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Abstract

Mobile Landmark Search (MLS) recently receives
increasing attention. However, it still remains un-
solved due to two important issues. One is high
bandwidth consumption of query transmission, and
the other is the huge visual variations of query im-
ages. This paper proposes a Canonical View based
Compact Visual Representation (2CVR) to han-
dle these problems via novel three-stage learning.
First, a submodular function is designed to mea-
sure visual representativeness and redundancy of a
view set. With it, canonical views, which capture
key visual appearances of landmark with limited
redundancy, are efficiently discovered with an it-
erative mining strategy. Second, multimodal sparse
coding is applied to transform multiple visual fea-
tures into an intermediate representation which can
robustly characterize visual contents of varied land-
mark images with only fixed canonical views. Fi-
nally, compact binary codes are learned on interme-
diate representation within a tailored binary embed-
ding model which preserves visual relations of im-
ages measured with canonical views and removes
noises. With 2CVR, robust visual query process-
ing, low-cost of query transmission, and fast search
process are simultaneously supported. Experiments
demonstrate the superior performance of 2CVR
over several state-of-the-art methods.

1 Introduction

With the rapid growth of social multimedia and mobile de-
vices, tremendous amount of landmark images have been
generated and disseminated in popular social networks. Mo-
bile Landmark Search (MLS) is gaining its importance and
increasingly becomes one of the most important techniques
to pervasively and intelligently access knowledge about the
landmarks of interest [Ji et al., 2012; Chen et al., 2014;
Cheng and Shen, 2016].

Mobile devices generally suffer from limited computa-
tional power, short battery lifetime, and inefficient or less
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reliable wireless communication channel. Consequently, a
client-server structure is one of the most popular architec-
ture paradigms in existing MLS systems, where query is
captured and submitted by mobile devices, computation-
intensive search is performed on remote sever with rich com-
puting resources. Since wireless bandwidth is limited, how
to generate a compact signature for query to achieve low bit
consumption data transmission becomes vital important. On
the other hand, visual splendour of a landmark can be pho-
tographed by multiple tourists under various circumstances
(e.g. a wide sampling of positions, viewpoints, focal lengths,
various weather conditions or illuminations.). Besides, land-
marks could be comprised of a wide range of regions. In
this case, the images taken for different sub-spots in these
landmarks may appear with more visual diversity [Zhu ef al.,
2015al. All the characteristics of landmark inevitably make
the visual appearances of query images very diverse, thus
posing great challenges on MLS search system.

Hashing [Wang et al., 2016; Zhu er al., 2015¢; Xie et al.,
2016b] aims at learning compact binary codes with Hamming
distance computation. Thus, it can significantly reduce trans-
mission cost and speedup the search process. Hence, hashing
is a promising scheme to support large scale landmark image
indexing and retrieval. However, the most existing hashing
strategies developed for MLS are based on unimodal visual-
words based features and generally suffer from 1) limited dis-
criminative capability and 2) poor robustness against visual
variations [Chen et al., 2014; Zhou er al., 2014]. Although
general multimodal hashing techniques [Kim and Choi, 2013;
Song et al., 2013; Liu et al., 2014; Shen et al., 2015] improve
discriminative capability with multimodal fusion [Zhu et al.,
2015b; Xie et al., 2016al, they are based on simple low-level
feature fusion and enjoy less robustness against visual varia-
tions of the query landmark images captured by mobile de-
vices.

This paper proposes a Canonical View based Compact
Visual Representation (2CVR) to support efficient and ro-
bust MLS. We also develop canonical views as the views
which capture key visual appearances of landmark with lim-
ited redundancy. Based on them, an arbitrary image can be
robustly represented using a specific canonical view or the
cross-scenery of multiple particular canonical views. Ac-



cordingly, varied visual contents of landmark can be effec-
tively characterized using their visual correlations to only
fixed canonical views. Through encoding these relations into
the binary codes, visual variations of queries can be robustly
modeled. Furthermore, the low-cost query transmission and
fast search can be well supported.

The contributions of this paper are summarized as follows:

1. A submodular function is designed to measure visual rep-
resentativeness and redundancy of a view set. With it, an
iterative mining strategy is proposed to efficiently identify
canonical views of landmarks using multiple modalities.
Theoretical analysis demonstrates that it can achieve near-
optimal solutions.

