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1 Introduction

Hunger is a major problem worldwide. Food banks around
the globe combine forces with various welfare agencies to-
wards alleviating the hunger by assisting people in need. For
example, Foodbank Australia cooperates with local charities
in order to effectively allocate food as it is donated. In 2014,
nearly 10% of these relief organizations could not meet the
demand and thus left around 24,000 children with no break-
fast in their schools; see [Byrne and Anderson, 2014]. Can
we improve the food allocation? Further, the Foodbanking
network in Canada has a long-standing tradition in handling
customer demands, but in the last year 60% of their spon-
sorship covered the delivery of the food; see [Carter, 2014].
Can we reduce the transportation costs implied by the food
allocation? Finally, the Meal Gap in New York reached 250
millions in 2014; see [Agi, 2015]. How do we allocate food
in cities that “never sleep” and in which there are high time
and spatial dynamics? Evidently, a food bank needs an allo-
cation mechanism that takes all these features into account.
Such a mechanism should be able to (1) allocate resources
online, (2) be robust to stochastic changes in the allocation
preferences and (3) inform dispatching solutions. I address
exactly such complex real-world features in here.

2 Related Work and Research Plan

A greatly investigated topic in resource allocation is offline
fair division. Since [Steinhaus, 1948], various mechanisms
have been developed that allocate goods offline; see e.g.
[Brams and Taylor, 1996]. Today, however, we witness the
age of high technologies that enable us to solve complex on-
line problems efficiently. We therefore turn our attention to
online fair division. For example, [Walsh, 2011] cut cake on-
line by exploiting offline fair division procedures. Further,
we cooperate with Foodbank Australia to improve the food
allocation to charities. The food arrives online and is allo-
cated immediately to the charities. [Walsh, 2015] formulated
an online model for this setting in which there is a number of
agents and indivisible items arrive in rounds. Each agent has
some (private) utility for each of the items. As an item arrives,
they then bid for the item thus revealing their valuations for
it and a mechanism allocates it to one of the agents. [Walsh,
2015] proposed two such mechanisms. LIKE gives uniformly
at random an item to an agent that bids positively. The allo-
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cations of LIKE can be greatly unfair as an agent can get all
items. BALANCED LIKE achieves fairer allocations as it al-
locates uniformly at random an item to an agent with fewest
items among those agents that bid positively. This model pro-
vides a simple abstraction of clearly more complex fair divi-
sion problem that can greatly benefit from the use of a num-
ber of existing optimal online matching algorithms; see e.g.
[Jaillet and Lu, 2014]. Based on previous work, my thesis ad-
dresses a number of more complex features of this online fair
division problem and focuses on the development of sophis-
ticated and novel mechanisms for it. I next list my research
plan that extends the initial one in [Aleksandrov, 2015].

model with one item at a time and mechanisms; see
[Aleksandrov et al., 2015]

model with unequal entitlements and mechanisms
model with multiple items at a time and mechanisms;
model with divisible items and quotas and mechanisms;
see e.g. [Walsh, 2011]

model with budget-constrained agents and mechanisms;
see e.g. [Goel et al., 2013]

model with coalition formations and mechanisms
mixed model with vehicle-routing constraints and mech-
anisms; see e.g. [Aleksandrov et al., 2013]

To analyse mechanisms, I study axioms such as strate-
gyproofness, envy-freeness, efficiency among many others.
In addition, I validate their competitiveness against the op-
timal (offline or online) mechanism using generated and real-
world data; see e.g. [Dubey, 1986; Koutsoupias and Papadim-
itriou, 2009; Mattei and Walsh, 2013]. Moreover, I investi-
gate complexity questions around computing outcomes, opti-
mal strategies and manipulations; see e.g. [Aziz er al., 2015;
Bouveret and Lang, 2014].

