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Abstract
My research focuses on investigation and improve-
ment of knowledge representation (KR) language
P-log which was designed to reason about both log-
ical and probabilistic knowledge. In particular, I
aim to extend P-log with new constructs, clarify
its semantics, develop a new efficient inference en-
gine for it and establish its relationship with other
related formalisms. Successful completion of this
work will greatly increase the scope of practical ap-
plications of the language.

1 Introduction
The development of KR languages and inference engines for
them has been an important direction of AI research during
the last decades. Having a powerful language with an ef-
ficient inference engine allows a reasoner to reduce certain
AI tasks to representing them in a given language and invok-
ing its inference engine to compute the answer. Recently a
substantial work was done to develop languages combining
logical and probabilistic reasoning (e.g, Problog [De Raedt
et al., 2007]). However, most such languages are based on
classical first-order logic. In [Baral et al., 2009] the au-
thors define a language named P-log which combines a pow-
erful non-monotonic logical formalism Answer Set Prolog
(ASP) [Gelfond and Lifschitz, 1991] with probability theory
based on Causal Bayesian Networks [Pearl, 2009]. The non-
monotonocity provides numerous advantages, such as natural
representation of defaults, belief updates, abductive reason-
ing, etc. This language is the focus of my research, where the
main directions are as follows:

• improving the usability of P-log by
(a) providing means for specifying the sorts (types) of

objects dealt with by a program and designing cor-
responding type-checking algorithms,

(b) extending the language with new constructs to in-
crease its expressive power,

(c) developing a new efficient inference engine for the
language which will increase the scope of its appli-
cability; and

• establishing the relationship between P-log and other re-
lated formalisms.

In the next section I describe the improvements of the us-
ability of the language. The last section summarizes the
progress and describes the work to be completed.

2 Improving the Usability of P-log

2.1 Sorts and Error-Checking Algorithms

In the original P-log from [Baral et al., 2009] only very sim-
ple sorts of objects can be specified concisely. In published
work [Balai et al., 2013] we developed a framework which al-
lows for concise representations of sorts hierarchies in a logic
program and automatically detects certain semantic errors in
it. The framework was implemented and successfully used in
AI classes, various research projects (e.g, robotics application
in [Zhang et al., 2014]), and in the development of other log-
ical languages at our lab (e.g, [Kahl et al., 2015]). This work,
including the implementation, will be expanded to P-log.

2.2 Extending the Language and Clarifying Its
Semantics

I extend the language by allowing certain language constructs
to occur in the bodies of its logical rules. This simplifies the
use P-log for causal reasoning. Clarifications are primarily
concerned with P-log treatment of partial functions.

2.3 Algorithms

A straightforward inference in P-log requires the computation
of all possible worlds of a program. In [Zhu, 2012] Weijun
designs an algorithm which performs a more optimal com-
putation. The algorithm from [Zhu, 2012] however has some
restrictions. Firstly, it was proved to be sound only for a com-
paratively small class of programs. Secondly, I found a cer-
tain number of errors in its pseudocode and implementation.

In the thesis I define a class of programs which extend the
class used in the algorithm from [Zhu, 2012], prove their co-
herency (an important property defined in [Baral et al., 2009])
and design a new inference algorithm which works for pro-
grams in this class. The algorithm consists of two main steps
as shown below:
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Algorithm 1 Inference in P-log
Input: A P-log program ⇧, a query Q to ⇧
Output: The probability of Q with respect to ⇧

1: ⇧Q := Simplify(⇧, Q)
2: Return Compute Probability(⇧Q, Q)

Simplify(⇧, Q) returns a program ⇧Q which is normally
smaller than ⇧ and preserves the probability of Q. The proce-
dure is similar to the one defined by magic sets [Faber et al.,
2007] for ASP programs. Compute Probability(⇧Q,Q),
similarly to DPLL search, constructs a tree, whose nodes are
partial interpretations of functional symbols of ⇧ which is
sufficient to compute the necessary probability. For example,
consider the following program ⇧:

a, b, c, d, e, f, g : boolean
r1 : random(a).
r2 : f  a.

r3 : e.

r4 : random(d) e.

r5 : pr(d) = 0.6
r6 : b d, not c.

r7 : c d, not b.

r8 :  d, b.

r9 : random(g) c.

and query c. Simplify(⇧, c) drops the first two rules from
the program, since c does not depend on functional symbols
a and f . Compute Probability(⇧c, c) constructs the tree:

0.6 0.4

Figure 1: The tree to answer query c in ⇧c

Each node of the tree stores a pair (⌃, I), a set of functional
symbols of the program and their partial interpretation. The
children of a node of the tree are obtained by:

• selecting a random functional symbol of the program
whose value has not been decided;

• assigning possible values to the selected random func-
tional symbol; and

• computing the consequences (i.e, the values of other
functional symbols which do not depend on random
functional symbols not decided so far).

To extend the root of the tree shown on Figure 1, the func-
tional symbol d was selected. Two children corresponding to
the two possible values of d (true and false) were added.
The consequences are values of functional symbols b and c.

Note that there is no need to extend the tree further by se-
lecting g, since every leaf already includes c from the query.

Each leaf node of the tree has an assigned probability. The
probability of the query c is equal to the probability of the left
leaf, 0.6, obtained from the pr-atom pr(d) = 0.6 of ⇧.

3 Progress and Future Work
So far I have:

• defined extensions of the language (including those by
sort definitions from [Balai et al., 2013]);

• designed a pseudo-code for a new inference algorithm;
• defined a new class of P-log programs which extend

those from [Zhu, 2012] and [Baral et al., 2009];
• investigated the relationship between P-log and

LPMLN in [Balai and Gelfond, 2016]
Future work related to my thesis will consist of :

• completing the work on the language extensions;
• proving the correctness of the designed algorithm, im-

plementing it and investigating the efficiency;
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