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Abstract

Categories play a fundamental role in human cogni-
tion. Defining features (short for DFs) are the key
elements to define a category, which enables ma-
chines to categorize objects. Categories enriched
with their DFs significantly improve the machine’s
ability of categorization and benefit many applica-
tions built upon categorization. However, defin-
ing features can rarely be found for categories in
current knowledge bases. Traditional efforts such
as manual construction by domain experts are not
practical to find defining features for millions of
categories. In this paper, we make the first at-
tempt to automatically find defining features for
millions of categories in the real world. We for-
malize the defining feature learning problem and
propose a bootstrapping solution to learn defining
features from the features of entities belonging to a
category. Experimental results show the effective-
ness and efficiency of our method. Finally, we find
defining features for overall 60,247 categories with
acceptable accuracy.

1 Introduction

Great efforts have been dedicated to constructing a variety of
knowledge bases in recent years. Many knowledge reposito-
ries such as Yago [Suchanek er al., 2007], DBpedia [Auer et
al., 20071, Freebase [Bollacker et al., 2008] and Probase [Wu
et al., 2012] now are widely available and successfully ap-
plied in many real applications, such as type inference [Paul-
heim and Bizer, 2013], entity linking [Volz et al., 20091, ques-
tion answering [Unger et al., 2012], etc.

Categories are one of the most important elements in
knowledge bases. Humans understand the world by cat-
egories [Aristotle and Ackrill, 1963]. Categorization, the
process in which objects or instances are recognized, dif-
ferentiated and understood, is the most important cognition
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procedures of humans. How humans categorize an object
is an intriguing topic that can be traced back to thousands
of years ago. Many theories about categorization, such as
classical categorization [Aristotle and Ackrill, 19631, con-
ceptual clustering [Fisher, 1987; 1996] and prototype the-
ory [Lakoff, 1990] have been proposed. One of them stated
by Aristotle [Aristotle and Ackrill, 1963] claims that ob-
jects are grouped as categories by their similar properties.
Thus, an interesting problem naturally arises: how fo en-
able machines to do property-based categorization? The
prerequisites of property-based categorization are knowl-
edge bases consisting of categories and their properties.
Given these knowledge bases, machines are able to cate-
gorize an object by comparing object’s properties against
those of categories. To ensure the accuracy of the cate-
gorization, we hope the properties of categories can pre-
cisely define the category. That is, we need defining fea-
tures (short for DF) to characterize a category. For example
in Figure 1, we use Multicellular, Eukaryotic,
Kingdom Animalia to define category ANIMAIL, and
these properties together are called DFs of the category.

Theoretically, defining features are assumed to establish
the necessary and sufficient conditions to characterize the
meaning of the category. That is any entity with the defin-
ing features should belong to the category, and any entity be-
longing to the category must contain the defining features.
However, it is not practical to find precise DFs for categories
due to three reasons, First, we can always find outliers in a
category. For example one may consider can fly is part
of DFs of category BIRD, but ostrich can not fly. Sec-
ond, defining a category is always subjective. For example,
different people has disparate beliefs about what is a good
person. Third, real data is often sparse, which prevents
us from finding precise DFs. When more member entities
and their features are given, DFs of categories are subject to
change. Hence, more realistically, instead of finding the ex-
act defining features, we find a set of features that are most
probably to be the DFs of the category. But for the simplicity
of description, we still use DFs to represent the features that
we are looking for.

Categories enriched with defining features enable the
property-based categorization, which is a significant com-
plement to the current categorization techniques that heav-
ily rely on isA relations. Many taxonomies materializing

3924



isA relations between instances and their categories, such
as Yago [Suchanek er al., 2007], WikiTaxonomy [Ponzetto
and Strube, 2008], Probase [Wu et al., 2012] have been con-
structed. However, it is hard to use these taxonomies to cat-
egorize emerging entities since in most cases we only have
some description about an entity’s specific property instead
of its category. For example when human built the first plane,
we had no way to categorize it according to the taxonomy
in our mind although we knew all its specific properties. In-
stead, given the properties of categories, the comparison to
existing category properties can easily activate the creation
of a new category.