A novel intermediate representation generated by multi-
modal sparse coding is proposed to robustly characterize
the visual contents of varied landmark images. It provides
a natural and effective connection between the canonical
views and binary embedding model.

A binary embedding model tailored for canonical views is
proposed to preserve visual relations of images into binary
codes and thus support efficient MLS with great robust-
ness.

2 Related Work

2.1 Mobile Landmark Search

Ji et al. [2012] present a Location Discriminative Vocabulary
Coding (LDVC) to compress Bag-of-Visual-Words (BoVW)
with location awareness. Duan et al. [2013] explore multi-
ple information sources to extract compact landmark image
descriptor. Chen et al. [2014] develop a soft Bag-of-Visual
Phrase (BoVP) to learn category-dependent visual phrases,
by capturing co-occurrence features of neighbouring visual-
words. Zhou et al. [2014] propose Scalable Cascaded Hash-
ing (SCH) to achieve codebook-free large-scale MLS.

All the techniques mentioned above learn compact binary
codes from only visual-words based features, without consid-
ering complement information from other visual modalities.
This limitation makes the generated codes less discriminative.

2.2 Multimodal Hashing

Multimodal hashing has been emerging as a promising tech-
nique to generate compact binary code based on multiple fea-
tures. The earliest study on this topic is Composite Hashing
with Multiple Information Sources (CHMIS) [Zhang et al.,
2011]. It just post-integrates linear output of features and
fails to fully exploit their correlations. Kim ef al. [2013]
present Multi-View Anchor Graph Hashing (MVAGH) by ex-
tending Anchor Graph Hashing (AGH) [Liu e al., 2011] to
gain robust representation cross multiple images. Song et
al. [2013] develop Multiple Feature Hashing (MFH). By us-
ing the learned hashing hyper-plane, MFH concatenates all
the features into a single vector and then maps it into binary
codes. Liu e al. [2014] propose Compact Kernel Hashing
(CKH) by formulating the similarity preserving problem with
optimal linearly-combined multiple kernels corresponding to
different features. More recently, Multi-View Latent Hash-
ing (MVLH) [Shen er al., 2015] is proposed to incorporate
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multimodal features in binary representation learning by dis-
covering the latent factors shared by multiple views. Further,
distinguished from the existing methods, 2CVR aims to learn
informative canonical views by capturing key characteristics
of landmarks. Consequently, the generated binary codes can
enjoy desirable robustness.

3 The Proposed Method

3.1 Overview

Figure 1 illustrates the basic framework of 2CVR learning.
Given a set of landmark images, the computation of compact
representation 2CVR, consists of three major steps: Firstly,
multimodal canonical view mining is proposed in order to ef-
ficiently discover a compact but informative canonical view
set from noisy landmark image collections to capture key vi-
sual appearances. Then, in order to robustly model diverse
visual contents, an intermediate representation is generated
by computing multimodal sparse reconstruction coefficients
between image and canonical view. Finally, compact binary
codes are learned by preserving the discovered visual rela-
tions measured on canonical views.

3.2 Multimodal Canonical View Mining

It is common that, in practice, several sceneries of landmarks
are frequently photographed and disseminated by different
tourists. These views of landmarks are considered as canon-
ical views in this work and applied to cope with visual vari-
ations of query images captured by mobile devices. In this
subsection, we first formally define mathematical properties
of canonical view set, and then give an efficient submodular
function based mining algorithm for discovery.

Definition 1. Let Z denote image space, T = {Z,}_,, N

is the number of database images. Let L denote landmark
space, L = {L,}M_,, M is the number of landmarks in
database. L., is defined as a set of images which are recorded
at the nearby position of the myy, landmark. Let V denote a
view set of L. It is defined as a set of images {v; } Lzll belong-
ingtoZ, V CZ, |V| < |Z|

Definition 2. Let Rep(V) denote the visual representative-
ness of view set V over L. It is defined as Rep(V) =
Zmev Rep(v;) = Zmev Zu,- e7.izj 9ij» 9 is the function
which measures the feature similarity of two image views,
gij is short for g(v;,v;). Let Red(V) denote the visual
redundancy of view set V. It is defined as Red(V)

Dovev Red(vi) =30, ey iz Gis-




Definition 3. Let C denote the canonical view set of L.
The views involved in C can comprehensively represent di-
verse visual contents of landmark, and meanwhile, have less
visual redundancy. In this paper, it is defined as C
arg maxycz,|yj=r h(V),h(V) = Rep(V) — Red(V), T is
cardinality of canonical view set.

