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Abstract
DeepWalk is a typical representation learning
method that learns low-dimensional representa-
tions for vertices in social networks. Similar to
other network representation learning (NRL) mod-
els, it encodes the network structure into vertex
representations and is learnt in unsupervised form.
However, the learnt representations usually lack the
ability of discrimination when applied to machine
learning tasks, such as vertex classification. In this
paper, we overcome this challenge by proposing a
novel semi-supervised model, max-margin Deep-
Walk (MMDW). MMDW is a unified NRL frame-
work that jointly optimizes the max-margin clas-
sifier and the aimed social representation learning
model. Influenced by the max-margin classifier,
the learnt representations not only contain the net-
work structure, but also have the characteristic of
discrimination. The visualizations of learnt rep-
resentations indicate that our model is more dis-
criminative than unsupervised ones, and the ex-
perimental results on vertex classification demon-
strate that our method achieves a significant im-
provement than other state-of-the-art methods. The
source code can be obtained from https://github.
com/thunlp/MMDW.

1 1 Introduction
Network representation plays a critical role in the area of net-
work analysis. An effective network representation is helpful
to many network analysis tasks, such as vertex classification,
clustering and link prediction. As a basic component in net-
work, every vertex is typically represented as a discrete sym-
bol, which is called one-hot representation. Due to its sim-
plicity, such representation method has been widely adopted
for network analysis. However, one-hot representation usu-
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ally suffers from the sparsity issue and does not fully consider
relatedness between vertices.
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Figure 1: An illustration of Max-Margin DeepWalk.

Motivated by the ideology of distributed representation
learning in recent years, network representation learning
(NRL) is proposed to address these issues. NRL aims to learn
a real-valued vector for each vertex to reflect its network in-
formation. The learnt vectors are capable of various network
analysis tasks, such as vertex classification and link predic-
tion. The relatedness between vertices can also be achieved
on the basis of real-valued vectors.

There have been a number of NRL models proposed in
recent years, such as DeepWalk [Perozzi et al., 2014] and
LINE [Tang et al., 2015]. [Perozzi et al., 2014] proposed
an online NRL model, DeepWalk, that learns vertex repre-
sentations based on local network information. It conducts
random walks to obtain vertex sequences. With a mass of
sequences, DeepWalk employs Skip-Gram [Mikolov et al.,
2013a], an efficient word representation learning model, to
learn vertex representations by treating vertex sequences as
word sentences. This straightforward analogy between words
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and vertices has been verified on multi-label network classi-
fication tasks.

Most of the previous NRL models are learnt in unsuper-
vised schemas. Though the learnt representations can be ap-
plied to various tasks, they can be weak in the particular pre-
diction task. It’s worth pointing out that there are many addi-
tional labeling information for social network vertices in real
world. For example, pages in Wikipedia1 can have their cate-
gorical labels, like “arts”, “history”, “science”; papers in Cora
and Citeseer are also stored with field labels for easy retrieval.
Such labeling information usually contains a useful summa-
rization or features of the vertices, but is not directly utilized
in the original network representation learning models.

It is nontrivial to explore how to integrate labeling infor-
mation into network representation learning and learn dis-
criminative representations for network vertices. Inspired by
max-margin principle, we propose max-margin DeepWalk
(MMDW), a discriminative NRL model, to seek predictive
representations for vertices in social networks.

As illustrated in Fig. 1, MMDW firstly learns DeepWalk
as matrix factorization. Afterwards, it trains a max-margin
based classifier (e.g., support vector machine [Hearst et al.,
1998]) and enlarges the distance between support vectors and
classification boundaries. In other words, MMDW jointly op-
timizes the max-margin based classifier (e.g., support vector
machine) and NRL model. Influenced by max-margin clas-
sifier, the representations of vertices are therefore more dis-
criminative and more suitable for prediction tasks, which we
will demonstrate in the following sections.

In conclusion, we make several noteworthy contributions
as follows:

(1) We propose a discriminative NRL model, max-margin
DeepWalk, to incorporate labeling information into vertex
representations. As a semi-supervised model, it applies max-
margin principle to network representation learning for the
first time.

(2) We put forward the idea of Biased Gradient in NRL.
The biased gradient of a vector indicates the direction where
the vector should move towards. The movement is able to
enlarge the margin between two categories, and is conducted
in the gradient form in gradient descent algorithms.

