interactions among latent topics are considered which,
however, are hard to understand and interpret. Actually, what
is more interesting is the interactions among explicit cate-
gories, namely whether contagions belonging to one category
(say food) would have some positive/negative effects on the
spreading of contagions belonging to another category (say
politics). However, to do this study, we would need to have
the category of each contagion. Given the large number of
contagions, it would be impossible to ask human to annotate
all of them. How to find an efficient way to classify conta-
gions with only minimum supervision is thus one of the key
challenges in this work.

Besides, social roles and their interactions are also vital
for information diffusion. For example, a contagion from a
celebrity might have a higher possibility to get spread. Anal-
ogously, it is more likely for an ordinary user to forward a
contagion posted by a celebrity than vice versa. Previous re-
search has proved that the diffusion of contagions is affected
by network structures [Yang et al., 2015]. Since social roles
of users reflect network structures, it is intuitive to involve so-
cial roles according to their structure characteristics, as well
as their interactions to build a more comprehensive model.
After considering the interactions among contagions and the
interactions among users, it is natural to ask whether there
are interactions between users and contagions. The answer
is obvious since each user has her own preference on conta-
gions. So far, we have three kinds of interactions, and how
to integrate them together into a coherent model is another
challenge. Besides, once the model is built, fitting the model
to get the interactions for each pair of contagions and users is
prohibitive (quadratic in the number of contagions and users).
Therefore, how to efficiently obtain the interactions poses a
new challenge to our model.

Altogether, we illustrate a framework of information dif-
fusion by incorporating three kinds of interactions: (1)
User-Contagion Interaction (2) User-User Interaction (3)
Contagion-Contagion Interaction. We study the scenario
where a user needs to decide whether to forward a conta-
gion given other simultaneously exposed contagions, and for-
mulate the infection probability by incorporating the inherent



popularity of the contagion as well as three kinds of interac-
tions. Since learning interactions for each pair of contagions
and users is extremely time-consuming, some algorithms are
proposed to reduce the cardinality. First, we apply a mix-
ture of Gaussians model to explain the generation process of
user network features, and use EM algorithm to extract social
role distribution for each user. Then we propose a classifica-
tion approach for contagions based on co-training [Blum and
Mitchell, 1998], which uses a small number of labeled data
and a large number of unlabeled data. After that, we achieve
the category of each contagion and the social roles of each
user. The proposed model statistically learns the interactions,
and the resulting data assists to better comprehend the infor-
mation diffusion process and provide a more accurate predic-
tion for contagion adoption.
The contributions of this paper are threefold:

1) We propose an Interaction-Aware Diffusion (IAD)
framework to model information diffusion process by
incorporating three kinds of interactions, which provides
new insights into how forwarding decisions are made.

2) To efficiently learn the interactions, a co-training based
method is devised to classify the contagions, and a gen-
erative process is applied to obtain the social roles for
users, which can significantly decrease the number of

fitted parameters.

3) Experiments on a large-scale Weibo dataset [Zhang et
al., 2013] not only prove the superiority of IAD frame-
work to state-of-art works, but also reveal some inter-
esting and useful findings. For example, contagions on
food are more likely to suppress the propagation of other
contagions, indicating strong possibility for food-related

topics to attract people’s attention in Weibo.

2

In this section, we first provide the statement and formulation
of the problem, and then describe our approach and the learn-
ing process. Before going into details of IAD framework, we
first define some important notations shown in Table 1.

Interaction-Aware Diffusion Framework

2.1 Problem Statement

In a social network, when some new contagion is originated
from one user, the information is exposed to its neighbors,
and the exposed contagion is called an exposure. Since users
have limited attentions [Weng et al., 2012], we make the as-
sumption as [Myers and Leskovec, 2012] that a user reads
through all the contagions her neighbors have forwarded, but
only the most recent K exposures that she can keep in mind.
In social networks like Weibo and Twitter, tweets in a user’s
reading screen are arranged in time descending order, i.e.,
users will first read the most recent contagions and then go
backward. Therefore, there is a sliding window going back K
contagions that she keeps in mind.

