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1 Introduction
In the last decade, we have seen an exponential increase in the
number of devices connected to the Internet, with a commen-
surate explosion in the availability of data. New applications
such as those related to smart cities exemplify the need for
principled techniques for automated intelligent decision mak-
ing based on available data. Many decision-making problems
require reasoning in large and complex state spaces, some-
times under stringent time constraints. The nature of these
problems suggests that planning approaches could be used to
find solutions e�ciently. Automated planning is the basis for
addressing a diversity of problems beyond classical planning
such as automated diagnosis, controller synthesis, and story
understanding. Nevertheless, many planning paradigms make
assumptions that do not hold in real-world settings.

Our work focuses on exploring planning paradigms that
capture properties of real-world decision-making applica-
tions. These properties include the ability to model nonde-
terminism in the outcome of actions, the ability to deal with
complex objectives that are temporally extended (in contrast
to final-state goals) some of which may be necessary and
other simply desirable to optimize for. Finally, we are in-
terested in dealing with incomplete information. Addressing
this class of problems presents challenges related to problem
specification, modeling, and computationally e�cient tech-
niques for generating solutions.

Illustrative Example Consider the problem of designing a
tourist route to visit a set of touristic attractions in London.
The tour is subject to certain constraints. For example, an in-
dividual may feel it’s mandatory for the tour to include the
London Eye and the Houses of Parliament, and also desirable
to visit the Maritime Museum and the Greenwich Observa-
tory or other highly-rated attractions, if these can be included.
The tour must be realizable via a combination of walking and
public transit. If it is raining, then walking should be min-
imized. These are examples of temporally extended goals.
Following from our example, aspects of the dynamics of the
environment are not controllable by the agent, such as traf-
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fic, punctuality of public transport, and the weather. If the
stochastic model for these events is available, we can quan-
tify the expected quality of the plan according to a certain
metric (e.g. probability of visiting the noted touristic attrac-
tions at the end of the journey) and attempt to produce plans
that maximize this objective. When the stochastic model is
not available, we may want to produce plans that are robust
to any contingency (e.g. a plan that suggests visiting a mu-
seum, at any moment, if it starts to rain).

2 Progress to the Date
In our work to date, we have advanced the state of the art in
planning problems with non-deterministic actions and tem-
porally extended goals. In this section, we introduce the
FOND and probabilistic planning models, and describe the
high-level contributions of our work. We refer the reader to
the respective publications for further details.

A Fully Observable Non-Deterministic (FOND) planning
problem is a tuple P = hS , sI ,A, F, S Gi, where S is a finite
set of states, sI 2 S is the initial state, S G ✓ S is a set of
goal states, and A is a finite set of actions. For each action
a 2 A, and state s 2 S , the result of applying a in s is one of
the states in the set F(s, a) ✓ S . Solutions to FOND planning
problems are policies, or mappings ⇡ : S ! A from states
into actions. In concrete, strong-cyclic solutions are those
that lead the agent to a goal state with complete guarantees
[Cimatti et al., 2003].

A probabilistic planning problem is a tuple P =
hS , sI ,A,T, S Gi. Di↵erent than the FOND model, for each
action a 2 A, and pair of states s, s0 2 S , T (s, a, s0) is
the transition probability of reaching s0 when a is applied in
s. Solutions to probabilistic planning problems are policies.
In goal-oriented probabilistic planning models such as Max-
Prob, solutions are policies that lead the agent to a goal state
with maximal probability.

2.1 ProbPRP
In [Camacho et al., 2016a] we present ProbPRP, a proba-
bilistic planner that finds solutions to probabilistic planning
problems where the objective is to attempt to maximize the
probability of reaching a goal state. We formalize this class
of problems and call it HighProb.

ProbPRP has two important merits. First, it overcomes
scaling di�culties that previous o✏ine algorithms experi-
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enced. And second, it o↵ers superior optimality guarantees
with respect to the previous state of the art in HighProb, the
online planner RFF [Teichteil-Königsbuch et al., 2010]. De-
spite being an o✏ine algorithm, ProbPRP outperforms RFF
in general and solutions are of better quality.