(3) We conduct vertex classification experiments on several
real-world datasets to verify the effectiveness of MMDW. The
experimental results demonstrate that MMDW significantly
outperforms traditional NRL models. It achieves 5% to 10%
improvements compared to typical NRL methods. Besides,
we also compare the visualizations using t-SNE to illustrate
the discrimination of MMDW.

2 2 Related Work
Network representation learning (NRL) aims to encode net-
work structure into a low-dimensional space. The learnt rep-
resentations can be adopted to many network analysis tasks,
such as vertex classification, clustering and link prediction.

Many NRL models have been proposed to learn efficient
vertex representations. Inspired by Skip-Gram [Mikolov et

al., 2013a], a widely adopted word representation learning
1https://en.wikipedia.org

model in NLP, [Perozzi et al., 2014] proposed DeepWalk by
corresponding vertices to words. DeepWalk performs ran-
dom walks to generate vertex sequences and trains Skip-
Gram model to obtain vertex representations. Derived from
Skip-Gram, DeepWalk has been extensively verified on var-
ious network analysis tasks. Another typical NRL model is
LINE [Tang et al., 2015], which is proposed to handle large-
scale networks with millions of vertices and billions of edges.

There have been some max-margin based learning methods
in other fields. [Roller, 2004] firstly introduced max-margin
principle into markov networks. [Zhu et al., 2012] proposed
maximum entropy discrimination LDA (MedLDA) to learn
a discriminative topic model (e.g., latent Dirichlet allocation
[Blei et al., 2003]). Besides, max-margin also benefits many
NLP tasks, such as semantic parsing [Taskar et al., 2004] and
word segmentation [Pei et al., 2014].

However, to the best of our knowledge, there is little work
learning discriminative network representations with labeling
information considered. Most of the mentioned NRL meth-
ods are learnt in unsupervised fashions. To fill this gap, we
propose max-margin DeepWalk (MMDW) to learn discrimi-
native representations for vertices in social networks.

3 3 The Framework
In this section, we present a novel semi-supervised social
representation model, max-margin DeepWalk (MMDW), that
utilizes the labeling information when learning vertex repre-
sentations. MMDW is a unified learning framework based
on matrix factorization. In this model, we optimize the max-
margin based classifier (SVM) as well as the aimed matrix
factorization model. In contrast, the conventional approaches
usually learn social representations without leveraging the la-
beling information and apply the learnt representations into
classification tasks. The vertices’ labels are not able to influ-
ence the way representations are learnt. Therefore, the learnt
representations are often found not so discriminative.

3.1 3.1 Formalizations
Let us begin with formally defining the problem of social
representation learning. Suppose there is a social network
G = (V,E), where V is the set of all vertices, and E are
connections between these vertices, i.e., E ⇢ V ⇥ V , so-
cial representation learning aims to build a low-dimensional
representation xv 2 Rk for each vertex v 2 V , where k is
the the dimension of representation space and expected much
smaller than |V | . The learnt representations encode seman-
tic roles of vertices in the social network, which can be used
to measure relatedness between vertices, and can also play as
features for classification tasks. With the corresponding label
l 2 {1, · · · ,m}, classifiers like logistic regression and SVM
can be trained.

In the following parts, we introduce a typical social rep-
resentation model, DeepWalk, and its matrix factorization
form. Afterwards, we give detailed introduction to max-
margin DeepWalk.

3.2 3.2 DeepWalk as Matrix Factorization
DeepWalk [Perozzi et al., 2014] performs random walks over
a network to build vertex sequences. By regarding vertex se-
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quences as word sequences, it adopts Skip-Gram [Mikolov
et al., 2013b], a widely-used word representation algorithm,
to learn network representations. The performance of Deep-
Walk has been extensively verified on multiple tasks and
datasets.