The scenario we study here is when a user reads a conta-
gion which is forwarded by one of her neighbors, given the
sequence of contagions the user has previously read, what’s
the probability of the user adopting this contagion. It is fur-
ther described in Figure 1, where the set {m1,ms,..mg} is a
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Table 1: Notations in the proposed model

SYMBOL [ DESCRIPTION
u Users
m Contagions
r User roles
t Contagion latent topics
c Contagion categories
A € RluIxlul User-user interaction matrix
A € RImIxIml Contagion-contagion interaction
matrix
Q e Rlvximl User-contagion interaction matrix
Aole € RIrIxIrl User role-role interaction matrix
Atopic € RItIx1t Contagion topic-topic interaction
matrix
Q{gﬁc e Rirxi User role - contagion topic interaction
matrix

Acategory € RI¥1°l | Contagion category-category

interaction matrix
User role - contagion category
interaction matrix

role
category

Q c Rlrixlel

sequence of K contagions user u, has read and kept in mind,
and m; (i # 1,2, ..., K) is the contagion which is previously
forwarded by u; and now examined by u,. In this scenario,
the forwarding decision made by u, is not only decided by
the inherent characteristics of m;, but also by three kinds of
external interactions described as follows:

e User-Contagion Interaction: The interaction between
the examining user and the examined contagion. As
shown in Figure 1, it is u,’s preference over m;.

User-User Interaction: The interaction between the ex-
amining user and the neighbor who has forwarded the
examined contagion previously. In Figure 1, it is the ef-
fect up has on u,.

Contagion-Contagion Interaction:  The interaction
among the examined contagion and other contagions the
user has read recently. In Figure 1, it is the effect conta-
gions m1 and my (K = 2) has on m;.

Given the interacting scenarios, our task is to model the
users’ adoption behaviour by incorporating the aforemen-
tioned interactions, and fitting the model to infer the inter-
actions. The problem will be formulated in the next section.

2.2 Formulation

According to the interacting scenario (as shown in Figure 1),
given {mq,ma,..mx } and uy, the probability of infection by
m; to ug 1S

(1)

Here Ip,;(u,) is the infection of u, by mi, En(u,)
is the exposure of m,; which is forwarded by wu;, and
Efm, ma,....mx} 18 the exposure set {my,ma,...,mr}. We
make the assumption as [Myers and Leskovec, 2012] that for
any k and [, E,,, is independent of E,,,. Applying Bayes
rule, we model Eq. (1) by

P(]ml(ua) |Emi(ub)a E{ml,mg,...,mK}>



Contagions Exposed to u,

Attention Window of u,

Examining (Adopt m; ?) 8
T

Figure 1: An example of interacting scenario. User u, is
exposed to contagions {m, ..., mx } (Here K = 2) and m;
(forwarded by u,’s neighbor u;,), and is examining whether to
adopt m;. u, ’s decision is influenced by: interaction between
u, and m;; interaction between u, and wuy; and interactions
among m; and other exposing contagions (m; and ms).
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Pl (ua))

K
P(Eml(ub)) Hk:l P(Emk)

P(Imi(ua))

K
<1
k=1

P(Im.(u )|Em~(ub)) K
TN P(I,, (u|E
P(I7ni(ua,))K klill ( ml(”a)| m)

(2)
Here we need to model P(1p,,(u,))s P(Im;ua)|Em,(us))
and P(I,,(u,)|Em, ) foreach k € {1,..., K'}, which are en-
forced between 0 and 1. Since each contagion has its inher-
ent infectiousness, P(I,,,) is defined as the prior infection
probability of m;, which can be obtained through dividing
the number of its infections by the number of its exposures.
We define Q(u,,m;) as the effect user u, has on conta-
gion m; (User-Contagion Interaction), A(ug,up) as the ef-
fect user u; has on user u, (User-User Interaction), and
A(m;,my) as the effect contagion my has on contagion

m; (Contagion-Contagion Interaction). Then we model
P(Imi(ua))’ P(Imi(ua)|Emi(ub)) and P([mi(ua)lEmk) as

P(Imz(ua)) ~ P(Imi) + Q(uavmi) (3)

P(Im,(ua)‘Eml(ub)) ~ P(Im,(u@)) + A(ucuub) (4)
~ P(ImL) + Q(’U/(“ m’L) + A(uaa Ub)

P(Imq(ua)|Emk) ~ P(Lm Emk) + Q(uavmi) (5)

~ P(Im,-) + A(mumk) + Q(uaami)
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Figure 2: IAD Framework.