Lemma 1. h(V) is submodular function. That is, VV; C
YV, C V,V’Uj ¢ V, h(Vl U’Uj) —h(Vl) > h(VQ UU]') —h(VQ)

Proof Rep(Vy Uv;) —Rep(V1) =Rep(Vo Uv;)—

Rep(V2) — (Red(V1 Uv;) —Red(V1)) = —2 Z Gij
v; EV1\v;

>-2 Y gy = —(Red(V2 Uv;) — Red(Vy))

= h(Vl U ’Uj) — h(Vl) > h(VQ U vj) — h(VQ)

Lemma 2. h(V) is monotonically nondecreasing function.
That is, VV1 C Vo CV, h(Vy) < h(Vs).

Proof h(V) = Z Z

v €V v; €I\ V,i#]

= h(V1) = Z Z

v; €V1 v €V2\V1,i#]

> X

vi €V2\V1 v; €T\ Va,i#j

Gij

ZED DY

v; €V vj €T\ Va,i#j

ZEDDEDY

v, EV1 vj €T\ Va,ij

Gij

= h(V2) = 9ij

Since in our case, V1|, |Va2| < T

=D > s > D

vi €V1 v €V \V1,i#j v; €V2\V1 v €T\ Va,i#]
= h(V1) < h(V2)

As indicated in Definition 3, to discover optimal canonical
view set, the function ~()) should be maximized. However,
since h(V) is submodular function, the maximization of it is
a NP-complete optimization problem. Fortunately, h(V) is
monotonically nondecreasing with a cardinality constraint.
Canonical views can be discovered near optimally by greedy
strategy as following steps

Gij

Step 1: Extract visual feature for all landmark images.

Step 2: Set canonical view set as empty, C = ().

Step 3: Iterate the following two steps for T' times.

3.1: Compute diff(Z,) = h(C UZ,) — h(Z,) for each
landmark image Z,, € T.

3.2: Select the image with the maximum diff into C,
I* = argmaxy, cr diff(1,), and simultaneously remove it

fromZ, C <+ CUZ*" T+ T\ZI"

Theorem 1. [Nemhauser et al., 1978] Let S* denote the
global optimal solution that solves the combinatorial opti-
mization problem arg maxsc r |s|=1 MS), S denote approx-
imate solution found by the greedy algorithm. If h(S) is non-
decreasing submodular function with h(Q) = 0, we can have

¢—1

h(8) > h(87) R
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where ( refers to the natural exponential.

As validated by Theorem 1, this greedy algorithm can
achieve a result that is no worse than a constant fraction $=1

away from the optimal value. The time complexity of canon-
ical view mining is reduced to O(NT'). The canonical view
discovery process can be completed efficiently. To compre-
hensively cover visual appearances of landmarks, canonical
view mining is performed in multiple modalities, obtaining
canonical view set {C?}]”_,, P is number of modalities. We
concatenate features of canonical views and construct a ma-
trix EP = [e},...,el] € R%*T in modality p, dy is the cor-
responding feature dimension.

3.3 Intermediate Representation Generation

With the discovered canonical views, an arbitrary recorded
landmark image either describes a specific canonical view or
the cross-scenery among several particular canonical views.
In both cases, visual contents of the image can be principally
represented with its relations to several particular canonical
views. Motivated by the observations, we calculate multi-
modal sparse reconstruction coefficients between image and
canonical views. And the auto-generated response coeffi-
cients construct the dimensions of intermediate representa-
tion. The concrete mathematical form is

P P N
DIXT—EYP|E+a)y Y |ldh @ yhllE

mig
[C L0 F A — p=1n=1 (1)
dist(zh, EP
st.1lpyl =1,d8 = exp(w)ﬁp,”

where @ > 0 is a constant factor that adjusts the balance
between terms, p is set to be the mean of pairwise dis-
tances, ® denotes the element-wise product, 17 € R de-
notes a column vector with all ones. X? = [z,...,2%] €
R%*N denotes features of database images in modality
p. YP = [yf,...,yR] € RT*N denotes modality-specific
canonical view based intermediate representation. Each col-
umn has r non-zeros coding coefficients. dist(zP, EP) =
[dist(a?,el),...,dist(ak,e})]. The problem in (1) can
be efficiently solved by using the Alternating Direction
Method of Multipliers (ADMM) [Elhamifar and Vidal, 2013].
After solving, we concatenate the calculated Y'? and construct
dimensions of intermediate representation

(@3]

Remark. The intermediate representation can effectively
characterize diverse visual contents by adaptively adjusting
the response coefficients on canonical views. It lays the solid
foundation for subsequent binary embedding.