Motivated by Skip-Gram, DeepWalk aims to maximize the
co-occurrence probability between a target vertex and its con-
text vertices within a random-walk window. Formally, sup-
pose we have a random walk sequence s = {v1, . . . , vM}
with each vi 2 V . We set a window size K, and for
each target vertex vi, we define its context vertices ci =

(vi�K , . . . , vi+K) \ vi. Thus, the objective of DeepWalk can
be formalized as follows,

L(S) =
X

s2S

[

1

M

M�KX

i=K

X

vj2ci

log Pr(vj |vi)]. (1)

Here, S is the set of random walk sequences generated from
random walks. The probability Pr(vj |vi) is computed using
softmax function,

Pr(vj |vi) =
exp(xj · xi)P
t2V exp(xt · xi)

, (2)

where xj and xi are the representation vectors of the vertices
vj and vi, and (·) is the inner product between vectors.

[Yang et al., 2015] proved that DeepWalk actually factor-
izes a matrix M . Each entry in M is formalized as

Mij = log

[ei(A+A2
+ · · ·+At

)]j

t
. (3)

Here, A is the transition matrix, which can be seen as the row
normalized adjacency matrix. ei denotes an indicator vector,
in which the i-th entry is 1 and the others are all 0. The entry
vij is logarithm of the average probability that vertex i walks
to vertex j in t steps.

From Eq. 3, we find that computing an precise M is time-
consuming. Thus, we employ the settings in [Yang et al.,
2015], by factorizing the matrix as M = (A + A2

)/2. In
practice, we factorize M instead of logM , since logM has
much more non-zero entries than M and the complexity of
matrix factorization is proportional to the number of non-zero
entries [Yu et al., 2014].

Now, we formalize the DeepWalk using matrix factoriza-
tion M = XTY . We aim to find matrices X 2 Rk⇥|V | and
Y 2 Rk⇥|V | to minimize

min

X,Y
LDW = min

X,Y
||M � (XTY )||22 +

�
2

(||X||22 + ||Y ||22), (4)

where the factor � controls the weight of regularization part.

3.3 3.3 Max-Margin DeepWalk
Max-margin methods, such as support vector machines
(SVMs) [Hearst et al., 1998], are usually applied to various
discriminative problems including document categorization
and handwritten character recognition.

In this work, we take the learnt representations X as fea-
tures and train an SVM for vertex classification. Suppose the
training set is T = {(x1, l1), · · · , (xT , lT )}, the multi-class

SVM aims to find optimal linear functions by solving the fol-
lowing constrained optimization problem:

min

W,⇠
LSV M = min

W,⇠

1

2

kWk22 + C
TX

i=1

⇠i

s.t. w

T
lixi �w

T
j xi � eji � ⇠i, 8i, j

(5)

where

eji =

⇢
1, if li 6= j,

0, if li = j.
(6)

Here, W = [w1, · · · ,wm]

T is the weight matrix of SVM,
and ⇠ = [⇠1, · · · , ⇠T ] is the slack variable that tolerates errors
in the training set.

As mentioned in previous parts, such pipeline method can
not influence the way vertex representations are learnt. With
learnt representations, SVM only helps to find optimal classi-
fying boundaries. As a result, the representations themselves
are not discriminative.

Inspired by max-margin learning on topic model [Zhu et

al., 2012], we present max-margin DeepWalk (MMDW) to
learn discriminative representations of vertices in social net-
works. MMDW aims to optimize the max-margin classifier
of SVM as well as matrix factorization based DeepWalk. The
objective is defined as follows:

min

X,Y,W,⇠
L = min

X,Y,W,⇠
LDW +

1

2

kWk22 + C
TX

i=1

⇠i

s.t. w

T
lixi �w

T
j xi � eji � ⇠i, 8i, j

(7)

4 4 Optimization of MMDW
The parameters in the objective 7 include vertex representa-
tion matrix X , context representation matrix Y , weight ma-
trix W and slack variable vector ⇠. We employ an effective
optimization strategy by optimizing the two parts separately.
With the introduction of Biased Gradient, the matrix factor-
ization is significantly affected by trained max-margin classi-
fier.

We perform our optimization algorithm as follows.

4.1 4.1 Optimization over W and ⇠:
When X and Y are fixed, the primal problem 7 becomes the
same as a standard multi-class SVM problem proposed by
Crammer and Singer (2000), which has the following dual
form:

min

Z

1

2

kWk22 +
TX

i=1

mX

j=1

ejiz
j
i (8)

s.t.
mX

j=1

zji = 0, 8i

zji  Cj
li
, 8i, j

where

wj =

lX

i=1

zji xi, 8j
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and

Cm
yi

=

⇢
0, if yi 6= m,

C, if yi = m.