Besides the proposed model adopting summations, we also
conduct extensive experiments on the model adopting multi-
plications as well, but the model adopting summations per-
forms better. Thus we apply the additive model in this paper.

Here we have connected the infection probability with
three interaction matrices: (1) Q e RI**I™I2) A e
Rl and 3) A € RImIXIml where |u| is the number
of users and |m| is the number of contagions. However, these
matrices are impractical to learn, because |u| and |m/| are ex-
tremely large in social networks. Thus, we model User Role -
Contagion Topic interaction, User Role-Role Interaction and
Contagion Topic-Topic Interaction instead, which will be il-
lustrated in the next section.

2.3 The Proposed Approach

To decrease the fitted parameters, we utilize the network
structures to infer users’ social roles, and use the contagion
contexts to extract contagions’ topics. IAD framework is
shown in Figure 2, which consists of five components:

e Userroles generation: A generative process of user roles
is proposed to distinguish different kinds of users.

Contagion latent topics extraction: Latent topics are ex-
tracted as features for statistical model learning and con-
tagion classification.

Statistical model learning: Based on the outputs of the
above two components, a statistical model is learned.

Contagion classification: Based on latent topics, a co-
training method of contagion classification is proposed.
The categories derived here are explicit.



e [nteractions inference: Given the results of conta-
gion classification and the statistical model, interactions
among contagions and users can be inferred.

Next we will introduce the process of user roles genera-

tion and contagion latent topic extraction in details, and then
describe statistical model learning. The last two components
will be illustrated in Section 3.
User Role-Role Interaction. User roles are defined as au-
thority users, hub users and ordinary users in our work. In-
tuitively, an authority user has a large number of followers,
while a hub user has lots of followees. A user may play
multiple roles, for instance, an authority user may also be
a hub user, and therefore we adopt a probability distribution
over social roles for each user. Then we infer the interactions
among different social roles. The results indicate how a user,
with a specific roles distribution, influence other users’ prob-
ability of adopting a contagion.

We use PageRank score [Page et al., 19991, HITS authority
and hub values [Kleinberg, 1999], in-degree and out-degree
scores as features of users. A mixture of Gaussians model is
proposed to explain the features generation process. Specif-
ically, we assume the features of each user is sampled as a
multivariate Gaussian distribution. Intuitively, users with the
same roles have similar features and share the same multivari-
ate Gaussian distribution. Define r (ry,r2,73) as user role
vector, then for each role r;, we generate multivariate Gaus-
sian distribution u|r; ~ N(u;,%;). EM algorithm is used
to extract the role distribution for each user. After that, we
assign each role 7; to the most relevant one of the three roles,
according to that authority users have lots of followers and
hub users have lots of followees.

Rather than modeling User-User Interaction denoted by
A € Rl“XIul) we would model User Role-Role Interaction
instead, which is denoted by A, € RI">I"1 AL e (ri,rj)
is the effect role r; has on role 7;. Define ¥, ; as the proba-
bility of user u, belonging to role r;, and Zl Uq,s = 1. Now,
A(ug, up) in Eq. (4) can be updated by

Z Z 19(1 zArole 7’“ rj)ng 7

Contagion Topic-Topic Interaction. Each contagion is as-
sumed to have a distribution on several topics, and ¢ denotes
the set of latent topics. LDA [Blei er al., 2003] is used to
extract the latent topic distribution of each contagion. Then,
instead of modeling A € RI™I*I"| we would model a matrix
Atopic € RIXIH which denotes the Contagion Topic-Topic
Interaction. We define 6; , as the probability of contagion
m,; belonging to topic t,, and therefore Za 0;q = 1. Let
Atopic(ta,ts) denote the impact of topic t;, has on topic %,.
Now, A(m;, my) in Eq. (5) can be updated by

