Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

Rational-Based Visual Planning Monitors

Zohreh Alavi
Wright State University
alavi.3@wright.edu

1 Overview

The ability to act and respond to exogenous events in dynamic
environments is crucial for robust autonomy. In dynamic en-
vironments, external changes may occur that prevent an agent
from reaching its goal(s). I am interested in the design of rea-
soning and planning components operating in environments
that undergo changes in real time. My goal is to develop a
framework for fully integrated planning, execution and vision
in dynamic environments.

In the initial phase of this work, we have concentrated on
the problem of enabling a planning system to deal with rel-
evant changes in the environment during planning time. We
introduce a new system for planning in a world under con-
tinuous change in an agent with visual perception. Our main
contribution is to make vision sensitive to relevant changes in
the environment that can affect an agent plans. We applied a
rational-based monitor technique [Veloso ef al., 1998] to the
SHOP Hierarchical Task Network (HTN) planner [Nau et al.,
1999]. We modified SHOP to generate plan monitors to inter-
act with a vision system and react only to those environmental
changes that bear on current planning decisions. Thus when
the monitors detect any relevant changes, corresponding plan
transformation are executed as needed.

Rationale-based monitors provide a means of focusing vi-
sual attention on features of the world likely to affect the plan.
When a feature being monitored changes, and the change is
detected, we say that the monitor fires. Deliberation can then
be performed to decide whether the plan under construction
should be changed. If the planner decided to attend to the
detected changes of the world state, it will perform a plan
transformation. In particular, parts of the plan may be deleted
because they have become unnecessary; new tasks may be
added and current ones refined, and prior decisions about how
to achieve particular goals may be revisited. Originally mon-
itors were implemented in the state space planner Prodigy
[Veloso et al., 1998], our work differs in using these moni-
tors in the SHOP HTN planner.

We have added our extended SHOP planner in the plan-
ning phase of a cognitive architecture named MIDCA [Cox
et al., 2016]. The meta-cognitive, integrated dual-cycle ar-
chitecture (MIDCA) consists of "action-perception” cycles at
both cognitive level and the meta-cognitive level. A cycle
selects a goal and commits to achieving it. The agent then
creates a plan to achieve the goal and subsequently executes

3968

the planned actions to make the domain match the goal state.

MIDCA communicates with a Baxter humanoid robot to
accomplish a goal in a dynamic environment using the mon-
itors to focus vision and adapt plans. We have added an in-
terface to MIDCA to communicate with ROS and the Baxter.
It is responsible for sending messages to ROS as requested
by MIDCA, and for placing messages received in appropriate
queues for MIDCA to process. During the perceive phase,
these messages will be accessed and stored in MIDCAs main
memory. The interpret phase is responsible to reason about
these messages and also create world states which are rep-
resented symbolically as logical predicates. Each monitor
hires a perception node that is running asynchronously, which
guides vision to focus on a specific features of the world.

Additionally, we have run experiments in the blockworlds
domain. Initial results show that planning with rationale-
based monitors can reduce the total planning time when the
world changes.

2 Implementation

We have implemented rational-based monitors within the
SHOP planner. Algorithm 1 shows the overall procedure.
SHOP is an HTN planning algorithm which creates plans by
recursively decomposing tasks into smaller subtasks until it
reaches the primitive tasks which can be accomplished di-
rectly. SHOP uses methods and operators. An operator spec-
ifies a way to perform a primitive task, and a method spec-
ifies a way to decompose a non-primitive task into a set of
subtasks.

To integrate with rational-based monitors, two parts are
added to the SHOP planner. First, the monitors are generated
when a primitive subtask is added to the set of subtasks (step
14 in the algorithm). Second, at each cycle of planning sens-
ing is performed to see if any monitor fires and if so, a plan
transformation is done in response (step 2 in the algorithm).

2.1 Monitor Generation in SHOP

New monitors can be generated whenever a primitive subtask
is added to the list of tasks to accomplish. The monitors are
generated to observe those features of the world that led us to
choose that subtask.

At each planning cycle, the SHOP planner checks for fired
monitors. If a monitor fires, the planner goes back to the point
which the related subtask was chosen and refines the plan.



