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Abstract

Many Web applications require efficient query-
ing of large Knowledge Graphs (KGs). We pro-
pose KOGNAC, a dictionary-encoding algorithm de-
signed to improve SPARQL querying with a judi-
cious combination of statistical and semantic tech-
niques. In KOGNAC, frequent terms are detected
with a frequency approximation algorithm and en-
coded to maximise compression. Infrequent terms
are semantically grouped into ontological classes
and encoded to increase data locality. We evaluated
KOGNAC in combination with state-of-the-art RDF
engines, and observed that it significantly improves
SPARQL querying on KGs with up to 1B edges.

1 Introduction
The advent of natural-language-based queries and entity-
centric search has led to the enormous growth and applicabil-
ity of Knowledge Graphs (KG) to model known relationships
between entity-pairs. Large KGs have not only been built in
academic projects like DBpedia [Bizer et al., 2009],but are
also used by leading organizations like Google, Microsoft,
etc., to support user-centric Internet services and mission-
critical data analytics.

KGs are generally represented using the RDF data
model [Klyne and Carroll, 2006], in which the KG cor-
responds to a finite set of subject-predicate-object (SPO)
triples whose terms can be URIs, blank nodes, or literal val-
ues [Klyne and Carroll, 2006]. Since many Web applications
rely on RDF-style KGs during their processing, efficient and
scalable querying on huge KGs with billions of RDF triples
have necessitated intelligent KG representation.

In concept, KGs can be managed using a variety of
platforms, like RDF engines [Yuan et al., 2013; Gura-
jada et al., 2014; Neumann and Weikum, 2008], relational
stores [Sidirourgos et al., 2008], or graph database sys-
tems [Robinson et al., 2015]. In this context, the storage of
RDF terms in raw format is both space and process inefficient
since these are typically long strings. As such, all existing ap-
proaches encode the RDF terms typically by mapping them to
fix-length integer IDs, with the original strings retrieved only
during execution.

Objectives. Modern KGs are typically queried using the
W3C SPARQL language [Harris et al., 2013]. Currently, the
impact of different ID mappings on advanced SPARQL oper-
ations (like query joins, index compression, etc.) is less well
studied. Ideally, the encoding of RDF terms into numerical
IDs should: i) Consider the skew in the term frequencies in
the KG, and assign smaller IDs to frequent terms in order to
facilitate efficient down-stream compression (by the storage
engine). ii) For more advanced query access patterns, partic-
ularly for join operations, data locality should be increased
as much as possible by the encoding. That is, terms that are
often accessed together should have close ID assignment in
order to further reduce memory and index access [Harbi et
al., 2015]. iii) It is often crucial to quickly load billions of
triples, for example, when a KG is required as background
knowledge for new analytic applications, or for append-only
bulk update operations. Thus, the encoding process should
support parallelism as much as possible for better scale-up.
Problem Statement. Current RDF engines generally employ
four types of encodings: order or hash-based, syntactic, or
based on coordinates. Order-based approaches assign con-
secutive IDs for new incoming triples in the order of appear-
ance. Hash-based procedures use term hashes as IDs. Syntac-
tic encoding assigns IDs to terms based on their lexicographic
order. Coordinate-based techniques stored the terms in spe-
cial data structures and use memory coordinates as IDs.

Interestingly, we observe that none of the existing ap-
proaches performs well along all three dimensions of our
desiderata. Assigning consecutive identifiers leads to good
compression, but does not improve locality for joins. Hash-
based encoding allows parallel loading, but has poor locality
and is sub-optimal in exploiting skew. The last two disad-
vantages are also shared by methods which use memory co-
ordinates as IDs. Syntactic encoding provides a compromise
along the three objectives, but is not robust enough to handle
the cases where term similarity cannot be extracted directly
from the syntax. The problem addressed in this paper is to
encode RDF terms in large KGs such that all three desiderata,
namely better compression, query performance, and loading
time, are well satisfied.
Contribution. We present KOGNAC (KnOwledge Graph
eNoding And Compression), an efficient algorithm for KG
encoding based on a judicious combination of statistical
and semantic techniques. Our encoding procedure detects
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skewness in term frequency distribution with a approxima-
tion streaming technique, and subsequently encodes frequent
terms differently in order to facilitate high down-stream com-
pression. To improve data locality for join access patterns,
KOGNAC computes semantic relatedness between terms by
hierarchically grouping them into ontological classes, and
mapping terms in the same group to consecutive IDs.
KOGNAC has the advantage that it is independent from

