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Abstract

Hostnames such as en.wikipedia.org and
www.amazon.com are strong indicators of the
content they host. The relevant hostnames for a
query can be a signature that captures the query
intent. In this study, we learn the hostname
preference of queries, which are further utilized
to enhance search relevance. Implicit and explicit
query intent are modeled simultaneously by a
feature aware matrix completion framework. A
block-wise parallel algorithm was developed on
top of the Spark MLIib for fast optimization of
feature aware matrix completion. The optimization
completes within minutes at the scale of a million
x million matrix, which enables efficient experi-
mental studies at the web scale. Evaluation of the
learned hostname preference is performed both
intrinsically on test errors, and extrinsically on the
impact on search ranking relevance. Experimen-
tal results demonstrate that capturing hostname
preference can significantly boost the retrieval
performance.

1

Hostnames' can be high level indicators of the content they
host. For example, the pages under en.wikipedia.org give
people knowledge on an entity such as a concept, a product, a
person, etc. For a query containing a knowledge seeking in-
tent such as “what is roman art”, a wiki page would be highly
relevant. When a group of friends decide to go to Las Ve-
gas for the Thanksgiving break, a simple query such as “ve-
gas getaway’ expects search results from www.expedia.com,
www.tripadvisor.com or www.orbitz.com, etc.

In this paper, we study the hostname preference in the con-
text of the fundamental search relevance problem. Modern
search engines rely heavily on the relevance match between
a query and an individual web page. If the search engines
are also aware of the hostname preference of a query, so that
they promote the search result pages from more relevant host-
names and demote the ones from less relevant hostnames, can

Introduction

'In this paper, a hostname is defined as the field before the first
slash of a URL. We remove https:// or http:// for readability.
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we expect better retrieval performance out of this hostname
level knowledge?

We investigate the query logs from Yahoo! search en-
gine over one year. Hostname preference is learned by
a feature-aware matrix completion model leveraging tex-
tual information, click information and popularity of the
queries/hostnames. In our model, a query’s preference for
a hostname is determined by explicit intent matching (mod-
eled by observed features), as well as latent intent matching
(modeled by latent vectors). The learned preference is fed
into a state-of-art machine learned ranking (learning-to-rank)
system for investigation of its impact on search relevance.

In order to make the hostname preference learning actu-
ally work in commercial search engines, efficiency is crucial.
Previous studies on matrix factorization report hours/days of
training time even without considering features, which is im-
practical. We develop a block-wise distributed algorithm on
top of the Spark Machine learning library(MLIib)?>, which
completes within minutes at the scale of a million x million
matrix. To the best of our knowledge, our work is the first
to deal with large scale feature aware matrix completion in a
block-wise distributed manner on hadoop clusters.
Contributions. We identify the novel yet fundamental prob-
lem of hostname preference learning for queries, and propose
a preference learning model by feature aware matrix comple-
tion, modeling explicit and latent intent simultaneously. We
develop a block-wise distributed algorithm for solving large
scale feature aware matrix completion efficiently, which goes
beyond the problem we consider and can be applied to a broad
spectrum of applications such as large scale recommendation
and clustering. Extensive experiments are performed on real-
world data to investigate a) the impact of hostname prefer-
ence on search ranking relevance, and b) the efficiency of our
proposed algorithm.

2 Hostname Preference Learning Framework

2.1 Problem Formulation

We consider query logs from Yahoo! search engine over one
year. The logs track for each query the URLs displayed as
well as the URLs being clicked. We pre-process the query
log to obtain a sequence of entries (ej, es,...), where each

*http://spark.apache.org/docs/latest/mllib-guide.html



entry consists of a query ¢, a URL [, the number of clicks ¢
at [ for ¢, the number of views (or impressions, defined as the
number of times the URL was shown to a user on the search
page) v of [ when q is issued: e = (g, [, ¢, v). For each query
q, the hostname preference is defined by a ranked list of
hostnames with associated scores. A higher score indicates
higher preference for the hostname.

Click Matrix. The M x N click matrix Y, where M is
the number of unique queries and N is the number of unique
hostnames, represents the observed preference of queries over
the hostnames. Y is a sparse matrix where the (4, j)th entry
¥yi; has the value of how many times the jth hostname has
been clicked for the ith query. The number of clicks on a
hostname for a query is computed by aggregating the clicks
on the URLs which contain the hostname. Our goal is to
approximate the click matrix Y.

