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1 Introduction

Probabilistic planning models — Markov Decision Processes
(MDPs) and Partially Observable Markov Decision Pro-
cesses (POMDPs) — have been extensively studied by Artifi-
cial Intelligence communities for planning under uncertainty.
The conventional criterion for these probabilistic planning
models is to find policies that minimize the expected cumu-
lative cost, which we call the Minimizing Expected Cost cri-
terion (MEC-criterion). While such a policy is good in the
expected case, there is a chance that it might result in an ex-
orbitantly high cumulative cost. Therefore, it is not suitable
in high-stake planning problems, where exorbitantly high cu-
mulative costs should be avoided. With the above motivation
in mind, Yu et al. [1998] introduced the Risk-Sensitive crite-
rion (RS-criterion), where the objective is to find a policy that
maximizes the probability that the cumulative cost of possi-
ble execution trajectories is less than an user-defined initial
cost threshold 6. Also, if we consider the initial cost thresh-
old 6, as the cost budget that the system holds at the begin-
ning, then the above objective probabilities, namely reach-
able probabilities, are the probabilities of the agent achiev-
ing its goal without exceeding its cost budget. By combining
goal-directed MDPs and POMDPs with the RS-criterion, the
corresponding risk-sensitive probabilistic planning models —
Risk-Sensitive MDPs (RS-MDPs) [Yu er al., 1998; Hou et
al., 2014] and Risk-Sensitive POMDPs (RS-POMDPs) [Hou
et al., 2016] — can be formalized. For RS-MDPs and RS-
POMDPs, the objectives are to respectively find a policy
7 that maximizes the probability Pr(c” (o™ < ;) and
S, bo(s) - Pr(cT™ < ), where ¢7 (5™ is the cumula-
tive cost of a trajectory formed by executing policy 7 from
state s.

In this ongoing work, I formally define RS-MDPs and
RS-POMDPs and introduce various algorithms for RS-MDPs
and RS-POMDPs with different assumptions (e.g., with zero
costs and with cost observations).

2 Current Progress

In our recent papers [Hou et al., 2014; 20161, we show that
the optimal policies for RS-MDPs and RS-POMDPs are not
stationary with respect to the original states. The optimal ac-
tion choice also depends on the cost threshold § = 6§y —c” (t),
where ¢ (t) is the accumulated cost thus far up to the current
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time step ¢. The cost threshold 6 is actually the wealth level or
remainder cost budget of the system if the initial cost thresh-
old 6y is considered as the cost budget at the beginning.

For optimal policies of RS-MDPs and RS-POMDPs, all es-
sential information, which can be extracted from the execu-
tion history, is the cost threshold. Therefore, instead of con-
sidering only the state, the optimal decision of RS-MDPs and
RS-POMDPs consider both the state and the cost threshold.
We call a pair of state and cost threshold as an augmented

state (s,0), and the augmented state space is S:Sx o,
where © is the set of all possible cost thresholds. For RS-
POMDPs, an augmented belief state is a probability distri-

bution on augmented states (s,6) € S, and B is the set of
all possible augmented belief states. Instead of an regular

MDP or POMDP policy, an RS-MDP policy S — A or RS-

POMDP policy B — A can always give the optimal solution.
For RS-POMDPs, since the optimal decision depends on the
cost threshold and the system needs to consider it, the issue of
whether the actual costs can or cannot be observed is impor-
tant. If the cost can be observed, the system knows exactly
its cost threshold, and the augmented belief state space is re-
duced to B x ©®, where B is the set of all regular POMDP
belief states. We distinguish the two situations whether costs
can or cannot be observed for RS-POMDP [Hou et al., 20161,
and provide corresponding algorithms for both situations.

For RS-MDPs and RS-POMDPs, we can build correspond-
ing augmented MDPs and augmented POMDPs based on
augmented states, where the actions, transitions, and observa-
tions correspond to their counterpart in the original MDP and
POMDP, respectively, and the reward function is 1 for tran-
sitions that transition into augmented states with goal states
and non-negative cost thresholds, and 0 otherwise. Because
reachable probabilities of any augmented states with negative
costs are 0, it is only necessary to consider the possible cost
threshold values inside the interval [0, 6], then the number
of augmented states in the augmented MDPs or POMDPs is
finite. The fundamental Value Iteration (VI) style algorithm
can be applied on augmented MDPs and POMDPs. Solving
an RS-MDP or RS-POMDP is actually equivalent to solving
its corresponding augmented MDP or POMDP, respectively.