RDF application details, since its output is a plain mapping
from strings to IDs. To evaluate its efficiency, we integrated
it with four RDF systems – RDF-3X [Neumann and Weikum,
2008], TripleBit [Yuan et al., 2013], MonetDB [Sidirour-
gos et al., 2008], and TriAD [Gurajada et al., 2014] – and
observed significant improvements in query performance on
metrics like runtime, RAM usage, and disk I/O.

A longer version of this paper, with more details and ex-
periments, is available online at [Urbani et al., 2016].

2 Encoding KGs: State Of The Art
Typically, applications query KGs using SPARQL [Harris et
al., 2013] – a W3C declarative language. The core execution
of SPARQL queries corresponds to finding all graph isomor-
phisms between the KG and the graphs defined in the queries.
RDF Encoding. SPARQL engines, e.g., TripleBit [Yuan et
al., 2013], TriAD [Gurajada et al., 2014], Virtuoso [Erling
and Mikhailov, 2009], etc., use dictionary encoding to assign
numeric IDs to terms based on their appearance ordering,
i.e., simply using consecutive or pseudo-random numbers for
incoming triples. The 4Store engine [Harris et al., 2009] uses
a string-hashing based ID assignment that disregards any pos-
sible co-relation among terms. Both approaches do not con-
sider term frequencies leading to sub-optimal encoding with
frequent terms possibly assigned to larger IDs. Further, so-
phisticated partitioning methods in TriAD renders such en-
coding prohibitively compute expensive [Harbi et al., 2015].

RDF-3X [Neumann and Weikum, 2008], one of the fastest
single-machine RDF storage engines, pre-sorts the SPO
triples lexicographically and then assigns consecutive inte-
ger IDs. A similar approach is also followed by [Urbani
et al., 2013], while [Cheng et al., 2014] proposes a combi-
nation of appearance order with hashing to improve parti-
tioning. In contrast to our work, these approaches strongly
leverage the string similarity heuristics to cluster the ele-
ments. These heuristics break when the semantic similarity
does not follow the lexicographic ordering. Such dissim-
ilarity occurs frequently via subdomain usage in URIs, or
may even be imposed explicitly by political decisions (e.g.,
Wikidata [Vrandečić and Krötzsch, 2014] uses meaningless
strings to avoid an English bias).

Some relational engines (e.g., MonetDB [Sidirourgos et
al., 2008]) can optionally use dedicated data structures for
the storage of strings (mainly using variants of Tries). In this
context, a particular variant of Trie with term prefix overlap
was proposed in [Gallego et al., 2013] to capture syntactic
similarity. In these cases, the coordinates to the data structure
(e.g., memory addresses) are used as numerical IDs. These
IDs are typically long, and the induced locality reflects the
physical storage of the strings rather than the semantics in the
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Figure 1: High level overview of KOGNAC.

KG. Older versions of MonetDB followed this approach, but
it was later abandoned.
Semantic Relateness. There is a rich literature on
semantic relatedness based on the lexicographic fea-
tures [Zhang et al., 2013], or on domain-dependant data
like Wikipedia [Gabrilovich and Markovitch, 2007], Word-
net [Budanitsky and Hirst, 2006], biomedical data [Pedersen
et al., 2007], and spatial [Hecht et al., 2012]. In our case,
we cannot make assumptions about the domain of the input
and the strings may be completely random, so lexicographic
features are not applicable.

In general, semantic relatedness functions cannot be di-
rectly applied to our problem of graph encoding. For in-
stance, [Leal, 2013] defines semantic relatedness among two
nodes as a function of combining the path length and the num-
ber of different paths between two nodes. In our context, it
would be too expensive to compute relatedness for many (or
even any possible) pairs of nodes. Furthermore, the high spar-
sity in the graph results in very low relatedness coefficients
in almost all cases. [Curé et al., 2015] describes how onto-
logical taxonomies can be exploited to speed up reasoning
via intelligent ID encoding. In spirit, this approach is simi-
lar to our approach for encoding infrequent terms. However,
[Curé et al., 2015] focuses on improving reasoning efficiency
rather than the semantic relatedness. Furthermore, [Curé et
al., 2015] does not consider data skewness, as we do.