Here, the lagrangian multiplier ↵j
i is replaced by Cj

li
� zji for

short.
To solve this dual problem, we utilize a coordinate descent

method to decompose Z into blocks [z1, · · · , zT ], where

zi = [z1i , · · · , zmi ]

T , i = 1, · · · , T

An efficient sequential dual method [Keerthi et al., 2008] is
applied to solve the sub-problem formed by zi.

4.2 Optimization over X and Y :
When W and ⇠ are fixed, the primal problem 7 turns into min-
imizing the square loss of matrix factorization with additional
boundary constraints as follows:

min

X,Y
LDW (X,Y ;M,�) (9)

s.t. w

T
lixi �w

T
j xi � eji � ⇠i, 8i, j

Without the consideration of constraints, we have

@L
@X

= �X � Y (M �XTY ),

@L
@Y

= �Y �X(M �XTY ).
(10)

8i 2 T , j 2 1, · · · ,m, if li 6= j and ↵j
i 6= 0, according to

KKT conditions, we have

w

T
lixi �w

T
j xi = eji � ⇠i. (11)

When the decision boundary is fixed, we want to bias such
support vector xi towards the direction that favors a more
accurate prediction. Thus the biased vector can enlarge the
discrimination.

Here we explain how the bias is calculated. Given a vertex
i 2 T , for the j-th constraint, we add a component ↵j

i (wli �
wj)

T to xi, then the constraint becomes

(wli �wj)
T
(xi + ↵j

i (wli �wj)) (12)

= (wli �wj)
T
xi + ↵j

i ||(wli �wj ||22
> eji � ⇠i.

Note that, we utilize the lagrangian multiplier ↵j
i to judge

whether the vector is on the decision boundary. Only xi with
↵j
i 6= 0 is added a bias based on the j-th constraint.
For a vertex i 2 T , the gradient becomes @L

@xi
+

⌘
Pm

j=1 ↵
j
i (wli � wj)

T , which is named Biased Gradient.
Here, ⌘ balances the primal gradient and the bias.

Before X is updated, W and ⇠ satisfy the KKT conditions
of SVM, and this solution is initially optimal. But after up-
dating X , the KKT conditions do not hold. This will lead to
a slight increase of the objective, but this increase is usually
within an acceptable range according to our experiments.

5 5 Experiments
In this section, we conduct vertex classification in social net-
works to evaluate our proposed model. Besides, we also visu-
alize the learnt representations to verify that MMDW is able
to learn discriminative representations.

5.1 5.1 Datasets and Experiment Settings
We employ the following three typical datasets for vertex
classification.

Cora. Cora2 is a research paper set constructed by [McCal-
lum et al., 2000]. It contains 2, 708 machine learning papers
which are categorized into 7 classes. The citation relation-
ships between them form a typical social network.

Citeseer. Citeseer is another research paper set constructed
by [McCallum et al., 2000]. It contains 3, 312 publications
and 4, 732 connections between them. These papers are from
6 classes.

Wiki. Wiki [Sen et al., 2008] contains 2, 405 web pages
from 19 categories and 17, 981 links between them. It’s much
denser than Cora and Citeseer.

For evaluation, we randomly sample a portion of labeled
vertices and take their representations as features for training,
and the rest are used for testing. We increase the training ratio
from 10% to 90%, and employ multi-class SVM [Crammer
and Singer, 2002] to build classifiers.

5.2 5.2 Baseline Methods
DeepWalk. DeepWalk [Perozzi et al., 2014] is a typical NRL
model that learns vertex representations based on network
structures. We set parameters in DeepWalk as follows, win-
dow size K = 5, walks per vertex � = 80 and representation
dimension k = 200. For a vertex v, we take the representa-
tion v as network feature vector.
DeepWalk as Matrix Factorization. In previous part, we
have introduced that DeepWalk can be trained in a matrix
factorization form. Thus we factorize the matrix M =

(A + A2
)/2 and take the factorized matrix X as represen-

tations of vertices.
2nd-LINE. LINE [Tang et al., 2015] is another NRL model
that learns network representations in large-scale networks.
We employ the second-order proximity LINE (2nd-LINE) to
learn representations for directed networks. Same as Deep-
Walk, we also set the representation length as 200.