Property-based categorization is indispensable for many
real applications. The first application is knowledge base
completion. Given the DFs of one category, we can in-
fer that all its members have the corresponding DFs, which
can complete facts about the entities. The second applica-
tion is search intent understanding. To understand the intent
behind the query birds red-breasted, we just need to com-
pare the DFs of categories with the query. From Figure 1,
we know that Robin is a Bird with red-breasted DFE.
So we can infer the user’s intent is finding robins. Actually,
property-based categorization can benefit many applications
where isA relation based categorization is applicable, such
as topic search [Wang et al., 2010], short text understand-
ing [Hua et al., 2015] and web tables understanding [Wang et
al., 2012].

Despite its great value, DFs of categories are still very rare.
Many knowledge bases in general contain rare DFs for cate-
gories. For example, Probase contains millions of categories,
but has no DFs associated with each category. DBpedia has
rich property-value information for entities only. Inferencing
DFs of categories from their entities is not easy. In the tra-
ditional efforts, psychologists manually construct DFs for a
very limited number of popular categories, such as birds, an-
imals, and cars [Collins and Quillian, 1969; Tulving, 1972;
Smith er al., 1974]. However, it is impractical to find the
DFs for millions of categories in the real world manually, es-
pecially considering that there are millions of fail categories
which are unfamiliar to most of us.

[Multicellular, Eukaryotic, Kingdom Animalia]

[feathered, winged,
bipedal, warm-blooded,
egg-laying, vertebrate

[red-breast]

[Order Strigiform]

Figure 1: An example of DFs of categories.

The goal of this paper thus is to automatically find defin-
ing features for millions of categories in the real world.
Now, we have a strong foundation to solve this problem.
Many knowledge bases, such as DBpedia [Auer ez al., 20071,
Yago [Suchanek et al., 2007] and Freebase [Bollacker et

al., 2008], contain rich categories as well as their members.
DBpedia further provides rich structured information of in-
stances. These knowledge bases make it possible to automat-
ically mine the DFs for millions of categories. With these
data, we formalize the DF finding problem and propose a
bootstrapping algorithmic solution that learns the DFs from
entities belonging to the category. To the best of our knowl-
edge, this is the first effort to automatically find DFs for mil-
lions of categories.

2 Preliminary

Our ultimate goal is to find DFs for categories. However,
there are rare descriptions about categories that we can use
to mine DFs. Hence, we turn to mining defining features for
a category from the entities belonging to the category. Be-
cause many online knowledge bases contain rich entity infor-
mation. Our idea is that if most members of a category share
a set of features, these features are likely to be the DF's of the
category. Next, we clarify the representation of entities and
categories in the current knowledge bases.

2.1 Representation of Entity

We extract entity information from DBpedia, a large-scale
well-structured online knowledge repository. We use two
kinds of information widely available in DBpedia to repre-
sent entities. The first is property-value pairs of an entity.
They can be extracted from Infobox of the entity. The sec-
ond is Types of an entity, which are classes that entities be-
longing to. We use Property-Value (PV) and Type features
to represent an entity. Each feature about an entity thus es-
sentially is an assertion about the fact that the entity belongs
to a type or has a certain property-value pair. Table 1 shows
the representation of the film Inception. One of its PV
features (language, English) claims that the film’s
language is English, and one of its type features claims
thatitisa Film.

[ PV Features [ (language, English), (director, Christopher Nolan) ]
| Type Features | (Type, Film), (Type, Work)

Table 1: Two classes of features of entity Inception.

2.2 Representation of Category

A category is also represented by PV and Type features,
which can be inferred from its member entities. For
example, the Wikipedia category films directed by
Christopher Nolan can be defined by its type fea-
ture £ilm, and PV feature (director, Christopher
Nolan) .

One of the key issues to define a category is the granular-
ity of the type. A type always has its subtypes or super types.
More generally, types are organized as a hierarchy by the sub-
ClassOf relations among types. For example, a more general
type of films directed by Christopher Nolan
is work and the category can be defined with work and addi-
tional characterization of film. Obviously, such a definition is
also correct but not concise. In general, selecting an appropri-
ate type to define a category is not trivial. In this paper, we ex-
ploit DBpedia type hierarchy, and we always select the most



specific type to define a category. For films directed
by Christopher Nolan, we use its basic type £ilm as
part of the DFs.