=2 Oiahiopiclta; 1)y

a b

(6)

ua7 ub

A(mu mk: (7)
User Role - Contagion Topic Interaction. Instead of learn-
ing €, we build a matrix lej € RI"IxIl to denote the User

Role - Contagion Topic Interactions. Then §(u,, m;) in Eq.
(3), Eq. (4) and Eq. (5) can be updated by
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Q(ucmmz = ZZ’& JQtopzc Tjatb)ei,b (8)

2.4 Model Learning

The input of our mode is a set of interaction scenarios. An
example of interacting scenario is shown in Figure 1, which
consists of the examining user u,, the examined contagion
m;, User u,’s neighbor u; who has forwarded the examined
contagion, and the exposing contagion set {m,ma,...mxg}
(@ # 1,2,...,K). All the interacting scenarios comprise a
set {x1,29,...x,}, where z; is the ith interacting scenario
and n is the total number. For each interacting scenario,
it can be observed whether the examining user has adopted
the examined contagion or not, which can be denoted by
y; € {0,1} (1 for adoption and O for not). Then the train-
ing set {(z1,y1), (z2,Y2), ..., (Tn, yn)} Will be obtained. Let
7(x;) denote Eq. (1) for simplicity. Now, 7(x;) can be up-
dated by Q7% A, and Atopic, according to equations

topic’
from Eq. (2) to Eq. (8), and the log-likelihood function is
L(Q:gzlscv role; Atopic)
Y ©
= (yilogm(z;) + (1 — y:)log(1 — w(x;)))
i=1
Our goal is to estimate the parameters in Q{g}ju Aol and

Atopic to maximize the log-likelihood function. Stochastic
gradient ascent is adopted to fit the model. In each iteration
of parameters updating, if it will make any item with proba-
bility meaning lower than O or higher than 1, we won’t do any
updating in this iteration, and goes to the next iteration.

Classification of Contagions

3
The interaction matrix Aopic and Q{gl‘zc learned through our

model are comprised of latent topics, which is difficult to in-
terpret. In this section, we illustrate how to obtain interactions
among explicit categories. We define |c| = 15 categories
based on the Weibo dataset, involving advertisement, con-
stellation, culture, economy, food, health, history, life, movie,
music, news, politics, sports, technology and traffic.

To discover interactions among categories, contagions
should be classified into categories first. However, conta-
gions spreading in Weibo [Zhang er al., 2013] are not labeled
to intrinsic categories. Labeled contagions are extremely ex-
pensive to obtain because large human efforts are required.
Thus, only a few labeled contagions are available for learn-
ing. A classification approach based on co-training [Blum
and Mitchell, 1998] is proposed. Specifically, each contagion
in the dataset is described in two distinct views. One is the
contagion itself, and the other is set of the other contagions
posted by the same user. The intuition here is that contagions
created from the same user are prone to have similar category.
Then we build two classifiers for two views, and choose the
latent topics as the features for each classifier. As described in
section 2.3, contagion m;’s latent topic distribution, denoted
by 6; 4(a € 1,..]t|), can be extracted using LDA. We define
a contagion set M; = {my, ma, ..., my } to contain the other



contagions created by the same user. The latent topic distri-

bution ©; ,(a € 1, ..|t|) of M, is obtained by M . Now,
the two classifiers are listed as follows, and LIBSVM [Chang
and Lin, 2011] is used for multi-class classification.
o Classifier I 6, ,(a € 1,
gion m;.
o Classifier 2: ©, ,(a € 1,
tagion set M.