5.3 5.3 Experimental Results and Analysis
Table 1, Table 2 and Table 3 show classification accuracies
with different training ratios on different datasets. In these ta-
bles, we denote DeepWalk as DW , matrix factorization form
of DeepWalk as MFDW and 2nd-LINE as LINE for short.
We also show the performance of MMDW with ⌘ ranging
from 10

�4 to 10

�2. From these tables, we have the following
observations:

(1) The proposed max-margin DeepWalk consistently and
significantly outperforms all the baselines on all different
datasets and different training ratios. Note that, MMDW
achieves nearly 10% improvement on Citerseer and 5% im-
provement on Wiki when the training ratio is around 50%.

2https://people.cs.umass.edu/ mccallum/data.html
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Table 1: Accuracy (%) of vertex classification on Cora.

%Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%
DW 68.51 73.73 76.87 78.64 81.35 82.47 84.31 85.58 85.61

MFDW 71.43 76.91 78.20 80.28 81.35 82.47 84.44 83.33 87.09
LINE 65.13 70.17 72.2 72.92 73.45 75.67 75.25 76.78 79.34

MMDW(⌘ = 10

�2) 74.94 80.83 82.83 83.68 84.71 85.51 87.01 87.27 88.19
MMDW(⌘ = 10

�3) 74.20 79.92 81.13 82.29 83.83 84.62 86.03 85.96 87.82
MMDW(⌘ = 10

�4) 73.66 79.15 80.12 81.31 82.52 83.90 85.54 85.95 87.82

Table 2: Accuracy (%) of vertex classification on Citeseer.

%Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%
DW 49.09 55.96 60.65 63.97 65.42 67.29 66.80 66.82 63.91

MFDW 50.54 54.47 57.02 57.19 58.60 59.18 59.17 59.03 55.35
LINE 39.82 46.83 49.02 50.65 53.77 54.2 53.87 54.67 53.82

MMDW(⌘ = 10

�2) 55.60 60.97 63.18 65.08 66.93 69.52 70.47 70.87 70.95
MMDW(⌘ = 10

�3) 55.56 61.54 63.36 65.18 66.45 69.37 68.84 70.25 69.73
MMDW(⌘ = 10

�4) 54.52 58.49 59.25 60.70 61.62 61.78 63.24 61.84 60.25

DeepWalk can not represent vertices in Citeseer and Wiki
well, while MMDW is capable of managing such situation.
These improvements demonstrate that MMDW is more ro-
bust and especially performs better when the quality of net-
work representations is poor.

(2) What calls for special attention is that MMDW outper-
forms the original DeepWalk with half less training data on
Citeseer and Wiki. It demonstrates that MMDW is effective
when applied to predictive tasks.

(3) The proposed MMDW obtains considerable improve-
ments than primal social representation learning methods. In
contrast, the performance of original DeepWalk and Deep-
Walk as matrix factorization is unstable on various datasets.
This indicates that the introduction of supervised information
is important and MMDW is flexible to diversified networks.

Observations above demonstrate that MMDW is able to
incorporate labeling information for generating high quality
representations. MMDW is not application-specific. The
learnt representations of vertices can be utilized in many
tasks, including vertex similarity, link prediction, classifica-
tion and so on. The idea of biased gradient can be easily
extended to other matrix factorization methods.

5.4 5.4 Convergence and Parameter Sensitivity
MMDW optimizes the max-margin classifier and matrix fac-
torization alternately. In the top part of Fig. 2, we show
the convergence trend of accuracies when model is trained
with different training ratios. We observe that our proposed
MMDW always achieves the best performance after 2 or 3
iterations. The performance of MMDW rises rapidly at the
beginning, then becomes stable. The fast convergence rate
indicates the efficiency of training MMDW.

As the primal gradient and the bias are calculated through
different ways, they are initially under different orders of
magnitude. Thus, we introduce a hyper-parameter ⌘ to bal-
ance the biased gradient and original gradient. We fix train-
ing ratio to 50% and test the performance of MMDW with
different ⌘.

From the bottom part of Fig. 2, we observe that MMDW

has a stable performance when ⌘ ranges from 10

�5 to 10

�2

and gains the best performance when ⌘ = 10

�2. A fixed
parameter ⌘ is suitable for different datasets.