3 Defining Feature Mining

We first present our solution framework, then elaborate each
main step in the framework.

3.1 Framework

STEP1: Extracting STEP2: Learning
> C-DFs from DBpedia Rules from C-DFs e

e l — e I — =S
| (= | PRt | (———
STEP4: Knowledge STEP3: DF Inference

base Population by Rules

Figure 2: Framework of Defining Feature Mining.

We propose a bootstrapping approach to find the DFs of
categories in DBpedia. We illustrate its iterative procedure
in Figure 2. We refer to a category and its DFs as a C-DFs
pair. Each iteration consists of four major steps. In the first
step, we extract DFs of categories from DBpedia. In the
second step, we learn rules from the C-DFs pairs extracted
in the previous step. In the third step, we extract more C-
DFs pairs from these rules. Finally, we populate DBpedia
by using C-DFs discovered so far. The above procedure is
repeated iteratively until no new DFs/Rules/Knowledge gen-
erated/discovered in any step.

3.2 Extracting C-DFs from DBpedia

We first give our metric to quantify how likely a feature set is
the DFs of a category, then we formalize the defining feature
learning problem, finally we elaborate our solution.

Scoring Candidate Feature Set We first elaborate how to
measure the “goodness” of a feature set £ = (f1, fo, ..., fx)
to be the DFs for a category c. The goodness score expresses
our belief that a candidate feature set is the DFs of the cate-
gory. We say one entity has feature set f, if it has all the fea-
tures f1, fa,..., fr in f. We use P(f|c) to denote the prob-
ability that an entity in category c has the feature set f. We
use P(c|f) to denote the probability that an entity, which has
feature set f, belongs to category c. These probabilities are
defined as follows:

P(flc) = # of entities in c that have £

# of entities in c

ey

# of entities in c that have f
P(c|f) = i 2
# of entities that have f
Thus, we define the “goodness” score of a feature set f with

respect to a category c as follows:

score(c,f) = P(f|c) x P(c|f) 3)
The higher the score is, the more likely that this feature set
is the DFs of the category. In particular, our score is a trade-
off between intra-class similarity and inter-class dissimilar-
ity of objects, where objects are described as a set of fea-
ture set [Fisher, 1987]. Intra-class similarity is reflected by

P(f|c). The larger this probability, the greater the proportion
of category members sharing f and the more predictable the
feature set is of category members. Inter-class similarity is a
function of P(c|f). The larger this probability, the fewer the
objects in contrasting categories that share this feature set and
the more predictive the feature set is of the category.

Problem Model Theoretically, when f is the DFs of ¢, both
P(f|c) and P(c|f) equal to 1, and consequently score(c, f) =
1. Because as DFs of ¢, all entities in ¢ have f and all en-
tities that have f belong to c¢. However, this is the ideal
case. In reality, due to the incompleteness of knowledge base,
score(c, f) is far less than 1. Because some entities might
miss some features in the knowledge base, which would un-
derestimate P(f|c). Some entities might miss some cate-
gories, which would underestimate P(c|f). Hence, more re-
alistically, we expect to find a feature set f which maximizes
the score: )
f(c) = argmax score(c, f) 4)
£
Still due to the incompleteness of knowledge bases, some
features might be absent in knowledge base. As a result, for
some categories, it is possible that we cannot find a feature set
that has a large enough score(c, f). Hence, we set a threshold
a (0 < a < 1) to prune any feature set whose goodness score
is below the threshold.

Algorithm A naive solution to find the best feature set suf-
fers from exponential cost. A category with /N candidate fea-
tures would have 2V — 1 different feature sets, only a few of
which can be used as DFs. Hence, precisely computing the
“goodness” score for each possible feature set is costly and
wasteful. To solve this problem, we propose to use a frequent
itemset mining based method to speed up the computation.
The procedure is illustrated in Algorithm 1. For each cate-
gory ¢, we first find its frequent feature sets F(c) by using
frequent itemset mining (line 3). Then, we just compute the
scores for the frequent feature sets (line 4-10).