Intuition. In order to approximate the click matrix, a natural
thought is to get vector representations of a query and a host-
name, and use their inner product as the affinity score. We
follow this general philosophy, and simultaneously consider
observed features and latent factors, as well as the trade-off
between them.

The query vector is viewed as an intent vector. Each di-
mension represents a certain intent. Meanwhile, a hostname
vector shares this intent space and has a weight on each di-
mension. The inner product of these two vectors is an intent
matching process. A larger value of the inner product indi-
cates a higher preference. Explicit query intent can be cap-
tured by observed features such as keywords, while implicit
query intent can be modeled as latent factors. In addition, we
take into account the popularity of each query (measured by
the total number of times the query is issued) and each host-
name (measured by the total number of clicks on the host-
name) to model the inherent bias of each entity.

2.2 Preference Model

The following generative process is devised for the click ma-
trix? Y. Our model complexity is intentionally restricted to
provide insights into how the hostname level abstraction can

benefit search relevance.
1. To generate the ¢th query q;,¢ = 1,2, ..., M,
Latent Factors. Draw a latent intent vector u; from the normal distribu-
tion: u; ~ N (0, olT).
Features. Extract the explicit intent vector u’; from observed information.
2. To generate the jth hostname hj, j = 1,2,..., N,
Latent Factors. Draw a latent intent vector v; from the normal distribu-
tion: v; ~ N(O, a'jh’I).
Features. Extract the explicit intent vector vg- from observed information.
3. The number of click y;; is determined jointly by
a)
b)
©)
d)

How the latent intent of ¢; and h; match with each other: u?vj;

How the explicit intent of ¢; and h;; match with each other: u}” v/
The popularity bias pop(q;), pop(h;) and
The weights w over different components. w is also generated by the
normal distribution: w ~ A(0, o™ T).
Thus we have y;; N@Fv; + wPf;,0Y), where f;
(u; "V}, pop(ai), pop(h;))T.
(Y, {f;;}) are the observations, {o*, a = ¢, h,w,y} is the
set of hyperparameters and ® = ({u;}, {v;}, w) are the pa-
rameters to estimate. By maximum a posteriori (MAP) esti-

~

3We take the logarithm of each element y;; and let Y be the click
matrix after logarithm following the common practice for count data.
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mation, we obtain the following objective function:

({ui}, {v;}, w) = argglaxP(Q\Y,{a”}) (Y]

argmin Yy [Juf v, + wTfi; — yi;||°
Hui b Avbow) 55
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where A =0oY/ol, A;L = O'y/aj’vl,)\w =o¥/c".
Explicit Intent. Explicit intent vectors u;, V; are constructed
by investigating the keywords of queries.* We assign each
keyword in a query to the URLs that are clicked when this
query was issued, and aggregate all the keywords assigned to
the URLs with the same hostname to be the associated key-
words with that hostname. While a hostname can host tons of
thousands of URLs and have diverse contents, the keywords
associated with a hostname are fairly indicative and clean.
Thus we characterize the explicit intent of a hostname by a
multinomial term vector formed by its associated keywords.
The explicit intent of a query can be readily represented
by its keywords. However, two similar queries such as “chi-
nese buffet” and “all you can eat chinese” will have two quite
different term vectors in this setting. To mitigate sparsity, we
represent each query by a one-step propagation of the explicit
intent from the clicked hostnames: the explicit intent vector
of a query is defined as a weighted sum of the term vectors
of its clicked hostnames. The weight for each hostname is
proportional to the number of clicks.
Latent Intent. In addition to the explicit intent, we assume
a low-rank latent space where the latent intent vectors of
queries and hostnames reside in. The low-rank space cap-
tures a clustering effect where each cluster represents a latent
intent. Intuitively, we can think of the latent intents as shop-
ping, travel, job hunting, news seeking, etc.

