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1 Research Problem

My research is on proactiveness in robots. By the term proac-
tive I understand a robot that is able to generate and se-
lect among its own goals and pursue activities towards their
achievement.

Consider the following example: Anna, who owns a per-
sonal robot, has instructions from her physician to take pills
daily at meal times. Not taking the pills can result in Anna be-
ing unwell. Throughout the day, there are moments in which
it would be beneficial for the robot to proactively prompt
Anna to take her pills, and moments in which it would not
be. For instance, it would be pedantic to remind her of the
pills at breakfast, but it may be adequate at lunch and really
needed at dinner. If Anna goes to bed and has not taken her
pills yet, the robot may become more invasive and bring the
pills to her. The robot should also bring the pills at breakfast,
if it knows that Anna will be out for the rest of the day. The
decision on when to act and what to do must consider, in gen-
eral, a multitude of aspects related to the current and future
state of the whole system, including the robot, the user, and
the pills.

In my work, I propose a predictive model of opportunity
informing the decision of how to act to satisfy certain goals.
This is reminiscent of the subject of planning. However, my
aim is to not only enable the robot to autonomously select ac-
tions to achieve given goals, as done in planning, but also
to infer the goals themselves. In line with [Hawes, 2011;
Beaudoin, 1994; Ghallab et al., 2014; Pollack and Horty,
1999] I identify the need for a deliberative process indepen-
dent from planning to realize this and refer to it as goal au-
tonomy here.

My aim is to provide a general solution to the problem of
proactiveness in robots. To this means, I introduce the follow-
ing concepts. Opportunity relates current and future states,
courses of action and desirable states: an action is an opportu-
nity if it keeps the system in desired states, and if the robot has
the ability to enact it. Equilibrium is defined as the absence of
opportunities. The claim of my thesis is that a proactive robot
should have the persistent meta-goal to maintain equilibrium.
Hence, an equilibrium maintenance algorithm closes the loop
between desirable states and plan execution by continuously
evaluating potential opportunities and deciding which ones to
act upon.

2 Contributions

My contributions include a framework that aims at making
robots proactive by providing them with the ability to gen-
erate their own goals and act upon them. Many current
approaches to integrate planning and goal autonomy, pro-
vide specific case-by-case solutions (see, e.g., the survey pa-
per [Vattam et al., 2013]) but lack a general understanding of
how these problems are related. Towards this aim, I have pro-
posed a general formalization and computational framework
that enables an agent to infer whether to act (condition), how
(what action) and when (in which current or future state).

A first formal predictive model of opportunities has been
reported in [Grosinger et al., 2014a]. This model allows to
decouple the factors that determine conditions for acting —
state changes, what is desirable, and robot capabilities. In
my model, free-run F captures state transitions from changes
in the environment; desirability is modeled by a sub-set of
states, Des, which forms a partition with Undes (undesirable
states) of all possible states; robot capabilities are captured by
action schemes ↵ allowing for active state transition at any ab-
straction level, from individual or sequences of actions to ac-
tion plans or policies. I characterize action schemes that bring
the state into desirability as beneficial, denoted Bnf. The def-
inition of different types of opportunity sets into relation all
of these factors that influence the inference of conditions for
acting (note that k models a time horizon).

Opp1(↵, s, k) iff s 2 Undes ^
�
9s0 2 F k(s) : Bnf(↵, s0)

�

Opp2(↵, s, k) iff s 2 Undes ^
�
8s0 2 F k(s) : Bnf(↵, s0)

�

Opp3(↵, s, k) iff 9s0 2 F k(s) : (s0 2 Undes ^ Bnf(↵, s0))

Opp4(↵, s, k) iff 8s0 2 F k(s) : (s0 2 Undes ! Bnf(↵, s0))

Opp5(↵, s, k) iff
�
9s0 2 F k(s) : s0 2 Undes

�
^ Bnf(↵, s, k)

Opp6(↵, s, k) iff
�
8s0 2 F k(s) : s0 2 Undes

�
^ Bnf(↵, s, k)

For k = 0 all above properties collapse to the following:

Opp0(↵, s, 0) iff s 2 Undes ^ Bnf(↵, s)

To make the formal model of opportunity operational, I de-
veloped an equilibrium maintenance algorithm. It closes the
loop between desirable states and plan execution by contin-
uously evaluating whether the system is in equilibrium and
deciding which opportunities to act upon (see Figure 1). I
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Figure 1: The Equilibrium Maintenance loop (realized by the
EqM(K) algorithm) for a system ⌃ = hS,U, fi, where ac-
tion schemes A are defined in terms of the robot’s actions U .

have deployed the model in a real robotic system including
a Scitos G5 mobile robot with a Kinova Jaco robotic arm,
a smart home with Xbee sensors, a simple state estimation
component, the open source planning system JSHOP and a
plan-based executive module. Formal evidence is provided
that the equilibrium maintenance framework is conducive to
proactive robots [Grosinger et al., 2016].

3 Directions

I have started my PhD two and a half years ago in which
I have accomplished the following: developed first versions
of a formal model and an operational algorithm towards
achieving proactiveness in autonomous robots as described
in the previous section 2; investigated the relation of my ap-
proach to existing work; analyzed properties of the formal
model; deployed my formal framework in a real robotic sys-
tem [Grosinger et al., 2014a; 2016].

In the remaining one or one and a half years of my PhD
I plan to consolidate the analysis of the relation between my
approach and others, in particular in the fields of planning
and goal reasoning, to obtain a crisp specification of my con-
tributions. Additional robotic experiments are necessary for a
stronger empirical validation. Furthermore, the formal prop-
erties of the existing framework need to be studied more in
depth. After these steps, I plan to work on the extension of
the current framework. Currently, the equilibrium mainte-
nance framework captures uncertainty by non-determinism:
multiple alternative states can be undesirable, the free-run
dynamics of the system may be non-deterministic, and ac-
tion schemes may have non-deterministic effects. It might
be useful to quantify this uncertainty by associating degrees
of desirability to states and probabilities to state transitions.
For this extension, I plan to explore the use of decision-
theoretic planning [Karlsson, 2001] or POMDPs [Kaelbling
et al., 1998]. Degrees of desirability might not only reflect
state uncertainty. Multiple actors in the environment – ob-
jects, robotic actuators, human users – might influence what
classifies as desirable on a global state level. This will al-
low to achieve different definitions of beneficial, e.g., partial,
weak, etc.

In my work, I have formalized different types of opportu-

nities for acting. If time allows, I aim to extend this notion
by introducing definitions of durative and future opportunity.
A tentative formulation of future opportunity was presented
at [Grosinger et al., 2014b].

I believe that the proposed equilibrium maintenance ap-
proach unveils many challenging directions for future re-
search, and I hope to have a chance to explore them after the
end of my PhD. These include how to select among multiple
opportunities of varying type and how to address the problem
of interleaving equilibrium maintenance, planning and execu-
tion.
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