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Abstract

In real-time multi-agent navigation, agents need to
move towards their goal positions while adapting
their paths to avoid potential collisions with other
agents and static obstacles. Existing methods com-
pute motions that are optimal locally but do not
account for the motions of the other agents, pro-
ducing inefficient global motions especially when
many agents move in a crowded space. In my thesis
work, each agent has only a limited sensing range
and uses online action selection techniques to dy-
namically adapt its motion to the local conditions.
Experimental results obtained in simulation under
different conditions show that the agents reach their
destinations faster and use motions that minimize
their overall energy consumption.

Real-time navigation of multiple agents in crowded envi-
ronments has important applications in many domains such
as swarm robotics, planning for evacuation, and traffic en-
gineering. This problem is challenging because agents have
conflicting constraints. On one hand, they need to reach their
goals as soon as possible while avoiding collisions with each
other and the static obstacles present in the environment. On
the other hand, due to the presence of many agents and the
real-time constraints, agents need to compute their motions
quickly (every 0.1s), independently of each other and in a
decentralized manner instead of planning in a joint configu-
ration space.

A recently introduced decentralized technique for real-
time multi-agent navigation, the Optimal Reciprocal Colli-
sion Avoidance (ORCA) framework [van den Berg et al.,
2011] guarantees collision-free motion for the agents. Al-
though ORCA generates locally efficient motion for each
agent, the overall behavior of the agents can be far from ef-
ficient; actions that are locally optimal for one agent are not
necessarily optimal for the entire group of agents. Consider,
for example, the two groups of agents in Figure 1a that try to
move past each other in a narrow hallway. The agents nav-
igate using ORCA, which guarantees collision-free motion,
but still end up getting stuck in congestion. In contrast, I seek
to develop navigation methods that encourage the agents to
adapt their motions to their surroundings, for example, by ac-
counting for their neighbors’ intended velocity during their
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Figure 1: Two groups of 9 agents each move to the opposite
side of a narrow corridor. a) ORCA agents get stuck in the
middle. b) Agents using my coordination approach (C-Nav)
coordinate their motion and reach their goals faster.

local motion planning. By doing this, the global motion of
all agents becomes more efficient, and they reach their goals
faster. Figure 1b exemplifies this type of coordinated motion.

My thesis research focuses on applying online action se-
lection methods for planning, learning and coordination that
can be completely distributed and require no communication
or only limited one-way communication among the agents.
Online approaches are more suitable than offline approaches
for dynamic environments, as agents must be able to quickly
adapt their behaviors to changes in their surroundings. In
addition, the computational complexity of centralized offline
learning methods becomes prohibitively high as the number
of agents increases. Because of this, current literature on
multi-agent learning focuses on scenarios with only a few
agents and sparse interactions.

Contributions. I have proposed three methods for improving
the global motion of the agents: a planning-based, a learning-
based and a coordination-based method. In all of these meth-
ods, I increased the number of motions an agent can do and
added new ways for agents to decide how to move. This en-
ables them to produce different motions.

On the planning side, I proposed an anytime local approach
to plan the motions of the agents in a decentralized manner,
by adapting the Hindsight optimization technique in a pro-
gressive manner. I called this method Progressive Hindsight
Optimization (PHOP) [Godoy et al., 2014]. With PHOP,
each agent simulates possible plans of actions for a given
time horizon, and after assessing each one of these plans,
it evaluates in ‘hindsight’ the quality of the first action of
the plan. Each plan consists of a sequence of motion prim-
itives. By simulating what will happen when choosing each
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one of the actions available, the agent can project the con-
sequences of each choice over a time horizon and make less
myopic choices. The process is repeated after each action to
account for changes in the motions of the other agents. With
PHOP, agents are able to predict regions in the environment
where their motion is more constrained, allowing them to act
accordingly (for example, by completely avoiding paths go-
ing through that region). Results of comparing PHOP with
ORCA indicate lower travel time for the agents using PHOP.