5.5 5.5 Visualization

In this paper, we propose max-margin DeepWalk to learn
discriminative representations for social networks. To verify
whether the learnt representations is discriminative, we show
the 2D representations of vertices using t-SNE visualization
tool in Fig. 3. In this figure, each dot represents a vertex
and each color represents a category. We randomly select 4
categories to show the trend more clearly.

From Fig. 3, we observe that MMDW learns a better clus-
tering and separation of the vertices. On the contrary, the
representations learnt by DeepWalk tend to mix together. A
well-separated representation is more discriminative and eas-
ier to categorize. These significant improvements prove the
effectiveness of our discriminative learning model.

5.6 5.6 Case Study

To demonstrate the effectiveness of MMDW, we provide an
instance in Cora dataset for example. The title of this instance
is “Fast Online Q(�)”, and it belongs to the category of “Re-
inforcement Learning”. As shown in Table 4, we list Top-
5 nearest neighbors with the representations learnt by Deep-
Walk and MMDW. Here, we employ the cosine similarity to
measure the distance between vertices.

From Table 4, we observe that only 2 neighbors found by
DeepWalk belong to the same category as the instance does,
while MMDW finds 5. From the title of the instance, we can
get that it is relevant to “online learning” and “Q problem”.
Most of the neighbors found by DeepWalk have no related-
ness with these topics, while, most of the neighbors found by
MMDW are closely related to them. It indicates that MMDW
improves the quality of representations with the consideration
of labeling information.
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Table 3: Accuracy (%) of vertex classification on Wiki.

%Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%
DW 52.03 54.62 59.80 60.29 61.26 65.41 65.84 66.53 68.16

MFDW 56.40 60.28 61.90 63.39 62.59 62.87 64.45 62.71 61.63
LINE 52.17 53.62 57.81 57.26 58.94 62.46 62.24 66.74 67.35

MMDW(⌘ = 10

�2) 57.76 62.34 65.76 67.31 67.33 68.97 70.12 72.82 74.29
MMDW(⌘ = 10

�3) 54.31 58.69 61.24 62.63 63.18 63.58 65.28 64.83 64.08
MMDW(⌘ = 10

�4) 53.98 57.48 60.10 61.94 62.18 62.36 63.21 62.29 63.67
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Figure 2: Convergence and parameter sensitivity on different datasets
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Figure 3: t-SNE 2D representations on Wiki (left: DeepWalk
right: MMDW).

6 6 Conclusion and Future Work
In this paper, we propose max-margin DeepWalk (MMDW),
a discriminative representation learning model for social net-
works. With the introduction of labeling information and
max-margin principle, MMDW learns vertex representations
which reflect both their network structure and labeling infor-
mation. Experimental results on real-world datasets show that
MMDW is effective for predictive tasks. Moreover, visualiza-

tions of the learnt representations confirm the discrimination
of MMDW.

We will explore more in future work as follows:
• We have proved the effectiveness of max-margin Deep-

Walk. In the future, we aim to explore how to conduct max-
margin methods on other social representation learning mod-
els, such as LINE.

• We learn a discriminative DeepWalk by transforming the
orignal DeepWalk into matrix factorization form. In this way,
it’s easier to balance the bias vector and the gradient. Nev-
ertheless, it’s an offline method. In the future, we strive to
explore the online discriminative learning methods.
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Table 4: Top-5 nearest neighbors by DeepWalk and MMDW

DeepWalk
Title Label

Truncating temporal differences On the efficient
implementation of TD for reinforcement learn-
ing

Reinforcement Learning

Living in a partially structured environment
How to bypass the limitation of classical rein-
forcement techniques

Neural Networks

Why experimentation can be better than perfect
guidance

Theory

Averaged reward reinforcement learning applied
to fuzzy rule tuning

Reinforcement Learning

A neural network pole balancer that learns and
operates on a real robot in real time

Neural Networks

MMDW
Title Label

Applying online search to reinforcement learn-
ing

Reinforcement Learning

The efficient learning of multiple task sequences Reinforcement Learning
A modular Q learning architecture for manipu-
lator task decomposition

Reinforcement Learning

Truncating temporal differences On the efficient
implementation of TD for reinforcement learn-
ing

Reinforcement Learning

Exploration and model building in mobile robot
domains

Reinforcement Learning
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