Algorithm 1 SHOP with Rationale-based Monitors
1: procedure SHOP(s,T, D)

2: check for fired monitors if any, keep the plan and
backtrack to the the level the first fired monitor was gen-
erated

3: if ' = nil then

4: return nsl

5: end if

6: t < the first task in T’

7: T < the remaining tasks in T’

8: if ¢ is primitive (i.e. there is an operator for ¢) then

9: nondeterministically choose an operator o for ¢

10: P+ SHOP(o(s),T, D)

11: if P = Fail then

12: return Fail

13: else

14: generate monitors for precond(o)

15: end if

16: return cons(o, P)

17: else if there is a method applicable to whose precon-
ditions can all be inferred from .S then

18: nondeterministically let m be such a method

19: return SHOP(s, append(m(t, S),U), D)

20: end if

21: end procedure

3 Experiment

To evaluate the performance of our approach in planning, we
ran the system in a modified blocksworld domain. The goal
of this experiment is to examine the benefit from using mon-
itors to improve planning in a dynamic environment. In this
experiment, we changed the world state that made the planner
jump to a different partial plan.

We added the possibility that blocks could catch on fire
and before any block was picked up, the fire should first be
extinguished. To use an extinguisher, it first needed to be
taken out of the box, which is considered a block. If the box
was not clear, the planner generated a plan to make the box
clear. Furthermore, there were additional actions available to
our agent allowing it to deal with these refinements. The three
new types of actions are as follows:

put-out-fire(B,) If B, is on fire, extinguish B,

get-extinguisher(ext, B;) if the By, is clear, take out the ex-
tinguisher ext from By

make-box-clear(B;) if By, is not clear, unstack all blocks on
top of By

In each planning problem we set the initial state to be one
with a block, B,, on fire, a separate tower with B; as its bot-
tommost block, and a fire extinguisher, ext, inside By. The
goal is to holding(B,). By varying the height of the tower, we
can vary the complexity and length of the solution. For exam-
ple, if the height of tower is 5, the planner has to unstack and
putdown 4 blocks in order to obtain the fire extinguisher from
block By and use it on block B, before it can pick up B,.
If the fire goes out during the planning process, the planner
will jump to pickup(B,). Here, the purpose of monitoring is

to observe such a change as the fire going out, and suggest a
jump to the shorter plan.

In this experiment , we varied the height of tower,n, from
4 to 26. During planning, the monitor which observes the
state of onfire(B,,) detects the change and lead to plan refine-
ment. We vary the time at which this monitor fires during the
planning process, namely after 0, 10, 30, 50 planning steps.

Our initial result shows when the environment does not
change, the amount of time increases with n. However, with
the rational-based monitors, the planner can react to the state
changes and find a plan faster. As would be expected, when
the changes occur later, the savings benefit of the planner is
reduced, because it has already performed significant plan-
ning.

4 Future Work

There are many promising avenues for future work. First, we
plan to examine the benefit of using these monitors during the
act (execution) phase. This approach could allow the agent to
respond to unexpected changes during execution (i.e., after
planning has already succeeded). This helps the agent to fo-
cus only on what is important.

In our current work, we detect changes during planning
time using rationale-based monitors. In doing so, we inter-
leave perception and planning. This suggests that cognitive
tasks may benefit from calling other cognitive tasks and/or
changing the order of in which cognitive processes oper-
ate. Exploring this idea further is another avenue of future
work. In this modified cognitive architecture, different phases
will be able to call each other as needed. We also suggest
that interpreter should be running in parallel with all phases.
Whenever a new change is detected, the interpreter will per-
form reasoning to make decisions on how to react to detected
change. These changes may result in the consideration of new
plans or alter the agent’s intentions regarding its own reason-
ing processes. Some changes may cause the system to replan
many times, but the better solution might be to change focus
completely and pursue new goals. The interpreter will de-
cide which solution should be taken in response to the new
changes.

Acknowledgments: This work was supported in part by
grants NSF 1217888 and ONR N00014-15-1-2080

References

[Cox et al., 2016] Michael T Cox, Zohreh Alavi, Dustin
Dannenhauer, Vahid Eyorokon, and Hector Munoz-Avila.
Midca: A metacognitive, integrated dual-cycle architec-
ture for self-regulated autonomy. In AAAI 2016.

[Nau et al., 1999] Dana Nau, Yue Cao, Amnon Lotem, and
Héctor Mufioz-Avila. SHOP: Simple hierarchical ordered
planner. In Proceedings of the 16th IJCAI-Vol. 2, pages
968-973. Morgan Kaufmann, 1999.

[Veloso et al., 1998] Manuela M Veloso, Martha E Pollack,
and Michael T Cox. Rationale-based monitoring for plan-
ning in dynamic environments. In AIPS, pages 171-180,
1998.

3969