..|t]) as features for each conta-

..|t]) as features for each con-
We labeled a minimum number of contagions for each cat-
egory by hand for training in the beginning. After the initial
training process, two classifiers go through the unlabeled con-
tagions to make predictions. If the results from the two clas-
sifiers are the same for a contagion, this contagion is added
to the labeled set and removed from the unlabeled set. Then
a new set for training is obtained, and another iteration starts.
In each iteration, there are some contagions moved from the
unlabeled set to the labeled set. After enough contagions be-
ing labeled, we can derive the following two interactions.
Contagion Category-Category Interaction. If the set of
contagions {my,ma, ..., my} belongs to category c¢;, the la-
tent topic distribution ¢; o(a € 1, ..|t|) of category ¢; can be
k
obtained through 2-7:; %50 We define Acategory € RICIXI€l
to denote Contagion Category-Category Interaction, where
Acategory (i) ¢k, ) is the impact of category ¢ on ¢;, that is

Z Z i aAfopv(' tay tb)@k b

User Role - Contagion Category Interaction.
define ngéigm.y € RI"I*I¢l to denote User Role - Contagion
Category Interaction, where Qggggmy(r% ,¢;) is the interac-
tion from user role r; to category c;, that is

ZQ

(10)

A(‘afegory Ci, Ck

Similarly,

role
topic

Qrole

category Tza Ck ru tb Pk,b (1)

4 Evaluation

In this section, we conduct experiments based on a public
Weibo dataset to evaluate IAD framework, and then discuss
various qualitative insights.

4.1 Experimental Settings

Dataset The Weibo dataset [Zhang er al., 2013] provides a
list of Weibo users who have forwarded contagions, as well
as the forwarding timestamp. Users’ friendship links are also
recorded. Because of the crawling strategy, the distribution
of retweet counts in different months is highly imbalanced.
Thus, we select the diffusion data from July 2012 to De-
cember 2012, in which the retweet count per month is large
enough and the distribution is more balanced. Consequently,
we get 19,388,727 retweets on 140,400 popular microblogs.
We delete the inactive users without any retweets in this pe-
riod and obtain 1,077,021 distinct users for the experiment.
Then we do statistical analysis to extract interacting sce-
narios from the dataset. As illustrated in Sec. 2.1, it is as-
sumed that the recent K exposures can be kept in the mind of
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Table 2: Performance of IAD compared to baselines (%)

Model Name [ Precision | Recall | Fl-score | Accuracy

IP 76.98 59.24 66.96 70.76
Ul 71.72 64.17 70.30 72.89
K=1
IMM 7147 62.45 69.16 72.84
IAD (|t| =20) 77.95 64.25 70.44 73.04
IAD (|t| = 30) 77.85 64.32 70.45 73.01
IAD (|t| =50) 78.14 65.45 71.23 73.69
K=2
IMM 71.70 62.95 69.55 72.44
IAD (|t| =20) 77.88 64.34 70.47 73.04
IAD (|t| = 30) 77.97 64.16 70.39 73.02
IAD (|t| =50) 77.40 66.16 71.34 73.42

a user, and here we set K = 1 and 2. For each user, when she
examines a newly posted contagion, an interacting scenario
occurs. If the examined contagion is adopted, the interact-
ing scenario is a positive instance, otherwise it is a negative
instance. We observe that the positive and negative instances
are highly unbalanced in the dataset, so we sample a balanced
dataset with equal number of positive and negative instances.
In total, 38,777,454 interacting scenarios are got. We ran-
domly use 90% of the instances as the training set, and the
remaining 10% as the testing set. We set the number of latent
topics set || = 20, 30 and 50 respectively.

Baselines. We compared our proposal with three baselines:

o IP Model. Infection Probability Model assigns the in-
fection probability of a contagion to be the prior infec-
tion probability, which doesn’t consider the interactions
among users and contagions.

IMM Model. IMM Model [Myers and Leskovec,
2012] is a state-of-art work incorporating the interac-
tions among contagions into its model. To make fair
comparison, we use the same set of instances and the
same setting of parameters as our work.

UI Model. User Interaction Model is one component
of IAD framework, which only considers the user-user
interactions, specifically user role-role interactions.

In our proposal and the baselines, we set a predicting result
to O if the predicting infection probability is less than 0.5,
otherwise we set the predicting result to 1. Our model and
the baselines are evaluated in terms of Precision, Recall, F1-
score, as well as Accuracy. All experiments are performed on
a dual-core Xeon E5-2690 v2 processor.