Finding frequent feature sets of categories can be modeled
as a Frequent ltemset Mining problem. For each category
¢, items are all features of entities in c. Each entity belonging
to ¢ has a transaction consisting of the entities’ features. Let
support be the percentage of instances in a category c that
have the feature set. Given a minimum support threshold, we
use FP-growth algorithm [Han er al., 2000] to find frequent
feature sets. By focusing on only frequent ones, the feature
sets to be evaluated are significantly pruned. We illustrate the
modeling and the pruning in Example 1.

e T e e &
[ S fos fas fa | Jufoo fs | Jifo foo fr | fi,f2, fs. fo | f3, fi0 |

Table 2: A toy example for frequent feature set mining.

Example 1 (Find frequent itemsets for categories). In Ta-
ble 2, one category contains 5 entities and 10 features. To
find DFs, a naive method needs to enumerate all the possible
itemsets. The search space is 2'° — 1 = 1023. If we set the
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minimum support threshold as 0.4, by frequent itemset min-
ing, we obtain only 4 frequent feature sets { f1}, {f2}, {f3}
and { f1, fo}. We only need to compute the scores for these
4 feature sets, and find the one with the largest score as the
DFs. This greatly reduces the number of candidate feature
sets.

Next, we elaborate how to set the minimum support thresh-
old. As illustrated in Algorithm 1 (in line 3), we directly reuse
the goodness score threshold « that is used in Equation 4.
The rationality is shown in Theorem 1, which shows that if a
feature set is infrequent in c (i.e., the frequency is less than
alcl), then its goodness score must be less than «, thus could
be pruned.

Algorithm 1 Extracting C-DFs from DBpedia.

Input: Entities and their features; «c: minimum score to accept a f as DF
Output: f(c) forc € C.
1: for cin C do
& <« 0 //maximal score found so far
Find frequent feature sets F (c) for category ¢ with minimum support o
for each f in F(c) do
compute score(c, )
if score(c, f) > a and score(c, f) > & then
& + score(c, f)
fe)«f
end if
end for
. end for

—oPR RN R W

Theorem 1. For a category c, if a feature set f is infrequent in
c (i.e., the frequency is less than the minimum support count
ax|c|), then we have score(c, f) < a.

Proof. If £ is infrequent in ¢, which means that the number
of entities in ¢ owning f is less than « x |¢|. This implies that

P(fle) < O“Xcllcl < a. As the multiplication of two condi-
tional probabilities, we have

Score(c,f) = P(f|c) x P(c|f) < P(f|c) Q)

Thus, we have score(c, f) < «. Hence, this feature set f will
not be the DFs of c. O

3.3 Learning Rules from C-DFs

Due to the incompleteness of knowledge bases, some DFs of
categories would be infrequent, thus cannot be found by fre-
quent itemset mining. For these DFs, we first learn rules from
C-DFs already discovered and evaluate their quality. Then,
we use rules of high quality to extract more C-DFs. Next we
illustrate how to learn the rules, and how we use these rules
to obtain more C-DFs.

C: Films directed by (.*) DFs

Christopher Nolan (Type, Film) (director, Christopher Nolan)
James Cameron (Type, Film) (director, James Cameron)
Steven Spielberg (Type, Film) (director, Steven Spielbergq)
David Fincher (Type, Film) (director, David Fincher)

Ben Affleck (Type, Film) (director, Ben Affleck)

Left part of rule: r; Right part of rule: 7, ]
Films directed by <Person> [ (Type, Film) (director, <Person>) ]

Table 3: Five categories and their DFs in DBpedia, all of them
match the same rule.
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Preliminaries Let c be a category, ¢ be its name. Let P
be a string pattern. In this paper, we focus on the concep-
tualized pattern. That is we generate the pattern by replac-
ing a substring (say s) by its concepts ! if s represents an
instance of a concept. For example for all the categories in
Table 3, their names match the pattern Films directed
by <Person>, where <> is a placeholder and Person
is the type of instances that should be placed therein. When
instantiating the pattern, we just need to replace an instance
of Person at the placeholder. We define Mat ch as the oper-
ator determining whether a string matches a pattern. For each
PV and type feature of a category, we can define a predicate.
For example, T'ype(c, Film) claims that a category c is of
type Film. The PV feature can be generalized to a conceptu-
alized pattern by conceptualizing the value of properties. For
example, all PV features in Table 3 share the (director,
<Person>) pattern, where <Person> is the range type
of property director.