2.3 Block-Wise Parallel Optimization for Large
Scale Feature-Aware Matrix Completion

Our objective function (Eq. 1) naturally leads to a three-party
alternating least squares (ALS) optimization problem as pre-
sented in Algorithm 1. While the algorithm itself is not math-
ematically sophisticated, efficient optimization at large scale
is non-trivial. We focus our discussion on distributed algo-
rithms on Hadoop, which is the most commonly used plat-
form in modern search industry.

Numerous research efforts have been aimed at scaling up
matrix factorization by parallelizing the updates of latent fac-
tors. Existing distributed algorithms exploit the independent
update of the low rank vectors. However, the shared feature
weights w in our problem makes these techniques for pure
matrix factorization (with latent vectors only) not applicable
(See Section 3 for a literature review), because w is affected
by every entry in the matrix now.

To this end, we carefully examine the structure (additive
feature integration) of our objective function and propose a
block-wise distributed algorithm. It fuses the update of fea-
ture weights into the update of latent vectors, which intro-
duces minimal overhead compared to distributed pure matrix
factorization.

“Upon availability, the explicit intent can accommodate other
features as well, associated with either a query, a hostname, or both.



Algorithm 1 A Three-Party ALS Algorithm for Feature Aware
Matrix Completion

Input: A sparse click matrix Y with (¢, j) € € observed and the corresponding fea-
tures {f;; }

Output: {u;}, {v;}, w

Initialize {u;}, {v;}, w

for iter = 1:Maxiter do

Solve
NI+ D0 fufw =D fr) @
(i,5)€Q i,j
for w, wherer = Yij — u?v_j.
Solve -
N1+ Z viviu; = Z vjr,fj 3)
jecd jecd
for {u;}, where ri, = wyi; — wlfy; and ¢! = {j|G5,5) €
Q, i.e., hj isclicked by g; }.
Solve , -
NI+ Z u;u; )v; = Z uirfj “)
iech icch
iech iech
for {v;}, where r}; = wi; — w'f;; and C} = {i|(i,j) €
Q, i.e.,q; hasclicksat hj}.

end

Naive Solution. It’s clear that Eq. (2) is a typical least
square problem. A natural thought is to first solve Eq. (2)
with fixed {u;} and {v;}. The exact solution can be ob-
tained by a single MapReduce job which gives Z i EL ; and
Zi,j fijrf’j. Then with fixed w, solving Eq. (3, 4) becomes a
typical iteration in a pure matrix factorization. Each update
of w requires a) one pass of the data to traverse (Y, {f;;})
and b) retrieving {u;}, {v;} to the corresponding nodes to
compute {r}7}. Being aware that global iteration is very ex-
pensive on hadoop than computation within each node, we
propose to fuse the update of feature weights w into the up-
date of the latent factors {v;}. This reduces communication
cost by a third and eliminates unnecessary data traversal.
Infrastructure. Iterative algorithms with traditional Hadoop
MapReduce is very time consuming since all the data includ-
ing intermediate results (such as updated parameter values)
are accessed via disks. We design our algorithm particu-
larly for Spark since Spark provides primitives for in-memory
cluster computing. This allows user programs to load data
into a cluster’s memory and query it repeatedly, making it
well suited to iterative algorithms [Zaharia er al., 2010]. A
typical spark application is run on a driver node and multiple
worker nodes, which fully supports traditional MapReduce
jobs. For iterative algorithms, the driver node is naturally
used to store the updated parameters and iteration counters,
as well as to do central processing on the aggregated results
such as the }, , fi; zy in our case. Each node has its local
memory which’ can be used to persist its local data for fast
access. Spark also supports shared variables across all nodes
by an efficient broadcasting mechanism.

Algorithm Design. We build our algorithm on top of the
blocked implementation of the ALS factorization algorithm
in Spark MLIib. The basic idea is to update each u; (v;)
in Eq. (3) (Eq. (4)) in parallel only with the communication
of the v;’s (u;’s) that are in C (C™). Meanwhile, we com-
pute the statistics that are needed for the update of w together
with the update of {v;} so that we do not need an additional
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Figure 1: A Toy Example for Illustration of the Indices.

(b) out-link-indices for hostname blocks (vblock). It stores which
query blocks should each v in this block be sent to.

(c) in-link-indices for query blocks (ublock). It stores which u;’s
should the received v;’s from each hostname block update, together
with the features f;;’s and click values y;;’s needed for the update,
where for each ublock b, (2, 5) € {(¢,7)|u; € ublock b} N Q.

