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My primary research interest is social behavior for soft-
ware agents to achieve cooperation in general-sum normal
form games. An agent can easily be programmed to con-
stantly cooperate in a normal form game, but such an agent is
not suitable for environments with potentially hostile oppo-
nents. For a rational agent, the main reason to cooperate is to
induce reciprocation; to reciprocate it is necessary to deter-
mine which moves are cooperative. In constant-sum games
cooperation is impossible because any gain by one agent is
a loss by the other agent. In other games (such as Prisoner’s
Dilemma) it is easy to identify cooperative moves because the
opponent’s payoffs for that move strictly dominate the other
moves of the agent. In general it is not easy to identify coop-
erative strategies in arbitrary general-sum games.

1 Attitude

Given a normal form game, how do you determine which
moves are cooperative? One model that has been used to ex-
plain cooperative behavior in humans is that players act as
if they receive a share of opponent payoffs [Frohlich, 1974].
This model can be used to generate cooperative behavior for
software agents. We say agents are cooperating when they se-
lect joint strategies which provide better outcomes than they
could achieve individually.

Given a two-player general-sum normal form game G,
with utility functions U; and Us, cooperative moves are found
by creating a modified game G’ with the same set of moves
and utility functions U] = U1+ A1*Us and U} = Uy+AoxUy
where A; and Ay are the attitudes of player 1 and player 2.
The Nash equilibria of G’ define strategies for the players
which reflect that attitude values used to create G’. A; and
Ay can take any value, but we confine our attention to the
range [—1, 1]. Values lower than O create strategies where the
agent harms itself to harm the opponent, and values higher
than 1 create strategies where the gain to the opponent isn’t
worth the cost to the agent.

Figure 1 shows the expected outcome of the calculated
strategy in randomly generated games. The main influence
on an agents payoff is the attitude of the opponent, but the
agents own attitude also affects its payoff. Adopting a selfish
attitude generally helps the agent, but if the opponent’s atti-
tude is positive reciprocating will improve the agent’s payoff.

To use this technique to cooperate agents must coordinate
on an appropriate set of attitude values. This can’t be done by
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Figure 1: This graph shows the effect of attitude values on the
performance of an agent in randomly generated games.

communication; a hostile agent would lie about its attitude.
Therefore agents must learn the attitude of their opponent by
observing the opponent’s actions.

It’s possible to learn attitude values using a particle filter
to estimate the parameters used by the opponent to determine
its strategy. This is complicated by the possibility of multiple
Nash equilibria, but that can be handled by adding another
parameter to the particle filter. One advantage of using parti-
cle filters in this way is that they can learn from observations
from different games as long as the opponent stays the same.

Figure 2 shows the performance of two agents which esti-
mate attitude values using a particle filter and reciprocate the
attitude of the opponent with a slightly larger attitude value.
In each round agents play against their opponent in a new ran-
domly generated game. Agents can rapidly learn to cooperate
and achieve good outcomes for both agents.

2 Restricted Stackelberg Response with
Safety

Using a particle filter to estimate attitude allows agents to co-
operate, but is counterintuitive because the particle filter pro-
vides a prediction of opponent behavior which is not used by
the agent. We would like the agent to respond rationally to
the prediction (given its chosen attitude). A best-response is
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Figure 2: This graph shows the performance of 2 agents using
attitude to cooperate. Performance occasionally goes above
the maximum expected performance because the games are

randomly generated.

easy to calculate, but without performance guarantees. On
the other hand, playing strategies which provide guarantees
can reduce performance against the prediction. A number
of approaches have been taken to solving this problem [Mc-
Cracken and Bowling, 2004] [Johanson erf al., 2007] [Bowl-
ing, 2005]; they provide different guarantees and are not all
suitable for general-sum games.

We have developed Restricted Stackelberg Response with
Safety (RSRS), a parameter driven approach which can
smoothly adjust between best-responding to the prediction,
dealing with an exploiting opponent, and providing worst-
case guarantees. RSRS uses two parameters, w, the predic-
tion weight, which controls the tradeoff between exploiting
the prediction and dealing with an exploiting opponent, and
r, the risk factor, which determines how much of the value of
the game to risk in hopes of exploiting the prediction.

RSRS is calculated by creating a modified game, in which
the moves are the same as the original game, but the payoffs
are adjusted to a weighted average of the original payoffs and
the expected payoff of the calculating players move against
the prediction U;(m;, m;) = (1 — w) * Uy (m;, m;) + w *
Ui (m;, p). Using the modified game, the RSRS is the strat-
egy which maximizes performance against a best-responding
opponent while guaranteeing a payoff within r of the safety
value of the game.

Figure 3 shows the effect of r and w when using RSRS in
a general-sum game. The risk factor causes the strategy to
gradually shift from the minimax solution to a best-response
to the prediction. The prediction weight causes discontinu-
ous changes in the strategy at points where a best-responding
opponent changes strategies. It can be proven that when the
strategy changes at a point w the ratio of gain against the pre-
diction to the loss against a best-responding opponent is 1_Tw

Using the method outlined in [McCracken and Bowling,
2004] to set r values and a combination of gradient descent
with an exponential opponent response model to set w values
RSRS can perform well using a flawed predictor against a
wide variety of opponents. It is able to coordinate in self-
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Figure 3: Performance of the w (left) and r (right) parameters
in a general-sum game, against the prediction(o), against a
best-responder(x ), and in the worst-case([]).

play to arrive at strategies which are beneficial to both agents.
However, it is not fully cooperative. RSRS will never select
a dominated strategy, so it can’t cooperate in games such as
Prisoner’s Dilemma, where the cooperative move is strictly
dominated.

3 Future Work

We can use attitude to cooperate in self-play at a cost of not
responding rationally to our prediction. We can use RSRS to
respond effectively to a prediction without cooperating. The
next stage is to incorporate RSRS into an attitude-based re-
ciprocating agent to create an agent which can use recipro-
cation to achieve a cooperative outcome in any general-sum
game while avoiding exploitation. We will do this by creating
a particle filter which combines attitude and the RSRS model
to identify attempts to cooperate.

The final problem is to formalize the process of reciproca-
tion. In symmetric games, it’s easy to aim for equal outcomes,
but not every game is symmetric, and even when the game
appears to be symmetric inaccuracies in the utility function
may make an asymetric outcome desirable. For example, in
a game with cash payoffs one player may have an immedi-
ate need for a specific amount while the other simply wants
as much money as possible - this would affect the achiev-
able cooperative agreements. We don’t believe it’s possible
to fully resolve this problem in the absence of an oracle to
provide true utility functions, but formalizing the tradeoffs
being made will be an important step.
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