Rules and its generation Now, we are ready to define our
rules to populate DFs of categories. From Table 3, we derive
the following rule:

Match(é, Y *Films directed by <Person>") =

Type(c, Film) A director(c, <Person>)

Next, we elaborate how we learn the rules. The input is tuples
{(ci, {(pij,vi;j)})}, which are the C-DFs pairs we discovered
in the previous steps. We develop our rule learning solution
based on [Etzioni et al., 2005]. The algorithm proceeds as fol-
lows: We start with a set of seed C-DFs pairs (¢, PV') gener-
ated in Section 3.2. Then, for each seed (¢, PV = {(p,v)}),
if one value v in DFs appears in its category name, we gen-
erate a candidate rule by replacing the string of v in category
name and DFs with the concept of v. Here, we use the value
type defined in DBpedia as the concept. The conceptualized
category and conceptualized DFs are the left part ; and right
part 7, of the rule r, respectively. Example 2 illustrates the
rule generation procedure. Finally, we output good rules ac-
cording to the metrics defined below.

Example 2 (Rule Generation). Table 3 lists 5 categories that
share similar category names and DFs. For each category,
the value of director appears in their category names.
Thus, we use the range type of property director (i.e.,
<Person>), which actually is the type of the value in-
stances, to generate the pattern. In this way, we generate
a conceptualized category name “Films directed by
<Person>,” and conceptualized DFs (Type, Film)
and director (c, <Person>).

Quality Metrics of Rules Given a conceptualized rule r :
r, = 1. We use SupportCount and Confidence to
measure its quality. We define:

SupportCount(r) = # of C-DFs matching vy and v (6)

_ SupportCount(r)

d -
Confidence(r) # of C-DFs match r,

@)

"More specifically, we use types in DBpedia.



SupportCount measures the significance of the rule
by counting the number of C-DFs pairs that match r.
Confidence measures the conditional probability that a C-
DF pair matches r, given that the pair matches ;. Rules
that satisfy both a minimum support count threshold and a
minimum confidence threshold are called strong. If a rule
is strong, we accept this rule and use this rule to populate
the DFs of categories. In our implementation, we only keep
the rules with support count at least 10 because we found
that most rules with a frequency lower than 10 are meaning-
less.The minimum confidence threshold will be tuned in the
experiments.

3.4 DF Inference by Rules

Given a good rule, we search every category in DBpedia to
test whether it matches its left part. If true, we infer that it
contains the corresponding DFs specified in the right part of
the rule. Note that DFs found by the rule based inference
in general are not necessarily the same as the one found by
frequent feature set based approach (Section 3.2). Our test
shows that rule based inference has a higher quality than fre-
quent feature set based approach. Hence, when there is an
inconsistency, we choose the result derived from rule based
inference.

Example 3 (Inferring C-DFs from Rules). For exam-
ple, a new category Films directed by Martin
Scorsese also matches the left part of the rule in Ta-
ble 3. Hence, we infer that the DFs of Films directed
by Martin Scorsese are (Type, Film) and
(Director, Martin Scorsese)

3.5 Knowledge Bases Population

We populate the DBpedia knowledge base by using C-DFs
discovered so far. We use the following rules to enrich DB-
pedia entities with more types, property-value pairs and cate-
gories.

e Rule I: type completion. For each C-DFs pair, if an en-
tity belongs to the category c, then enrich the entity with
the type from DFs of the category and all the ancestor
types.

e Rule 2: property-value completion. For each C-DFs
pair, if an entity belongs to the category ¢, then enrich
the entity with the PV DFs of the category.