MapReduce job for updating w.

The two sets of latent vectors (“queries {u;}” and “host-
names {v, }”, respectively) are grouped into blocks. Two in-
dices are created for each block: One out-link-index to index
the destination blocks this block need to send its vectors to
at each iteration; One in-link-index to index which vectors in
this block need to be updated by the vectors sent from each
source block. The subset of data (Y and {f;;}) correspond-
ing to this block are also stored in the in-link-index to allow
for local updates.

A toy click matrix is shown in Figure 1(a). We illustrate
the indices for solving Eq. (3) using the in-link-indices of
query blocks and the out-link-indices of hostname blocks as
shown in Figure 1(b)(c). The weights w are broadcast to all
the blocks at each iteration once it is updated. Then the in-
dices allow for local update of each latent vector u; in Eq. (3).
Each hostname vector v; is sent to the query blocks that need
it for update. At most one copy of each hostname vector is
sent to each query block at each iteration.

Now we explain how to get the statistics needed for updat-
ing w together with the update of {v;}. For each hostname
block, once an update is to be performed, the corresponding
query vectors are sent to the block. Based on the in-link-
indices, each query vector will be used to update the corre-
sponding hostname vector. After each update of v;, we have
the latest u;, v, together with the y;; and f;; from the in-link-
indices, from which we can get the corresponding r;; right
away. Therefore we can obtain the local aggregate statistics
of 3, ; fi;f]; and 3=, ; fijri% at each hostname block. Since
the in-link-indices from all the hostname blocks together re-
cover exactly the click matrix, we can then reduce the results
from all hostname blocks to get }, ; fi;f;; Land Y, 5 Eigriss
and update w at the driver node.

Analysis of Memory Requirement and Complexity. We do
not have the limitation that {u;} or {v;} must fit into each
node’s memory since the vectors are grouped into blocks.



The total in-link-index size for either queries or hostnames
is slightly larger than the size of the data (clicks and fea-
tures). In fact, we distribute two copies of the original data
onto multiple nodes in the form of in-link-indices. During the
optimization, all the indices are persisted in the local memory
of the worker nodes, which guarantees efficient access.

The total out-link-index size is at most O(B x M+ B" x N)
where B is the number of query blocks and B" is the number
of hostname blocks. This space cost is much smaller than the
in-link-indices.

At each iteration, each query vector u; is sent at most once
to each hostname block and vice versa. The communication
cost at each iteration is at most O(K(B" x M 4+ B? x N))
where K is the rank of the latent intent space (the length of a
latent vector).

Since we fuse the computation of {r;;} to the update of
{v;}, we naturally get the training error at each node. Thus
the training error is obtained at each iteration together with
the computation of the statistics needed for w update with no
additional effort, which facilitates the convergence analysis
of our model.

3 Related Work

Query Intent Learning. One line of research [Li et al., 2008;
Hu et al., 2009; Diaz, 2009; Konig et al., 2009] use classi-
fication to decide query intent, such as shopping, job hunt-
ing, news seeking, travel, etc. The classification itself serves
as the end application (e.g. to determine if a news ver-
tical should be shown). Other studies [Wu et al., 2013;
Ren et al., 2014] consider query intent as intermediate re-
sults, which are used for query clustering or as features to
improve search ranking relevance. Clicks, keywords and ex-
ternal knowledge such as wikipedia concepts are common in-
formation sources. Our framework can take advantage of the
above finely calibrated models to learn either latent query in-
tent or explicit query intent.

Website Recommendation. Song et al. [2011] study search-
able web sites recommendation. While the searchable web-
site resembles a similar level of abstraction of hostname, the
scope is restricted to a small set of “searchable” websites,
which heavily relies on the task specific features and does
not involve latent factors. Ma et al. [2011] propose a collec-
tive matrix factorization model for personalized website rec-
ommendation, which investigates the click behavior of users,
queries and URLs. The model is a pure click based Poisson
loss factorization model where explicit features are not taken
into account. The evaluation is only intrinsic on the test mean
square/absolute error.