Finally, clustering methods based on the graph structure
(e.g., METIS [Karypis and Kumar, 1998], or graph-coloring
approach of [Bornea et al., 2013]) are infeasible at our
scale [Gurajada et al., 2014], and often require a conversion
to an undirected single-label graph disregarding entirely the
semantics in the KG. In contrast, the goal of KOGNAC is to
leverage precisely this semantics to improve the encoding.

3 The KOGNAC Algorithm
Algorithmic Overview. KOGNAC performs a crucial dis-
tinction between (few) frequent terms from the (many) re-
maining infrequent ones. For the frequent terms, it applies a
frequency-based encoding, which is highly effective in terms
of compression due to the skewed distribution of modern
KGs [Kotoulas et al., 2010]. For the infrequent ones, it ex-
ploits the semantics contained in the KG to encode similar
terms together to improve data locality.

Fig. 1 describes at a high level the functioning of KOGNAC.
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Let V be the set of terms in a generic RDF graph G. KOGNAC
receives G and a threshold value k (used for the top-k fre-
quent elements) as input, and returns a dictionary table D ⇢
V ⇥ N that maps every element in V to a unique ID in N.

The dictionary table D is constructed using two differ-
ent encoding algorithms: Frequency-based encoding (FBE),
which encodes only the frequent terms, and Locality-based
encoding (LBE), which encodes the infrequent ones. The core
computation of FBE corresponds to the execution of an ap-
proximated procedure for accurate frequency detection. LBE
instead constructs a class taxonomy, groups the terms into
these classes, and assigns the IDs accordingly. Both methods
support parallelism. FBE is executed before LBE. If D1 is
the output of FBE, and D2 of LBE, then D = D1 [D2 and
D1 \D2 = ;.

4 Frequency-based Encoding (FBE)
The goal of this procedure is to detect the top-k frequent
terms and assign them incremental IDs starting from the most
to the least frequent term. For our purpose, an exact calcu-
lation of the frequencies is not required, and even though it
can be easily computed for small KGs, it would be unneces-
sarily expensive for very large KGs. Sampling provides the
reference technique for a fast approximation [Urbani et al.,
2013]. Unfortunately, an excessive sampling might lead to
false positives and negatives, and increasing the sample size
for tolerable error rates might still be too expensive.

To obtain a better approximation, we investigated the ap-
plicability of hash-based sketch algorithms [Karp et al., 2003;
Charikar et al., 2002]. Sketch algorithms have successfully
been deployed in other domains to identify distinct items in
streams [Karp et al., 2003], but never to our problem domain.
Sketch Algorithms. We experimented with three state-
of-the-art sketch algorithms: Count-Sketch [Charikar et al.,
2002], Misra-Gries [Misra and Gries, 1982], and Count-
Min [Cormode and Muthukrishnan, 2005]. Count-Sketch, a
single-scan algorithm, requires a heap with quadratic space in
error tolerability. After many experiments, we concluded that
updating such large heap was too expensive for our inputs.

Misra-Gries is similar to Count-Sketch, with the difference
that it uses a smaller heap and reports the terms that are at
least k-frequent, i.e., having a frequency > n

k

, where n de-
notes the total number of term occurrences. This method
approximates the relative frequencies (i.e., frequency after a
term is inserted in the heap). We found that the relative fre-
quencies were not accurate enough to allow a precise ordering
of terms, as the count depends on the appearance ordering.

Count-Min uses n > 1 hash counter arrays and n hash
functions to count the frequencies. In contrast to the previ-
ous two methods, it always requires two input scans: First to
count the frequencies, and then to extract the actual frequent
terms. Count-Min does not use heaps and this makes it in
principle faster than the other two. However, for large inputs
the cost of second input scan offsets this gain.
Our proposal: CM+MG. Count-Min provides a good es-
timate of term frequencies, but cannot identify the top-k el-
ements within a single pass. Misra-Gries detects the top-k
elements but does not report good frequencies. The disad-
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Figure 2: Overview of CM+MG.

vantages of the two are complementary. We thus propose
a hybrid approach, which we call CountMin+MisraGries
(CM+MG), that intelligently combines elements of the two.