3.4 Binary Embedding Model

Based on the intermediate representation, we design a binary
embedding model to learn final binary representation.

Due to approximate canonical view mining and multi-
modal information integration, the intermediate representa-
tion generation inevitably brings about noises and redundan-
cies. It is very important to remove them during binary em-
bedding to avoid disturbance. To achieve this goal, matrix

Y =Y. YT e RTPN



factorization is applied in this paper to decompose interme-
diate features into the latent binary bits and guarantee them
to be orthogonal to each other. Besides, a graph regularizer
is constructed to preserve visual relationships among images.
That is, if two landmark images have similar visual distribu-
tions on canonical views, they are constrained to be projected
to close points in hamming space. Moreover, since queries
are out of database and continuously flowing into database
when time passes by, we learn linear projection for out-of-
sample extension. Therefore, by integrating the aforemen-
tioned considerations, the overall binary embedding is for-
mulated as
min Tr(V'L(V")") + AllY - UV*||E+B(|V" -

WY [+ |W|[%) 3)
st VWV =1,V e {-1,1}V

where A, 3,7 > 0 adjust the balance of terms. ||Y — UV*||%
is matrix factorization term, V*(V*)* = I. is bit orthogo-
nality constraint. Tr(V*L(V*)T) is graph regularizer which
preserves visual relations of landmark images on canonical
views. T'r(+) is trace operation, L is graph Laplacian matrix,
which is constructed based on intermediate representation.
It measures visual relations of images on canonical views.
||[V*—W?Y||%+~||W]||% is binary projection learning term,
W € RTPxe¢ s linear projection matrix to be learned, c is
binary code length, ||[V* — W'Y||% is to reduce the loss be-
tween binary codes and the projected values. It is worth not-
ing that as linear projection is leveraged, the online mobile
landmark search process can be efficient.

When directly imposing V* € {—1,1}*¥ problem (3)
will become NP-hard. Thus we relax this discrete constraint
to V € R*¥ and derive the following relaxed form

. T 2
wmin  Tr(VIVT) +AY = UVI[E + B([V =
WY [+ W |[7)

The optimal W, U that solves Eq.(4) can be expressed in

terms of Y and V. We can derive the following theorem.

Theorem 2. Let W, U,V and Y be defined as before. Then
the optimal W that solves learning problem in (4) is given by
W= (YYT+~I)"YYVT U = YV The relaxed minimum
problem in (4) is equivalent to the following simple problem
min  Tr(VAVY) 5)
vvi=I,

where A= L—\YTY +B(I-YTQY),Q = (YYT+~I)~ 1.
Proof. We calculate the derivation of the objective function
in Eq.(4) w.rt U and set it to be zero. Thus, we have
YV 42U =0=U=YV"
By replacing U into Eq.(4), we can derive that
IY = UVI[ = Tr((Y = UV)(Y - UV)Y)
=Tr(YY") = 2Tr(YV'U") + Tr(UVV'U")
=Tr(YY") = 2Tr(YV'VY) + Tr(YV'VYT)
=Tr(YY") - Tr(YV'VYT)
= min MY —UV|F = ,min “ATr(YV'VYT)

= min -ATr(VY'YVT)
Vvi=I.
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Similarly, by calculating the derivation of the objective func-
tion in Eq.(4) w.r.t W and setting it to be zero, we can have

YY'W YV AW =0=W = (YY" +4I)"'YV" (6)

Let Q = (YY™ +~4I)~1, then W = QY V. By replacing
W into Eq.(4), we can derive that

IV =WY|E +AlWE = Tr(V(I =Y QY)VT)

By summing three terms together, we find that the relaxed
minimum problem in (4) is equivalent to

,min_ Tr(VIV") = XTr(VY'YV") + BTr(V(I - Y

YY' +~4D)'Y)VT) = ,min, Tr(VAV")
where A = L-AYY +B(I-Y?QY),Q = (YY" T+~I)~ L.
This completes the proof of the theorem. O

It turns out that the problem in Eq.(4) has a close-form so-
lution. The rows of optimal solution (We denote it as V') are
given as the c eigenvectors with minimal eigenvalues of the
matrix A. After that, the optimal binary projection W can be
calculated as Eq.(6).