Search Ranking with Higher Level Information. Host-
name preference is a higher level abstraction of individual
URLSs. Our preference learning framework provides a gen-
eral recipe to study the impact on search ranking from var-
ious high-level factors. Other abstractions such as the cat-
egory/topic/authority of a URL [Kleinberg, 1999; Gibson et
al., 1998; Xue et al., 2005; Chandrasekar et al., 2004] can be
readily integrated into our framework as either explicit fea-
tures or latent factors.

Large Scale Matrix Factorization.
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Pure Matrix Factorization. Liu et al. [2010] parallelize
the nonnegative matrix factorization using MapReduce as the
low-rank vector representation of each entity can be updated
in parallel. Zhou et al. [2008] and Teflioudi et al. [2012]
propose distributed ALS algorithms with a similar philoso-
phy. In these algorithms each computing node updates a sub-
set of factors. Shared memory or a broadcasting scheme is
used to make the updated factors available to all nodes. Yu
et al. [2012] propose a parallel coordinate descent method
to solve matrix factorization by optimizing one variable at a
time instead of one vector. Gemulla et al. [2011] propose
a distributed sochastic gradient descent (DSGD) method for
matrix factorization, which examines the dependency of each
update and specify a smart order of updates that can be done
in parallel with MapReduce. Later Teflioudi et al. [2012] pro-
pose a DSGD++ algorithm which improves DSGD by using
a new data partitioning and stratum schedule, and exploiting
direct memory access and multi-threading.

Feature Aware Matrix Completion. Scaling up feature
aware matrix completion is less explored due to the fact that
all the entries in a matrix are dependent on the feature pa-
rameters. It is difficult to decouple the dependency to enable
parallelization. Khanna et al. [2013] propose a “divide and
conquer” algorithm for logistic loss matrix completion for bi-
nary response. The matrix to be approximated is partitioned
into multiple sub matrices and the model is learned separately
on each partition. The final factors are obtained by averag-
ing the individual models. Performance of this algorithm is
subject to the partition strategy and there is no guarantee for
convergence. Shang et al. [2014] propose a parallel algorithm
for matrix completion with multiplicative feature integration
which applies iterative relaxation of the objective to facilitate
parallel updates of parameters in a multi-threading setting.
Our proposed algorithm is designed for a distributed environ-
ment with additive feature integration and it is guaranteed to
converge to the local optimum.

4 Experiments

We report results from an intrinsic evaluation of the test root
mean square error (RMSE), an extrinsic evaluation of the im-
pact of modeling hostname preference on search ranking rel-
evance, as well as an efficiency study for our proposed dis-
tributed optimization algorithm.

Data. We consider the query logs for general search (as
opposed to vertical search) from Yahoo! search engine over
one year. The raw data contains 5, 869, 014, 608 entries (i.e.,
(g,1, c,v) tuples as defined in Section 2.1). We aggregate the
clicks to hostnames, remove the queries issued fewer than 20
times, remove the hostnames that are clicked fewer than 20
times, and obtain the click matrix Y with 1, 344, 389,977 ob-
served entries, which involve 2, 984, 688 unique queries and
1,654, 212 unique hostnames.

4.1 Experiment Design

The click matrix Y can be very noisy due to a) a user may
accidentally click at a page which is not relevant at all and b)
a relevant page is not clicked simply because it is ranked at a
low position and does not appear in the first page. Therefore



we introduce a filtering parameter which filters out the query-
hostname pairs that have very low ratio of # impressions of
a hostname to query frequency, in order to get a less noisy
dataset (confident dataset). The intuition is straightforward:
the click number is reliable only if the hostname has enough
views for the query. Then we randomly assign 80% of this
confident dataset to the training set and the remaining 20% to
the test set.

The regularization parameter \? is set to be proportional
to the size of C! and /\;-‘ proportional to CJ’? following [Zhou
et al., 2008]. With this scaling we found the model is not
sensitive to the regularization. For the results reported in what
follows, AY = 0.01/C{|, A} = 0.01|C”| and A” = 0.01.

We examine the training and test RMSE with different fil-
tering parameters, different ranks of the latent intent space,
and compare to baseline models under these different config-
urations. For the search ranking experiment, we use the entire
confident dataset for training. The trained model is used to
predict all the entries in Y. The larger the filtering parameter,
the more confident we are on our training set at the cost of a
lower coverage.