An overview of its functioning is reported in Fig. 2. As in-
put it receives the input KG, k, a hash family H with n hash
functions, m parallel threads, and a threshold k of popular el-
ements. In our implementation, we selected as default values
three hash functions for H , while m is the number of physical
cores, and the value k is requested from the user.

CM+MG is executed in two steps: In the first step,
CM+MG creates m ⇤ n counter arrays and m Misra-Gries
heaps of size k. The KG is split into m subsets, and fed to the
m threads. Each thread calculates n hash codes for each term
occurrence in its partition. The n hash-codes are modulo-ed
the array size and the corresponding indices in the arrays are
incremented by 1. The terms are also inserted into the heaps.

In the second step, the m heaps are merged in a single heap.
Also the arrays are summed into n final arrays. As thresh-
old value for the frequent terms, we select the top-k value in
the first array. The algorithm now scans all elements in the
merged heap. Instead of using the relative frequency as esti-
mate, CM+MG queries the arrays using the term’s hashcodes,
and uses the minimum of the returned values. If this value is
greater than the threshold, the term is marked as frequent.
Effectiveness of FBE. Our approach works well because
KGs are skewed. In order to better characterize the gain we
can obtain with our approach, we present a short theoretical
analysis on the space efficiency of FBE.

Assume T = {t1, t2, . . . , tn} to be n distinct RDF terms,
with term t

i

having a frequency of f
i

in the input KG. In
the worst case, an assignment criterion which is independent
from the term frequencies (e.g., an order-based one) will pro-
duce an assignment which is close to a fixed-length encod-
ing; that is where all terms will be assigned to IDs of length
dlog2 ne bits. In this case, the total space required to store an
encoded KG in the database would be

S

fix

=

nX

i=1

f

i

dlog2 ne = F dlog2 ne [with F =

nX

i=1

f

i

] (1)

In KOGNAC, the terms are divided into blocks depending
on their frequencies. Here, block i 2 {1 . . . b} contains the
top 2

i elements which are not in any previous group. Hence,
there exists b = dlog2 ne non-empty blocks for n distinct
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Figure 3: Effect of data locality during SPARQL join.

items in T . An item in block i is encoded using i bits. Since
the assignment is not prefix-free, in order to properly decode
the IDs we need to append to each term some extra data to
discriminate it from the different values. This extra data must
take at least dlog2 be bits as this is the minimum space neces-
sary to identify each of the b blocks. Hence, the total space
required for decoding an item in block i takes (i + dlog2 be)
bits. Assuming, f i

j

to denote the frequency of the jth item in
block i, the total encoding space required for KG is,

S

kog

= dlog2 be
bX

i=1

2iX

j=1

f

i

j

+

bX

i=1

i

2iX

j=1

f

i

j

(2)

Since modern KGs have a skewed term distribution [Ko-
toulas et al., 2010], we now assume that the item frequencies
is drawn from a Zipfian distribution1 with parameter s � 2,
such that the frequency of the kth frequent term f

k

⇡ F

s

k .
If we apply this distribution in Eq. (2), we obtain

S
kog

= F dlog2 be+
bX

i=1

iF

s
Pi�1

k=1 2k

2iX

j=1

1

sj

By algebraic manipulations, we have

S
kog

= F dlog2 be+
bX

i=1

iF

s2i�2
.

1

s� 1

[for large i]

⇡ F dlog2 be+ F
bX

i=1

i

s2i
⇡ F

✓
dlog2 be+

1

s2

◆
(3)

If we compare Eq. 3 with Eq. 2, then we see that with
KOGNAC we can achieve nearly an exponential theoretical
decrease (i.e., log log n vs. log n) in the total encoding
space required to store the KG. This is the scale of poten-
tial improvement that our encoding can offer to the current
frequency-independent encoding algorithms.