Theoretically, the number of possible cost thresholds |©|
is finite, but it can be very large in practice because the cost
threshold 6 can be any real numbers. Liu and Koenig [2006]



introduced MDPs with utility functions, that map cumula-
tive rewards to utility values, and sought to find policies that
maximize the expected utility. They introduced Functional
Value Iteration (FVI), which finds optimal policies for MDPs
with Piecewise Linear (PWL) utility functions. Marecki
and Varakantham [2010] extended FVI to solve finite-horizon
POMDPs with PWL utility functions. By considering the cost
threshold as a continuous variable on the domain [0, 6], the
RS-criterion is equivalent to an assumption that the system
has a step utility function. Thus, solving RS-MDPs and RS-
POMDPs is equivalent to solving MDPs and POMDPs with
a step utility function, and the solutions are reachable prob-
ability functions S — (©® — [0, 1]) that map each state to
a Piecewise Constant (PWC) function on the domain [0, 6].
For both situations that the cost can or cannot be observed, we
customized FVI to solve goal-directed RS-POMDPs and in-
troduced linear programming techniques to prune dominated
vectors. From the viewpoint of utility functions, all algo-
rithms we introduced in this ongoing work can be used to
solve MDPs and POMDPs with a specific type of utility func-
tion — utility functions with constant tails, which assume that
the agent gets a constant utility if the cost threshold is smaller
than a threshold. For example, MDPs with utility functions
and worst-case guarantees [Ermon et al., 2012] is a specific
case of utility functions with constant tails.

For RS-MDPs and RS-POMDPs, if the model assumes all
costs are positive, then the successor augmented states and
belief states always have smaller cost thresholds. Thus, there
exist no cycles between augmented states or belief states, and
Depth-First Search (DFS) style algorithms can be introduced
to traverse respectively the reachable augmented state or be-
lief state space from the initial augmented state or belief state.
DFS algorithms update the reachable probabilities for aug-
mented states or belief states in the reverse topology order.
For RS-MDPs, we introduced a Dynamic Programming (DP)
style algorithm that traverses the augmented state space back-
wards form augmented states with original goal states and
cost threshold 0. DP updates reachable probabilities for all
augmented states from smaller cost thresholds to larger cost
thresholds.

If RS-MDPs allow zero costs, the transition edges with
zero costs can form cycles between augmented states with ex-
act the same cost threshold. By adopting the idea from Topo-
logical Value Iteration (TVI) [Dai et al., 2011], we introduced
the TVI-DFS and TVI-DP algorithms, which are generalized
versions of DFS and DP. Both TVI-DFS and TVI-DP identify
the Strongly Connected Components (SSCs) formed by zero
cost cycles and perform updates for all augmented states in
one SCC simultaneously. For RS-POMDPs with zero costs,
if the cost can be observed, a DP style algorithm can solve it
by solve one regular POMDP for each possible cost threshold
0 € O, from smaller cost thresholds to larger cost thresholds.

Generally, the DFS and DP style algorithms (include TVI-
DFS and TVI-DP) are faster than VI and FVI. The reason is
that VI and FVI need to perform updates for the entire aug-
mented state or belief state space in every iteration. On the
other hand, DFS and DP style algorithms only perform up-
dates for each augmented state or belief state for a minimum
number of iterations. In addition, DFS style algorithms only
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explore the reachable augmented state or augmented belief
state space, which can be much smaller than the entire one.

3 Future Plan

As a next step, I plan to design an approximation algorithm
— Local Search (LS) — that produces policies for RS-MDPs
by adjusting the regular optimal policy based on the MEC-
criterion. LS will first get the optimal MDP policy with the
minimum expected cumulative cost, and then form an RS-
MDP policy by assuming that every augmented state (s, 6)
for a state s and all possible cost thresholds 6 have the same
action choice. Given this formed RS-MDP policy, namely
abstracted policy, we can compute the set of reachable aug-
mented states. Then, we iterate through this set of reachable
augmented states, and for each augmented state in this set, we
evaluate all actions and choose the action that maximizes the
reachable probability under the assumption that every other
augmented state uses the abstracted policy. Once a different
action is chosen for an augmented state, we record it for this
augmented state and now have a new abstracted policy. Once
LS goes through all the reachable augmented states, we re-
compute the set of reachable augmented states again with the
new updated abstracted policy, and the abstracted policy will
keep improving through this process. We keep repeating this
process until there are no new reachable augmented states can
be found and the selected action for all reachable augmented
states remain unchanged across subsequent iterations. This
LS algorithm may not guarantee optimality but it is anytime
and memory-bounded.
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