4.2 Intrinsic Evaluation - RMSE

RMSE at Different Ranks for Different Model Settings
We plot the training and test RMSE with the filtering parame-
ter 0.5 in Figure 2 considering the following models: 1) Pure
regression model with the explicit features. 2) Pure factoriza-
tion model with the latent intents. 3) Our proposed model:
joint model of both explicit intent features and latent intent
vectors. We investigate two initialization cases: a) w up-
date first. The first update of the weights w is by the pure
regression results. Then we update {u;} with this w and
{v;} initialized by the standard multivariate normal distribu-
tion N'(0,1); and b) w update last. Initialize w to 0, {v;} by
the standard multivariate normal distribution A(0,I). Start
optimization from the factorization step (Eq. (3)).

Overall Performance w.r.t. Rank. As shown in Figure 2, the
test performance improves as the rank of the latent intent
space increases. But the improvement becomes less signif-
icant as the rank becomes larger since it starts to overfit the
data.

Training RMSE. The training RMSE exhibit similar trends.
They converge fast within a few iterations. All the models
involving factorization achieve less than 0.1 RMSE. The pure
regression achieves ~ 0.9 RMSE?.

Test RMSE. We observe that the joint model with w updated
first performs best. This is because the joint model takes into
account the explicit features and latent intents simultaneously
and balance them in the optimized way. The pure regression
model also has good generalizability. The joint model with w
updated last follows and the pure matrix factorization model
performs worst. The difference between the two initialization
settings indicates that a good starting point is crucial for the
local optimum attained, which is not surprising. A sparse ma-
trix completion problem can have many local optimal points.
The pure regression model provides a good starting point with

3The training RMSE of the pure regression model is hidden in the
upper three sub-figures to ensure a better scale of the other curves.
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Figure 2: RMSE with Different Ranks of the Latent Intent
Space with the Filtering Parameter 0.5.

At different ranks of the latent intent space, the upper three sub-
figures plot the training RMSE as the iteration number goes from
1 to 10; the lower three sub-figures plot the test RMSE after 10
iterations. The red line in the lower three sub-figures represents the
test RMSE of a pure regression on the features.
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Figure 3: RMSE with Varying Filtering Parameter

a reasonable w which leads the algorithm to converge to a
better objective value. The pure regression model is better
than the pure matrix factorization model. This aligns with
the intuition that high-quality features are more reliable than
unsupervised clustering.

RMSE with Varying Filtering Parameter

As the filtering parameter varies, the training and test RMSE
at rank 20 for the joint model (w update first) is plotted in Fig-
ure 3. We observe that both training and test RMSE become
smaller as the filtering parameter increases, which aligns with
our intuition.

4.3 Extrinsic Evaluation - Impact on Search
Ranking Relevance

Test Procedure. The evaluation is done with the standard
machine learned ranking (MLR) system at Yahoo! on a
set of editorial data, where the training data contains 548K
(query,url,label) triples and the test data contains 86K triples.
The labels were annotated by human editors. The MLR sys-
tem learns a ranking function r based on the feature vec-
tors {xq } for (query ¢, URL ) pairs in the training data.
Originally, the ranking function is learned with 4, 700 fea-
tures. We denote the original feature vector by xgl, which
does not involve hostname level features. After we learn



the hostname preference, the preference score of the query
g for the hostname of the URL [ (denoted by hostname(l))
is fed into the MLR system as an additional feature and we
learn a new ranking function. Instead of adding only the
preference score feature, we add three new features to xgl
to reinforce the hostname preference. The three new fea-
tures are respectively 1) the predicted hostname preference
score: W fy josiname(t) + g Vhostname(r): 2) the noisy host-

name click number: click(q, hostname(l)); and 3) the ex-

/ /
q Vhostname(l) :

The ranking results using the new ranking function are
compared to the ranking results using the original ranking
function on the test data by the measure of discounted cumu-
lative gain (DCG). We examine the relative DCG gain under
different parameter/model settings. The missing features due
to insufficient coverage are all set to a system default value.
Performance w.r.t. the Relative DCG Gain. We sort the
different model/parameter configurations by the relative DCG
gain at position 5 and summarize the results in Table 1. We
consider the combinations of the following three factors: fil-
tering parameter § € {0.3,0.5,0.7,0.9}; the rank of the la-
tent intent space K € {20, 50}; and whether we use the joint
model with w updated first or the pure matrix factorization
model (pure MF).