5 Locality-based Encoding (LBE)
In the long tail of the frequency distribution, a frequency-
based encoding no longer pays off. Each infrequent term ap-
pears only a few times and this reduces the negative impact
of assigning large IDs to them. Moreover, the increased ID
space provides a much larger number of disposable IDs: for
instance, after the most frequent 224th ID, all the following
2

32 � 2

24 IDs will take the same number of bytes.
Data Locality. With LBE, we propose an encoding that is
designed to improve data locality during the execution of

1This distribution is used for heavy-tailed characteristics ob-
served in natural language sources used for KG construction.

S := {}; D
infreq

:= {}; cID := max ID in D

freq

;
MAX := constant with number higher than any class ID in T ;
for every triple <s,p,o> in the KG do

Add to S three pairs: hs,MAXi,hp,MAXi,ho,MAXi;
If p = ’type’, then add hs, id(o, T )i to S;
If p has domain c, then add hs, id(c, T )i to S;
If p has range c, then add ho, id(c, T )i to S;

end
Remove from S all pairs ht, ci where t is in D

freq

;
for all pairs ht1, c1i and ht2, c2i in S do

if t1 = t2 then
Remove ht1, c1i from S if c1 > c2 or remove ht2, c2i
otherwise;

end
end
while S is not empty do

Take out from S one pair ht1, c1i s.t.
@ht2, c2i 2 S : c2 < c1 _ c1 = c2 ^ t2 < t1;
Increment cID by 1;
Add to dictionary D

infreq

the assignment ht1, cIDi;
end

Algorithm 1: Locality-aware Encoding: Input: a KG, the
taxonomy T , and the frequent dictionary D

freq

generated
by FBE. Output: The infrequent dictionary D

infreq

.

SPARQL queries. Data locality plays a significant role to re-
duce the cost of index access for advanced operations like
relational joins. Consider, as example, Fig. 3, which shows
a join between two generic relations A and B. It is common
that these relations are indexed (i.e., sorted) to enable merge
joins [Neumann and Weikum, 2008]. If the index locations
of the join terms are spread around the entire relations, as
shown in Fig. 3a, then the join algorithm must process large
parts of the indexes. On the contrary, if the join succeeds us-
ing only sub-portions of the index, then the join algorithm can
save significant computation by ignoring large chunks of the
indexes (Fig. 3b).
Encoding and Data-Locality. Since SPARQL engines work
(mostly) directly on the encoded data, the elements on which
the join operates are precisely the IDs which we should assign
during encoding. Therefore, an assignment of close IDs will
significantly improve data locality.

Unfortunately, it is not possible to encode the terms so that
they are always next to each other. We can make one assign-
ment only, and SPARQL queries could request joins on any
subset of the relations. Still, we can leverage a heuristics that
is surprisingly effective: SPARQL joins tend to materialize
between terms which are semantically related.

Following this heuristic, we propose to cluster the terms
into the ontological classes they are connected to via the isA
relation, and assign consecutive IDs to the members of each
cluster. Our approach has several advantages: (i) isA is
a common relation in KGs and is domain-independent; (ii)
new isA edges can be inferred using other ontological in-
formation, e.g., definitions of the domain/range of proper-
ties; (iii) classes can be organized in a taxonomy using the
rdfs:subClassOf relation of the RDF Schema [Brickley and
Guha, 2014]. The taxonomy can help us to further sepa-
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Dataset Encoding Runtime (sec)
KOGNAC RDF3X

FBE LBE Total

LUBM1K 429 752 1181 1136
LUBM8K 3863 867 12538 11637
DBPedia 5071 10504 15575 12805
LDBC 612 1127 1739 1696
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Figure 4: (a) Comparison of KOGNAC vs RDF-3X dictio-
nary encoding times, (b) KOGNAC multi-threading perfor-
mance analysis on LUBM1K. Experiments on machine M1.

rate instances of subclasses from instances of siblings of the
parents (e.g., Students should be closer to Professors than to
Robots because the first two are both subclasses of Persons).
Algorithm Overview. Our locality-based encoding works
as follows: First, we must create the taxonomy of classes.
To this end, we extract all triples that define the subclass
relation between classes, or mention classes (these share
rdfs:subClassOf as predicate, and are the objects of triples
with the predicates isA, rdfs:domain, and rdfs:range). We
create a graph where the classes are vertices and the edges
are defined by the subclassOf triples. We add the standard
class rdfs:Class (the class of all classes [Brickley and Guha,
2014]), and add one edge from each vertex to it, to ensure that
there are no disconnected components. We remove possible
loops in the graph by extracting the tree with the maximum
number of edges rooted in rdfs:Class using the well-known
Tarjan’s algorithm [Tarjan, 1977].