However, solving continuous V will generate binary quan-
tization error. Inspired by [Gong et al., 20131, we could ap-
ply orthogonal transformation to rotate V to align with hy-
percube {+1}*¥ as close as possible, and thus reduce the
quantization error. But, it would be feasible only if the rota-
tion does not change the minimum of Eq.(5). Fortunately, it
can be easily validated that, for an arbitrary orthogonal ro-
tation matrix R, we can have minyyr—; Tr(VAVT) =
mingyyrrr—=y, Tr(RVAVTRT). Hence, it is possible to
learn an orthogonal rotation matrix R which guarantees that
RV can simultaneously achieve the minimum objective func-
tion value in Eq.(5) and binary embedding errors. Formally,
R is learned by

min |[V* = RV|[F s.t. V" = {-1,1}*,RR" = L.

This reduces to the Orthogonal Procrustes Problem (OPP)
[Yu and Shi, 2003]. A local optimal solution can be obtained
by alternating minimization between V* and R. Afterwards,
the final binary projection matrix is adjusted as W = WR.
Given a landmark image ¢, we first extract intermediate rep-
resentation Y, as Eq.(2). Its binary codes are calculated as
V. = sgn(W"Y,), where sgn(x) denotes the sign function.
It returns 1 if x > 0 and —1 otherwise.

4 Experiments

Experimental Datasets and Setting. Three real landmark
datasets are applied for empirical study: Oxford5K [Philbin
et al., 20071, Paris6K [Philbin et al., 2008], and Paris500K
[Weyand and Leibe, 2013]'. Oxford5K is comprised of 5,062
Oxford landmark images in 17 categories. Paris6K consists
of 6,412 Paris landmark images in 12 categories. Paris500K
contains 41,673 images with clustering ground truth which

'In this paper, the maximum number of images in each category
is limited to 2000 to avoid bias.



Table 1: mAP of all approaches on three datasets. The best performance in each column is marked with bold.

Oxford5K Paris6K Paris500K
Methods
32 48 64 128 32 48 64 128 32 48 64 128

SPH 0.2930 | 0.2989 | 0.2997 | 0.3279 | 0.2868 | 0.3111 | 0.3252 | 0.3449 | 0.3080 | 0.3656 | 0.3948 | 0.4756
PCAH 0.2837 | 0.2959 | 0.2979 | 0.3151 | 0.2964 | 0.3204 | 0.3288 | 0.3393 | 0.3512 | 0.4168 | 0.4447 | 0.5186
AGH 0.3007 | 0.3162 | 0.3098 | 0.3070 | 0.3276 | 0.3383 | 0.3520 | 0.3276 | 0.3530 | 0.3721 | 0.3872 | 0.3944
ITQ 0.2878 | 0.2672 | 0.2870 | 0.3105 | 0.2761 | 0.2988 | 0.2960 | 0.3339 | 0.2219 | 0.2820 | 0.3049 | 0.3565
SGH 0.3029 | 0.3160 | 0.3148 | 0.3283 | 0.3220 | 0.3458 | 0.3579 | 0.3725 | 0.3309 | 0.3714 | 0.4071 | 0.4628
CHMIS 0.2977 | 0.3092 | 0.2955| 0.3121 | 0.3247 | 0.3278 | 0.3410 | 0.3697 | 0.3937 | 0.4431 | 0.4684 | 0.5317
MVAGH | 0.3039 | 0.2997 | 0.3104 | 0.3058 | 0.2521 | 0.2733 | 0.2864 | 0.3197 | 0.2916 | 0.3200 | 0.3384 | 0.3631
MFH 0.2728 | 0.2882 | 0.3021 | 0.3203 | 0.2909 | 0.3111 | 0.3191 | 0.3597 | 0.3539 | 0.4200 | 0.4461 | 0.5203
CMKH 0.2947 | 0.3152 | 0.2983 | 0.3041 | 0.3337 | 0.3449 | 0.3408 | 0.3426 | 0.4114 | 0.4547 | 0.5095 | 0.5497
MVLH 0.2895 | 0.3286 | 0.3008 | 0.3232 | 0.3320 | 0.3355 | 0.3366 | 0.3977 | 0.3168 | 0.3385 | 0.3827 | 0.4163
2CVR 0.3176 | 0.3371 | 0.3458 | 0.3586 | 0.3644 | 0.3856 | 0.4022 | 0.4173 | 0.4480 | 0.5191 | 0.5645 | 0.6139
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Figure 2: Precision-Scope curves on Paris500K.