® Rule 3: category completion. For each C-DFs pair, if an
entity contains the feature set D F's, then it must belong
to category c. We enrich the entity with the category

Example 4 (Knowledge Base Population). For example, if
we know that entity Incept ion belongs to category Films
directed by Christopher Nolan, then we can in-
fer that it has type Film and all the ancestor types of Film
such as Work and Thing (from Rule 1) and it contains
the property-value pair (director, Christopher
Nolan) (from Rule 2). If Inception misses the cat-
egory Films directed by Christopher Nolan,
by Rule 3 we can infer its membership from the facts that
InceptionisaFilmand one of its property-value pairs is
(director, Christopher Nolan).
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4 Experiments

We use DBpedia2015-04 version 2 as our dataset. Specif-
ically, we use DBpedia Ontology, Entity Types,
Entity Infobox and Entity Categories as input,
and return DFs for DBpedia categories. There are overall
753,524 DBPedia categories. We run our solution on all these
categories, and successfully find DFs for overall 60,247 cat-
egories.

Metric Since no ground truth is available, we resort to hu-
mans to judge the quality of DFs of categories with graded
scores. The criteria for manual evaluation is show in Table 4.
For each DF of a given category, we ask three volunteers to
rate the quality of the DFs. We report the average of users’
rates as the quality score. The higher the quality score, the
more likely the feature sets are the DFs of the category.

Score | Meaning Example
3 Perfect (Type, album), (Singer, Jay Chou)
One DF not found / (Type, album), (Singer, Jay Chou)

2 One non-DF found (genre, Pop music)

1 At least one DF (Type, single), (Singer, Jay Chou),
found (genre, Pop)
0 No DFs found (Type, single), (genre, Pop)

Table 4: Criteria for manual evaluation for category Jay
Chou albums.

4.1 Extracting C-DFs from DBpedia

Recall that our core idea is finding DFs from only frequent
feature sets. The minimum support threshold is set as «,
equivalent to the goodness score threshold used for the prun-
ing of the unpromising feature sets. Thus, the setting of « is
critical for both efficiency and effectiveness of our solution.
In general, with the increase of «, we hope to find DFs of
higher quality with less time.

e} #0f C-FFs | #of C-DFs | Avg. Quality Score
0.5 5,978,069 38,277 2.31
0.6 | 4,494,896 29,141 2.49
0.7 3,357,449 20,196 2.51
0.8 2,375,901 12,904 2.52
0.9 1,191,224 6,295 2.55

Table 5: Performance under different a.

We first report the number of frequent feature sets of cat-
egories (C-FFs) in Table 5. We can see that the numbers of
C-FFs and C-DFs pairs discovered by our approach decrease
when « increases. On average, we only need to compute the
“goodness” scores for less than 8 feature sets per category (for
example, when o = 0.5 we have 5,978,069/753,524 < 8).
The computation cost is reduced greatly by pruning infre-
quent feature sets. We also evaluate the quality of the ex-
tracted C-DFs pairs. We randomly select 100 C-DFs pairs
and evaluate their average quality score by human judgement.
The result is shown in the last column in Table 5. We can see
that the quality score increases with . We notice that when
« goes up to 0.6, the increase rate slows down. In order to

2http://wiki.dbpe:dia.org/DownloeldsZO1 5-04



obtain as more as possible reasonable C-DFs pairs, we set «
as 0.6.

4.2 Expanding C-DFs from Rules

Next, we evaluate the precision of C-DFs generated from
rules. We use the C-DFs pairs extracted in the previous step
as input to generate the rules. We got 87 rules with support
count no less than 10. We give some rule examples in Table 6.

Good Rules Sup. Conf.
Match(é, Lakes of <Country>) = 19 0.82
Type(c, Lake) A country(c, <Country>) )
Match(¢, Films directed by <Person>) 1511 0.78
= Type(c, Film) A director(c, <Person>) } )
Match(¢, <Company> books) = 31 0.76
Type(c, Book) A publisher(c, <Company>) i

Table 6: Three good rules in DBpedia.