We now assign in post-order an incremental class ID to
each class in the tree. We indicate with id(c, T ) the class ID
assigned to the class c contained in the taxonomy T .

After the taxonomy is built, we are ready to encode the
terms. This procedure is outlined in Alg. 1. First, we annotate
each term with a class ID it is an instance of. The annotation
might come from an explicit relation (isA) or an implicit one
(domain and range). If a term cannot be associated to any
class, we give it a dummy ID (MAX). Then, for each term
we maintain only the annotation with the class which has the
smallest ID. Finally, we order all annotations first by class
ID, and then (lexicographically) by term. We use the same
counter used in FBE and assign incremental IDs to the terms
with the order defined in the sorted list. In this way, the as-
signment first considers the semantic type of the term, and
then its syntax. Notice that terms which are not mapped to
any class (mainly labels), will be encoded only syntactically.

A large part of the computation of LBE can be parallelized.
The task of assigning the terms to the smallest class IDs does
not require thread synchronization because at this point the
taxonomy is a read-only data structure. Therefore, the task
can be trivially parallelized using standard input range par-
titioning and parallel merge sorts. The final assignment is
performed sequentially due to the usage of a single counter.

6 Evaluation
We implemented KOGNAC in a C++ prototype. We tested it in
combination with four SPARQL engines: RDF-3X, TripleBit,

TriAD, and MonetDB. We chose them because they repre-
sent the state-of-the-art of different type of SPARQL engines:
native/centralized (RDF-3X, TripleBit), native/distributed
(TriAD), and RDBMS/centralized (MonetDB). These en-
gines also perform different encodings: RDF-3X performs
syntactic encoding, TripleBit and TriAD performs an order-
based encoding, MonetDB can be loaded with arbitrary en-
codings (we used a syntactic encoding).

We used two types of machines: M1, a dual 8-core 2.4
GHz Intel CPU, 64 GB RAM, and two disks of 4 TB in
RAID-0; and M2, a 16 quad-core Intel Xeon CPUs of 2.4GHz
with 48GB of RAM. As input, we used three RDF graphs in
NT format: LUBM [Guo et al., 2005] – a popular bench-
mark tool, LDBC [Angles et al., 2014], another, more recent
benchmark designed for advanced SPARQL 1.1 workloads,
and DBPedia [Bizer et al., 2009], one of the most popular
KGs. We created two LUBM datasets: LUBM1K (133M
triples, 33M terms), and LUBM8K (1B triples, 263M terms).
We created a LDBC dataset with 168M triples and 177M
terms. The DBPedia dataset contains about 1B triples and
232M terms.

Due to space reasons, for LUBM, we used only five adap-
tations of benchmark queries which were selected as repre-
sentative in [Yuan et al., 2013]. For DBPedia, we slightly
changed five example queries that are reported in the project’s
website. For LDBC, we use the official queries in the SPB
usecase [Angles et al., 2014]. These queries require SPARQL
1.1 operators which were unsupported by any of our en-
gines. We implemented some of the missing operators in
RDF-3X so that we could launch 7 of the 12 SPB queries.
Fig. 5 reports the LUBM and DBPedia queries in compressed
form. The LDBC queries are freely available at bench-
mark website www.ldbcouncil.org. Here we use abbrevia-
tions to refer to them (e.g. query Q3 is the third query of
the official benchmark). The KOGNAC code is available at
https://github.com/jrbn/kognac.
Encoding runtime. As baseline, we selected the syntactic
encoding algorithm performed by RDF-3X. We found that
syntactic encoding performs better than the others, and RDF-
3X implements a highly optimized loading procedure.