3 Results

BALANCED LIKE outputs fairer allocations than LIKE, see
[Aleksandrov et al., 2015]. However, BALANCED LIKE is
not strategyproof. Ideally, a mechanism is strategyproof and
fair. In support, the BALANCED QUEUE mechanism com-
putes a subset of agents that have fewest items among those
bidding positively and a priority queue that orders the agents
using “first-in-first-out” principle given their last items or uni-
formly at random if they have zero items. It then allocates the
new item using this queue.



Theorem 1 The BALANCED QUEUE mechanism is strate-
gyproof and bounded envy-free ex post with 0/1 utilities.

Proof sketch. For strategyproofness, note that to choose an
agent uniformly at random is the same as to draw an ordering
of the agents uniformly at random. Hence, we can draw an
ordering prior round 1 and then use it resolve ties when some
agents have zero items. No agent has incentive to bid 1 for
items they sincerely value with 0. Each agent gets most items
if they bid 1 for items they sincerely value with 1. Otherwise,
they are placed later in the queue. For bounded envy-freeness,
see Theorem 8 from [Aleksandrov et al., 2015].00

The mechanisms above allocate a single item at each
round. But, in practice, we might expect multiple items to ar-
rive simultaneously. At each round, the BALANCED DRAFT
mechanism then computes a balanced ordering of the agents
that gives greater priority to agents with fewer items. Ties are
broken uniformly. When a single item arrives per round, BA-
LANCED DRAFT degenerates to BALANCED LIKE. Hence,
it is bounded envy-free ex post, but not strategyproof. Next,
suppose we give virtual budgets to our agents. We can do this
prior the allocation process or at each round. At each round,
we now run an auction. ADAPTIVE CLINCHING reveals the
item price and an agent that values it not lower competes for it
by placing a bid, subject to their budget. The auctioneer then
picks uniformly at random an agent with the greatest budget
and bid, and charges them the item price. ADAPTIVE CLI-
NCHING is budget-feasible, budget-monotonic, individually-
rational, efficient and strategyproof with fixed budgets, see
[Goel et al., 2013]. T show that it is no longer strategyproof
with increasing budgets.

Theorem 2 The ADAPTIVE CLINCHING mechanism is not
strategyproof with increasing budgets.

Proof. Let us consider the alphabetical division of items a
and b between agents / and 2. Suppose a and b cost 0.25$ and
1$. Further, suppose / and 2 receive 1$ prior round 1, / and 2
receive 1.25$ and 1$ prior round 2, I values both items with
1$, and 2 values a with 0.75$ and b with 1.25$. Sincerely,
1 gets a and 2 gets b. Suppose next / and 2 bid strategically
their total remaining budgets of 2$ at round 2. Then, / gets b
with probability % This is strict improvement.O]

I further look into computational questions. BALANC-
ED QUEUE is equivalent to BALANCED LIKE when each
agent gets exactly one item in each possible ex post alloca-
tion. ADAPTIVE CLINCHING is equivalent to BALANCED
LIKE when all budgets, positive bids and item prices are
the same. Consequently, computing expected outcomes with
BALANCED QUEUE or ADAPTIVE CLINCHING is at least as
hard as with BALANCED LIKE. The latter mechanism resem-
bles the popular random priority dictatorship whose exact ex-
pected outcomes are hard; see e.g. [Sabdn and Sethuraman,
2013]. However, computing ex post outcomes with any of
these mechanisms is easy.

To sum up, I presented a strategyproof and bounded envy-
free ex post mechanism for the model in [Walsh, 2015],
a bounded envy-free ex post mechanism for the extended
model with multiple items and a strategyproof repeated auc-
tion mechanism for the model with budget-constrained agents
when the budgets are fixed.
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4 Conclusion

I presented my postgraduate research plan and several new
results that extend my previous work. Despite the novelty
of my thesis, many interesting questions remain open. For
instance, how do we allocate costs to the charities? Perhaps
some of them are more profitable to the business than others.
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