To get high-quality C-DFs pairs, we need to set a minimum
confidence threshold 5. We randomly select 100 C-DFs pairs
generated from these rules with confidence no less than (3,
and ask three volunteers to evaluate their quality. From Fig-
ure 7, we notice that when the threshold goes up to 0.6, our
approach achieves the highest score 3.0. As a result, we use
0.6 as the confidence threshold. Finally, we obtain 33,449
C-DFs pairs with average quality score as 3 from the good
rules. By merging with the C-DFs pairs generated with the
previous experiment, we totally obtain 58,740 C-DFs pairs
with average quality score 2.85.

[ B [ 03 [ 04 [ 05 [ 0607 [08]09]
| Avg. Quality Score [ 2.85 | 2.88 | 2.86 | 3.0 [ 3.0 | 3.0 [ 3.0 |

Table 7: Performance under different 3.

4.3 Knowledge Population by C-DFs

Count Precision
(entity, type) 207,499 98%
(entity, property, value) | 713,021 92%
(entity, category) 402,719 100%

Table 8: Performance of knowledge population.

By using the C-DFs pairs from previous step, we popu-
late DBpedia with three different classes of information. As
shown in Table 8, we obtain 207,499 new types, 713,021
new property-value pairs and 402,719 new categories for
DBpedia entities. To evaluate their precision, we also ran-
domly select 100 of them and judge the correction by volun-
teers. Finally, the precision is 98%, 92% and 100%, respec-
tively. The precision of property-value pairs is lower than
others, because there exist some categories whose PV DFs
have a logically OR instead of AND relations to define the
category. For example, in category Real Madrid C.F.
players lists Real Madrid football players past or present.
Its PV DFs is either (team, Real Madrid C.F.) or
(formerteam, Real Madrid C.F.). Choosing any
one of them as PV DFs would reduce the precision of new
property-value pairs of entities, while others are not affected.
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4.4 Performance in different iterations

# of Cumulative C-DFs
58,740
60,247

Iteration
1
2

Avg. Quality Score
2.85
2.82

Table 9: Performance in different itereations.

We also evaluate the performance in different iterations.
As shown in Table 9, we finally obtain 60,247 new C-DFs
with average quality score 2.82. The majority of new C-
DFs are extracted from iteration 1. After populating the
DBpedia, some non-DFs of the categories may become fre-
quent, hence reduce the precision of C-DFs. For exam-
ple, the DFs of category EPMD albums in iteration 1 are
(Type, Album) and (Artist, EPMD), while in itera-
tion 2, the DFs are (Type, Album), (Artist, EPMD)
and (producer, Erick Sermon).

5 Related Work

Conceptual Clustering Our work is similar to Conceptual
Clustering, which clusters instances into different categories
based on their property-value pairs. COBWEB [Fisher, 1987;
1996] attempts to maximize both the probability that two in-
stances in the same concept have PV pairs in common, and
the probability that instances from different concepts have
different property-value pairs. In Conceptual Clustering, cat-
egories are unknown. While in our setting, categories are
given, and our goal is finding DFs of them.

Typical Property or Property-Value Pairs Finding Many
efforts have been dedicated to finding typical/frequent prop-
erty or property-value pairs from categories. Yago [Suchanek
et al., 2007] uses hand-crafted rules to find frequent property-
value pairs from Wikipedia categories. Catriple [Liu et al.,
2008] uses some predefined templates about categories and
their super categories to obtain some frequent property-value
pairs. However, both of them specified the rules by humans,
while in our work, we learn the rules automatically.

Other approaches tend to find typical properties from web
corpus. Most of them focus on finding high quality syntactic
patterns to extract and score the properties of categories on
sentences [Ravi and Pagca, 2008; Bellare et al., 2007; Pasca
et al., 2006], but it is not suitable for knowledge bases.

6 Conclusion

In this paper, we devote our efforts to learning defining fea-
tures for millions of categories. We formalize the defining
feature mining problem and propose a bootstrapping solu-
tion. We learn defining features of categories from the fea-
tures of entities that belong to the category. We propose to
use frequent feature set to prune the search space of defin-
ing features. We conduct extensive results on real knowledge
bases. Our results verify the effectiveness and efficiency of
our models and solutions. We find DFs for 60,247 categories
with acceptable quality in total.
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