First, we measured the (sequential) encoding runtimes of
all four datasets and report them in Fig. 4(a). We notice
that our approach is slightly slower than the one of RDF-
3X. We expected such difference, since we perform a much
more complex operation than a simple syntactic encoding. In
the worst case, KOGNAC is about 20% slower. Considering
that loading is a one-time operation whose cost gets amor-
tized over time, we deem it as an acceptable cost, especially
in view of the benefit we get at query time. In Fig. 4(b), we
measured the KOGNAC runtime doubling each time the num-
ber of threads from 1 to 64. We see that the runtime steadily
decreases until it stabilizes after 8 threads. The runtime left
after this point is the one necessary to sequentially assign the
IDs to the list of terms and write the dictionary to disk.

In a series of experiments (not shown in this paper), we
compared the performance of CM+MG against sampling at
5% (the most popular technique) and Count-Min (the fastest
one). We varied the k threshold, and measured the runtime
and accuracy of the approximation. We found that k = 50
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Q. # Results Runtime (sec) Max RAM (MB) Disk I/O (MB)
KOG R3X KOG R3X KOG R3X

L
U

B
M

1K
L1 10 0.22 0.31 4 4 14 19
L2 10 0.04 0.17 5 6 16 27
L3 1 88.53 90.83 708 854 53 69
L4 2528 92.21 98.41 724 883 548 367
L5 44190 7.45 15.79 1,261 1,588 1,102 2,132

L
U

B
M

8K

L1 10 0.09 0.27 4 4 15 21
L2 10 0.02 0.64 5 7 18 32
L3 1 700.58 716.55 5,335 6,537 309 486
L4 2528 717.65 744.10 5,320 6,536 321 811
L5 351919 75.90 174.16 9,739 12,400 8,832 16,928

D
B

Pe
di

a

D1 449 0.99 3.32 8 15 55 52
D2 600 0.23 3.17 6 8 29 61
D3 270 1.60 2.96 6 11 59 49
D4 68 0.72 1.34 6 6 45 49
D5 1643 5.05 26.79 29 60 330 263

L
D

B
C

Q2 36 44.59 45.58 1,320 2,053 241 279
Q3 178 126.48 132.55 524 574 588 624
Q6 3819127 60.17 71.32 2,157 5,198 1,268 3,953
Q7 98 5.85 6.76 549 3,663 625 3,675
Q8 1018 1,847 4,915 2,867 5,934 1,804 3,949
Q10 14 420.88 4,577 714 3,662 729 3,676
Q11 114 24.51 89.21 170 204 201 237

Table 1: Query runtime, Max RAM usage, and disk I/O with
KOGNAC and RDF-3X encodings on one M1 machine.

was a good threshold value because KGs typically contain
only few very frequent terms. Therefore, all experiments in
this section should be intended with k = 50. In general,
CM+MG was the fastest algorithm with k up to 500. In
the best case, it was twice as fast as Count-Min (the second
best). In the worst case, it was 10% slower. With higher ks,
CM+MG became slower because of the heap and Count-Min
returns the best runtimes. In terms of accuracy, all three man-
aged to identify the very first top k. However, as we increased
k, all methods started to fail: Sampling quickly lost accuracy,
Count-Min produced large overestimates (due to hash colli-
sions in the arrays), while CM+MG produced underestimates
(due to the limited heap).
SPARQL Query performance. Tab. 1 reports on the exe-
cution of SPARQL queries with the mappings produced by
KOGNAC and by RDF-3X’s syntactic encoding. The table
reports cold query runtimes, the maximum amount of RAM
used by the system, and the disk I/O. From the table, we see
that KOGNAC leads to a significant improvement over all three
metrics. All query runtimes are faster, with improvements of
up to ten times. The system always uses less main memory
and in all but four cases it reads less data from disk.

We tested KOGNAC also with the other three systems,
which use a traditional order-based encoding. For concise-
ness, we report in Tab. 2 only the runtimes of the LUBM
queries as they are representatives of the general behaviour.
We observe that also here KOGNAC produced better runtimes.
For TriAD, there was an improvement in all but two cases,
where the runtime was unchanged. For TripleBit, one query
failed due to bugs in the system, while another produced a
slightly worse runtime. In the remaining cases KOGNAC en-
codings were beneficial. Finally, with MonetDB we observed
an improvement in all cases. In essence, our results show that
an intelligent assignment, like the one produced by KOGNAC,
has a significant impact on the processing of the KG. Given
the encoding runtime, this improvement comes at little cost.