Under various settings, we obtain a relative DCG gain of
around 2%. This is impressive given that we are only adding 3
new features to the 4700 existing features. The highest DCG
gain at position 1 we obtain is 2.80% and the number is 2.26%
for position 5. In general, we also observe that the perfor-
mance is better with a lower filtering parameter and using the
joint model. In fact, a lower filtering parameter means bet-
ter coverage of query-URL pairs. Too many missing values
for the new features counteracts the benefit of a more accu-
rate prediction. The rank 20 and 50 doesn’t have significant
difference, which indicates that it is not necessary to use a
very high rank for the hostname preference learning due to
potential overfitting.

plicit similarity score u,

4.4 Efficiency Study

We study the efficiency of our proposed algorithm on
Hadoop, and compare with Spark implementations only®.
The following algorithms are considered: 1) Blocked ALS
for Pure Matrix Factorization in Spark MLIib. 2) The pro-
posed block-wise parallel algorithm for feature aware matrix
completion. 3) Plain block-wise implemention for feature
aware matrix completion without fusing the weight update
into the factorization step.

The training time with different filtering parameters at dif-
ferent ranks are shown in Figure 4. The algorithm is run on
a commercial Hadoop cluster with normal amount of traffic.
We use 20 worker nodes and 10 iterations. The maximum
memory that can be used at each node is set to 4G. At rank
20, the proposed algorithm finishes within a few minutes. At

®As discussed in Section 2.3, traditional MapReduce on Hadoop
is not suitable for iterative algorithms due to heavy overhead on disk
I0s. Implementations with traditional MapReduce turn out to be
slower than Spark implementations by several orders of magnitude.
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Table 1: Relative DCG Gain. Sorted by DCG gain@5

0 rank  model DCG gain@1 DCG gain@5
03 50 joint 2.49% 2.26%
03 50 pure MF 2.64% 2.21%
03 20 pure MF 2.63% 2.19%
05 20 joint 2.64% 2.18%
03 20 joint 2.53% 2.17%
0.7 50 pure MF 2.80% 2.15%
0.5 50 joint 2.42% 2.14%
0.7 20 joint 2.66% 2.11%
0.7 20 pure MF 2.55% 2.10%
05 20 pure MF 2.53% 2.09%
09 50 joint 2.54% 2.06%
0.7 50 joint 2.50% 2.03%
0.5 50 pure MF 2.64% 2.02%
09 20 joint 2.50% 2.00%
09 20 pure MF 2.24% 1.94%
09 50 pure MF 2.36% 1.92%
filtering parameter=0.3 filtering parameter=0.5 filtering .7 filtering 0.9
0 0 1500
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Figure 4: Training Time under Different Parameter Settings
with 20 Worker Nodes and 10 Iterations

rank 50, it finishes within 20 minutes. At rank 100, it finishes
within 1 hour.

Compared to the pure matrix factorization, the proposed al-
gorithm has very little overhead although it takes features into
account. In fact, the most time consuming part is the commu-
nication among nodes, while computation within each node is
fast in-memory process. As long as we distribute the data (the
matrix to be completed and the features) at the very beginning
to each worker node, there will be no additional communica-
tion cost in the later optimization stages. The plain imple-
mentation is slower than the proposed algorithm by almost
half of the total time due to the same reason: Without fusing
the weight update into the factorization step, the latent vec-
tors {u; } need to be sent to each corresponding vblocks one
more time for the weight update, which induces additional
communication time.

5 Conclusions

In this paper, we learn the hostname preference and inves-
tigate its impact on search ranking relevance. We observe
impressive boost of search relevance by hostname preference
modeling. The block-wise parallel solution for feature-aware
matrix completion facilitates large scale experiments, which
makes frequent model update and intensive comparative stud-
ies possible. Both the preference learning model and the op-
timization algorithm can go beyond the task in this paper.
They apply to general preference learning applications where
explicit features and latent intent are present simultaneously
with scalability being critical.
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