ProbPRP leverages core similarities between probabilistic
and FOND planning, making use of state-of-the-art FOND
planning techniques from PRP [Muise et al., 2012] in its
underlying algorithm. The partial state representation ob-
tained via plan regression facilitates states entailment during
the search process, and results in considerable improvements
in the algorithm convergence. Besides, the compact represen-
tation of state results in smaller policies. The deadend detec-
tion mechanism prunes the search space e↵ectively by means
of forbidden state-action pairs (FSAPs) generated automat-
ically during the search process, and guarantees optimality
of the algorithm when deadends are avoidable. ProbPRP ex-
tends the state-of-the-art FOND planner PRP [Muise et al.,
2012] with techniques that leverage probabilistic information
to produce high quality solutions. Some of these enhance-
ments to ProbPRP include the bias towards exploration of
high-likelihood plans, and the final FSAP-free round. The
search bias produces policies that have smaller expected plan
length – orders of magnitude smaller in some instances. A
final search round is performed to extend the best incumbent
policy found by the algorithm, this time with the FSAP mech-
anism disabled. We observed the final FSAP-free round in-
crements the probability of reaching a goal state up to 30%.

2.2 LTL FOND Translations
In [Camacho et al., 2016b] we address the problem of plan-
ning with non-deterministic actions and temporally extended
goals. We assume goals are specified as LTL formulas [Pnueli,
1977], and call the model LTL FOND. LTL formulae can be in-
terpreted over finite or infinite state trajectories. Solutions to
di↵erent interpretations are not always equivalent. A number
of techniques exist to solve planning with LTL goals, a subset
in the presence of non-deterministic actions, and with finite
and infinite LTL interpretations. A common approach is to
compile the problem into one with a final-state goal, and solve
the resulting problem with state-of-the-art planning technol-
ogy (e.g. [Baier and McIlraith, 2006; Patrizi et al., 2013;
Torres and Baier, 2015]). Related work attempts to maxi-
mize reward in MDPs with finite LTL goals and preferences
(e.g. [Lacerda et al., 2015]), and in decision processes with
non-markovian rewards (e.g. [Thiébaux et al., 2006]).

We present two di↵erent techniques for compiling LTL
FOND into FOND, each addressing both the case of finite
LTL interpretations, and the case of infinite LTL interpreta-
tions. Remarkably, we are the first to solve the full spectrum
of LTL FOND planning interpreted on inifite state trajecto-
ries. Equipped with strong-cyclic planner, PRP, our system
proves competitive with other state-of-the-art algorithms for
LTL FOND, with the advantage of being able to solve the full
spectrum of LTL FOND problems.

Our translations leverage ideas from [Baier and McIlraith,
2006; Torres and Baier, 2015; Patrizi et al., 2013], and use
Non-deterministic Finite Automata (NFA) and Alternating
Automata (AA) representations of the LTL formula to mon-

itor progression, and strong-cyclic planning to synthesize so-
lutions. The size of NFA-based translations is worst-case
exponential in the size of the formula, and the size of AA-
based translations is worst-case polynomial. Interestingly,
PRP performance was better with NFA-based translations,
with smaller policies and lower run-times than with AA-
based translations.

3 Discussion and Future Work
The techniques we are developing are applicable to a diver-
sity of real-world problems from the control of collections
of smart-home devices, to applications in transportation plan-
ning and industrial process planning. A natural next step is
to extend our recent work to address the class of probabilis-
tic planning problems with LTL goals which we believe can
be done via our existing translations and ProbPRP. We are
also interested in extending our work to capture LTL prefer-
ences and rewards. Finally, we plan to explore extensions to
our models to include both propositional and real-valued vari-
ables since such hybrid models are prevalent in many of the
real-world applications we’ve encountered.
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