describe 79 landmarks. For Oxford5K and Paris6K, 10%,
20%, and 70% images are used as query images, training im-
ages, and database images, respectively. For Paris500K, the
corresponding ratios are 10%, 10%, and 80%. Both query and
database images appear with great visual diversity in three
datasets. Each image is represented by features in 5 visual
modalities: 81-D Color Moments (CM) [Yu et al., 20021, 58-
D Local Binary Pattern (LBP) [Wang et al., 2009], 80-D Edge
Direction Histogram (EDH) [Park et al., 20001, and 1,000-D
BoVW?2 [Sivic and Zisserman, 20031, 512-D GIST [Oliva and
Torralba, 2001].

Evaluation Metrics. In experimental study, mean Aver-
age Precision (mAP) [Liu et al., 2014; Shen er al., 2015] is
adopted as main evaluation metric. The number of returned
images is set as 100 to collect experimental results. Further-
more, Precision-Scope curve is also reported to demonstrate
the retrieval performance variations with the number of re-
trieved images. Binary code length ¢ on all datasets is var-
ied in the range of {32, 48, 64,128}, and the search scope is
ranged from 100 ~1000 with step size 100.

Competitors. Since 2CVR is learned by unsupervised
learning on multiple visual modalities, we compare it with
state-of-the-art unsupervised multimodal binary representa-
tion generation approaches. They include’: CHMIS [Zhang
et al., 2011], MVAGH [Kim and Choi, 2013], MFH [Song

2128-D SIFT [Lowe, 2004] is employed as local descriptor.
*For CHMIS, MFH, CMKH, SPH, PCAH, AGH, ITQ, and SGH,
implementation codes of them are provided by the authors. For
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et al., 2013], CMKH I[Liu et al., 2014], and MVLH [Shen
et al., 2015]. Besides, we also compare 2CVR with sev-
eral state-of-the-art unimodal approaches: SPH [Weiss et al.,
2008], PCAH [Wang et al., 2010], AGH [Liu er al., 2011],
ITQ [Gong et al., 2013], and SGH [Jiang and Li, 2015].
For them, multimodal features are concatenated into a uni-
fied vector for subsequent learning. The involved parame-
ters of the compared approaches are strictly adjusted to re-
port the maximum performance according to the relevant lit-
erature. For 2CVR, the best performance is achieved when
A =1, =10%~ = 10*. The best canonical view size T is
set to 100 on Oxford5K and Paris6K, and 300 on Paris500K.
The best number of nearest canonical views r in Eq.(1) is set
to 70 on Oxford5K and Paris6K, and 200 on Paris500K. o in
Eq.(1) is set to 10~ to maximize the performance.

Performance Comparison. We report mAP results and
Precision-Scope curves on Paris500K of all approaches in Ta-
ble 1 and Figure 2, respectively. From the presented results,
we can easily find that 2CVR consistently outperforms the
competitors on all code lengthes and datasets. It is interest-
ing to find that, even with less binary bits, 2CVR can achieve
higher mAP than many competitors with longer binary codes.
Further, Figure 2 shows that, on Paris500K and 128 bits,
the precision gain of 2CVR over the second best approach is
more than 10%, and it becomes larger when more images are
returned. Moreover, we observe that performance improve-
ment on Paris500K is more than that obtained on Oxford5K
and Paris6K. Since images in Paris500K have more diverse
visual appearances, this experimental phenomenon validates
the desirable property of 2CVR on accommodating the visual
variations. Finally, we observe that the retrieval performance
of 2CVR is steadily improved when binary code length in-
creases. However, we don’t gain similar observations for
many approaches studied in this experimental study. This is
because 2CVR ensures bit orthogonality constraint in binary
code learning. The design guarantees the learned binary bits
to achieve less information redundancy. More binary bits will
enable 2CVR to gain higher discriminative capability.

MVAGH and MVLH, we implement them according to the relevant
literature.



Table 2: Canonical views improve the robustness of 2CVR. 2CVR-II denotes binary code learning without canonical views.