4.2 Results.

Table 2 shows the performance of our proposal and the base-
lines. It can also be observed our model constantly out-
performs IP and IMM, which means only considering inter-
actions among contagions in IMM is not sufficient. When
K =1, in terms of accuracy, the proposed IAD scheme out-
performs IP by 4.14% and outperforms IMM by 1.17%. In
terms of Fl-score, the proposed IAD scheme outperforms IP
and IMM by 6.38% and 2.99% respectively. When K = 2,
our model performs better than IP and IMM by 3.89% and
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Figure 3: Contagion and User Interactions. (a) User Role-Role Interaction A, (7;,7;), with r; as the ordinate and r; as
the abscissa, denotes the willingness of users in role r; adopting contagions forwarded by users in role 7;; (b) User Role -
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(r4, ck), with 7; as the ordinate and ¢y, as the abscissa, denotes the willingness of

users in role r; adopting contagions of category ci; (c) Contagion Category Category Interactions Acategory(cl, k), with ¢; as
the ordinate and ¢y, as the abscissa, denotes the influence of contagion in category ¢ on contagion in category c;.

1.35% respectively in terms of accuracy, and achieves an im-
provement of 6.54% and 2.57% over IP and IMM in terms
of Fl-score. It can also be seen that our model constantly
outperforms UI, which demonstrate that only consider inter-
actions among users is also not sufficient. The results validate
the effectiveness of our proposal, and demonstrate the interac-
tions involved in the proposed model do play important roles
in information diffusion process.

Taking the model complexity into consideration, IAD is
much more efficient than IMM. Please note that the num-
ber of parameters to learn in IAD is 469, 999 and 2,659
respectively, whereas the number of parameters in IMM is
2,808,400 and 2,808,800 respectively. The difference in the
time cost of the learning process between the two models is
one order of magnitude, specifically about 6 hours in IAD vs.
76 hours in IMM under identical configuration (X = 2 and
[t] = 20).

4.3 Analysis of Interactions.

Throughout this section, we provide qualitative insights into
the extent to which the interactions influence the adoption
of contagions. After fitting the proposed model, A, .,
Q{g;jc and Aqopic are obtained. Then the results are further
processed by the classification process, and Acgtegory and
Qrole are derived. Here we show the results of A,

category
Acategory and QL2 . when [t| = 50 and K = 2.

Figure 3 shows the contagion and user interactions. In Fig-
ure 3 (a), it can be seen that authority users are more likely
to adopt contagions forwarded by other authority users, rather
than those from hub users and ordinary users, which indicates
there exists a status gradient on social roles seniority. Hub
users would like to adopt contagions from authority users
and ordinary users. Figure 3 (b) shows that authority users
are more likely to adopt contagions about economy, history,
news, and especially politics. Ordinary users prefer conta-
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gions on constellation, life, movie, music, sports and tech-
nology. Many hub users and ordinary users tend to adopt
contagions about advertisement, and one possible reason is
that they may be spam users. Figure 3 (c) reveals how dif-
ferent categories of contagions compete or cooperate to get
propagated. It can be observed that on average, relationships
between different categories are mainly competition, which
validates the conclusion that attention is limited for individ-
ual users to adopt contagions [Weng ef al., 2012]. Tt also
shows that contagions belonging to food category are more
likely to get adopted when simultaneously propagating with
contagions belonging to other categories, i.e., the propagation
of contagions on food are more likely to suppress the prop-
agation of other contagions. In addition, contagions about
constellation, culture, health and life also attract a lot of atten-
tions. On the contrary, contagions belonging to advertisement
are least likely to suppress other contagions’ propagation, re-
vealing that users are not interested in them.

5 Conclusion

A new information diffusion framework called IAD is pro-
posed to analyze the users’ behaviors on adopting a con-
tagion, in consideration of the interactions involving users
and contagions as a whole. With this framework, we can
quantitatively study how these interactions would influence
the propagation process. To efficiently learn the interactions,
we need to classify users and categorize contagions. There-
fore, we use a generative process to infer user roles and a
co-training method used to classify the contagions into ex-
plicit categories. Experimental results on large-scale Weibo
dataset demonstrate that IAD can outperform the state-of-art
baselines in terms of F1-score, accuracy and runtime in learn-
ing. Moreover, interesting findings are observed from the in-
teractions, which are useful to various domains such as viral
marketing.
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