I also proposed a novel framework for incorporating on-
line learning methods in multi-agent navigation, the ALAN
framework (Adaptive Learning for Agent Navigation). I for-
mulated the problem of selecting the best motion at each time
as an action selection problem in a multi-armed bandit set-
ting. In this formulation, the challenge is to carefully balance
action exploration and exploitation. ALAN uses an action se-
lection method inspired by the principles of two well-known
action selection techniques, ✏-greedy and Upper Confidence
Bounds (UCB). Agents using ALAN exploit the best action
in a greedy fashion and perform biased exploration using a
version of UCB more suited to non-stationary domains. Fur-
ther, ALAN introduces game-theoretic elements, considering
the local context of an agent to strategically adapt the amount
of exploration performed [Godoy et al., 2015]. Combined
with a reward function that considers goal-oriented motion
and neighborhood interactions, ALAN allows agents to adapt
their motion to their local conditions (i.e., move back or side-
ways when goal-oriented motion is constrained). Agents us-
ing ALAN take advantage of pure goal-oriented motion when
they are able to, and perform biased exploration when that
motion is constrained. This indirectly improves the global ef-
ficiency of the motions of all agents, allowing them to reach
their destinations faster while outperforming other action se-
lection techniques in different environments.

Although both PHOP and ALAN produce time-efficient
motions for all agents, they do not scale appropriately to
highly-dense environments, where the agents’ movement is
very constrained. I proposed a method for an agent to select
its velocity in a way that benefits not only itself but also its
neighboring agents. I implemented this idea in C-Nav (short
for Coordinated Navigation), a distributed approach to im-
prove the global motion of a set of agents in crowded environ-
ments by implicitly coordinating their local motions [Godoy
et al., 2016]. This coordination is achieved by allowing each
agent to learn the likely motion of its nearby neighbors. C-
Nav requires no bidirectional communication, and as such, it
can scale well to hundreds of agents. Agents using C-Nav
choose velocities that help their nearby agents to move to
their goals, mimicking the way humans move in congested
environments and effectively improving the time-efficiency
of the entire crowd.

Finally, to compare the performance of my proposed ap-
proaches with existing navigation algorithms, I proposed a
new metric called Interaction Overhead which measures the
time that agents spend in interactions with other agents. An
Interaction Overhead value of 0 represents the minimum
travel time for the agents in each environment, and is also
the best possible result that any approach can achieve. Fig-
ure 2 shows the results (in Interaction Overhead) of compar-
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Figure 2: a) Example environments used to evaluate my work.
b) Interaction Overhead comparison between ALAN, C-Nav
and ORCA, in the three environments (lower is better).

ing two of my proposed approaches, ALAN and C-Nav, with
ORCA in three example environments. Here, ALAN agents
reach their goals faster than ORCA in two of the three envi-
ronments, while agents using C-Nav consistently outperform
both ORCA and ALAN in all three cases.
Future Work. A key assumption in the approaches I de-
scribed is that the agents are homogeneous (i.e., they use the
same navigation algorithm), and only differ in their initial and
goal positions. As robotic agents are deployed in the real
world, they will need to interact with humans and other types
of robots, whose motion might not be accurately predicted. In
the next few months, I will focus on techniques that allow an
agent to navigate through environments populated by hetero-
geneous agents whose type is initially unknown. In these set-
tings, the agent needs to learn, through inference, the model
used by its neighbors in order to compute a safe and efficient
path among them. I will present some initial results on this
topic in the upcoming IJCAI conference.
Acknowledgments: This research was partially supported
by the University of Minnesota Informatics Institute, and a
CONICYT/Fulbright fellowship.

References

[Godoy et al., 2014] Julio Godoy, Ioannis Karamouzas,
Stephen J. Guy, and Maria Gini. Anytime navigation with
progressive hindsight optimization. In IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, 2014.

[Godoy et al., 2015] Julio Godoy, Ioannis Karamouzas,
Stephen J. Guy, and Maria Gini. Adaptive learning for
multi-agent navigation. In Proc. Int. Conf. on Autonomous
Agents and Multi-Agent Systems, pages 1577–1585, 2015.

[Godoy et al., 2016] Julio Godoy, Ioannis Karamouzas,
Stephen J. Guy, and Maria Gini. Implicit coordination in
crowded multi-agent navigation. In Proc. AAAI Confer-
ence on Artificial Intelligence, 2016.

[van den Berg et al., 2011] Jur van den Berg, Stephen J. Guy,
Ming Lin, and Dinesh Manocha. Reciprocal n-body col-
lision avoidance. In Proc. International Symposium of
Robotics Research, pages 3–19. Springer, 2011.