Methods Oxford5K Paris6K Paris500K
32 48 64 128 32 48 64 128 32 48 64 128
2CVR-II 0.3080 | 0.3208 | 0.3230 | 0.3188 | 0.3357 | 0.3525 | 0.3722 | 0.3815 | 0.1949 | 0.2527 | 0.3037 | 0.4573
2CVR 0.3176 | 0.3371 | 0.3458 | 0.3586 | 0.3644 | 0.3856 | 0.4022 | 0.4173 | 0.4480 | 0.5191 | 0.5645 | 0.6139
Table 3: Effects of canonical view mining in multiple modalities.
Methods Oxford5K Paris6K Paris500K
32 48 64 128 32 48 64 128 32 48 64 128
CM 0.2159 | 0.2130 | 0.2266 | 0.2224 | 0.2018 | 0.2179 | 0.2167 | 0.2262 | 0.1665 | 0.1932 | 0.2107 | 0.2440
LBP 0.2749 | 0.2703 | 0.3873 | 0.3008 | 0.2359 | 0.2524 | 0.2503 | 0.2638 | 0.2682 | 0.3074 | 0.3314 | 0.3761
EDH 0.2537 | 0.2681 | 0.2798 | 0.2696 | 0.2361 | 0.2471 | 0.2578 | 0.2735 | 0.2879 | 0.3281 | 0.3588 | 0.4099
BOVW 0.3059 | 0.3176 | 0.3220 | 0.3408 | 0.3480 | 0.3548 | 0.3630 | 0.3820 | 0.4217 | 0.4618 | 0.4953 | 0.5445
GIST 0.2688 | 0.2686 | 0.2689 | 0.2869 | 0.2813 | 0.2834 | 0.2862 | 0.3114 | 0.3376 | 0.3956 | 0.4408 | 0.4981
2CVR 0.3176 | 0.3371 | 0.3458 | 0.3586 | 0.3644 | 0.3856 | 0.4022 | 0.4173 | 0.4480 | 0.5191 | 0.5645 | 0.6139

Canonical View or Not? To see how the canonical view
mining can benefit compact representation learning, we first
compare the performance of 2CVR with the one which per-
forms binary embedding Eq.(3) directly on raw concatenated
multiple low-level features. Table 2 presents the detailed
comparative results. From it, we easily find that 2CVR can
consistently yield better performance. On three datasets, the
maximum search precision improvements reach about 3%,
4%, and 26%, respectively. The performance improvement is
attributed to the fact that, canonical views capture key visual
contents of landmarks, diverse visual contents can be robustly
accommodated, and thus binary codes have better robustness.

Then, we investigate the effects of canonical view min-
ing in multiple modalities. We compare the performance of
2CVR with the approaches that perform binary embedding
Eq.(3) on only unimodal canonical view set. We denote them
directly with the corresponding modality names: CM, LBP,
EDH, BOVW, and GIST respectively. Table 3 presents the
main results. It demonstrates that 2CVR can achieve the
best performance. The reason is that, with multimodal learn-
ing, canonical view set can cover more visual variations and
thus 2CVR can enjoy better robustness. All the above results
clearly demonstrate that 2CVR adopts a reasonable strategy
by employing canonical views for MLS.

Finally, we validate the effects of the proposed submodular
function based canonical view selection approach. We com-
pare the performance of 2CVR with two variants of method
which discover canonical views by random selection and k-
means, respectively. The detailed comparison results are
presented in Table 4. It can be easily observed that 2CVR
can consistently achieve better performance. These results
demonstrate the effectiveness of submodular function on dis-
covering canonical views of landmarks.

Parameter Study. We investigate the performance varia-
tions of 2CVR with parameters. Due to the space limit, we
observe the performance variations with A, 3, and . They
are used in Eq.(3) to play trade-off between terms. We ob-
serve the performance variations with respect to two param-
eters while fixing the remaining one parameter. We report
results on Oxford5K when binary code length is 128. Similar
results can be found on other code lengths and datasets. Fig-
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Figure 3: mAP variations with parameters on Oxford when
binary code length is 128. This figure is best viewed with pdf

magnification.

ure 3 presents results. From it, we can find the performance
of 2CVR is stable on a range of parameters.

5 Conclusions

This paper proposes 2CVR to support efficient and robust mo-
bile landmark search. The design of 2CVR has basis in real-
ity that only canonical views are frequently photographed and
disseminated by different tourists, and they naturally provide
effective visual representation basis of landmarks. Experi-
mental results on three real landmark datasets demonstrate
that our proposed approach can achieve superior performance
compared with several state-of-the-art approaches.
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