Q. TriAD TripleBit MonetDB
KOGNAC Standard KOGNAC Standard KOGNAC Syntactic

L1 0.001 0.001 0.056 0.149 0.820 2.4
L2 0.002 0.002 0.094 n/a 0.943 1.2
L3 0.106 0.631 1.672 1.567 11.1 15.2
L4 2.684 3.090 5.626 6.549 9.5 21.1
L5 2.558 3.067 5.082 6.438 4.1 8.2

Table 2: Impact of KOGNAC on example SPARQL queries
using one M2 machine.

LUBM Queries.
@prefix r: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix u: <http://www.lehigh.edu/⇠zhp2/2004/0401/univ-bench.owl#>
L1. { ?x u:subOrganizationOf < http://www.Department0. University0.edu> .
?x r:type u:ResearchGroup .}
L2. { ?x u:worksFor <http://www.Department0.University0.edu> . ?x r:type
u:FullProfessor . ?x u:name ?y1 . ?x u:emailAddress ?y2 . ?x u:telephone ?y3 . }
L3. { ?y r:type ub:University . ?x u:memberOf ?z . ?z u:subOrgOf ?y . ?z r:type
u:Department . ?x u:undergradDegreeFrom ?y . ?x r:type u:UndergradStudent.}
L4. { ?y r:type u:University . ?z u:subOrgOf ?y . ?z r:type u:Department . ?x
u:memberOf ?z . ?x r:type u:GraduateStudent . ?x u:undergradDegreeFrom ?y .}
L5. { ?y r:type u:FullProfessor . ?y u:teacherOf ?z . ?z r:type u:Course . ?x
u:advisor ?y . ?x u:takesCourse ?z . }
DBPedia Queries.
@prefix foaf: <http://xmlns.com/foaf/0.1/>, purl: <http://purl.org/dc/terms/>,
db: <http://dbpedia.org/resource/>, dbo: <http://dbpedia.org/ontology/>, rs:
<http://www.w3.org/2000/01/rdf-schema#>
D1. { ?car purl:subject db:Category:Luxury vehicles . ?car foaf:name ?name .
?car dbo:manufacturer ?man . ?man foaf:name ?manufacturer }
D2. { ?film purl:subject db:Category:French films }
D3. { ?g purl:subject db:Category:First-person shooters . ?g foaf:name ?t }
D4. { ?p dbo:birthPlace db:Berlin . ?p dbo:birthDate ?b . ?p purl:subject
db:Category:German musicians . ?p foaf:name ?n . ?p rs:comment ?d}
D5. { ?per dbo:birthPlace db:Berlin . ?per dbo:birthDate ?birth . ?per foaf:name
?name . ?per dbo:deathDate ?death .}

Figure 5: LUBM and DBPedia queries.

7 Conclusions

We proposed KOGNAC, an algorithm for efficient encoding of
RDF terms in large Knowledge Graphs. KOGNAC adopts a
combination of estimated frequency-based encoding (for fre-
quent terms) and semantic clustering (for infrequent terms)
to encode the graph efficiently and improve data locality in a
scalable way. We evaluated the performance of KOGNAC by
integrating it into multiple state-of-the-art RDF engines and
relational stores. We observed significant improvements re-
garding query runtimes, a reduction in memory usage, and
disk I/O. These results were achieved without altering the ar-
chitecture or functioning of the RDF engine, but only by re-
arranging the encodings in an intelligent way.

We identified several directions for future work. More
combinations of encoding, or other clustering criteria for
terms that cannot be mapped to the taxonomy might further
improve the performance. Moreover, it is interesting to study
how well our FBE and LBE encodings can deal with updates,
or whether they can improve other tasks than SPARQL. For
instance, methods for knowledge completion with embed-
dings might also benefit from our encodings.

To the best of our knowledge, our work is the first that
seeks an improvement of KG processing via intelligent dic-
tionary encoding. KOGNAC represents a first step in this di-
rection to further improve the processing of emerging KGs.
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