
Machine Learning for Integer Programming

Elias B. Khalil
School of Computational Science & Engineering

Georgia Institute of Technology
ekhalil3@gatech.edu

Abstract
Mixed Integer Programs (MIP) are solved exactly
by tree-based branch-and-bound search. However,
various components of the algorithm involve mak-
ing decisions that are currently addressed heuris-
tically. Instead, I propose to use machine learn-
ing (ML) approaches such as supervised ranking
and multi-armed bandits to make better-informed,
input-specific decisions during MIP branch-and-
bound. My thesis aims at improving the overall per-
formance of MIP solvers. To illustrate the potential
for ML in MIP, I have so far tackled branching vari-
able selection, a crucial component of the search
procedure, showing that ML approaches for vari-
able selection can outperform traditional heuristics.

1 Motivation
Recently, discrete optimization has been successfully lever-
aged to improve machine learning (ML) methodology. I
will focus on the opposite direction of this fruitful cross-
fertilization. I explore ways to harness ML approaches to im-
prove the performance of branch-and-bound search for Mixed
Integer Linear Programming (MIP). Although branch-and-
bound solves MIP problems exactly, it is known that modern
MIP solvers exhibit many heuristic decisions in the course of
the algorithm [Lodi, 2013]. These decisions include:

– Cutting planes: various types of cuts may be valid, but
only some of them have to be selected and added;

– Node selection: a node must be selected among active
nodes and have its LP relaxation solved;

– Branching: a variable must be selected at each node in
order to expand it into two child nodes.

To see how such decisions are currently handled, we refer
to papers describing IBM CPLEX [Achterberg and Wunder-
ling, 2013] and SCIP [Achterberg, 2009], the state-of-the-art
commercial and non-commercial MIP solvers, respectively.
In cut selection, a scoring system combining a handful of
quality measures is used to score cuts, and the best among
them are chosen [Achterberg, 2009]. However, both the qual-
ity measures and their weights in the scoring formula are cho-
sen purely heuristically, based on the algorithm designer’s in-

tuition. In node selection, best-bound and best-estimate scor-
ing heuristics are the default in CPLEX and SCIP, respec-
tively. Again, both methods are heuristic in nature, and do
not adapt to the input MIP instance in any way. Similar issues
arise in branching, which we discuss in detail later.

My thesis is that data-driven decision-making in these
components, via ML, can improve the overall performance
of the MIP solver. For instance, most of the problems I just
discussed involve ranking nodes, variables or cuts using a
scoring function. It is natural to ask whether a superior func-
tion can be designed by collecting the appropriate data and
learning a ranking function from it. Alternatively, one can
use online learning approaches, such as multi-armed bandit,
to model node/variable selection problems, after defining ap-
propriate reward and/or transition functions.

This data-driven approach promises to create more flexi-
ble solvers that can adapt to new types of problems from new
domains, without having to tune the strategies by manual en-
gineering and trial-and-error.

Next, I will present the work I have already completed by
the time of submission to the DC. The work is my own, under
the supervision of my advisor, Prof. Bistra Dilkina.

2 Current Results
Preliminaries. Branching variable selection (or branching;
see definition in section 1) is a main component of mod-
ern MIP solvers. Choosing good variables to branch on often
leads to a dramatic reduction in terms of the number of nodes
needed to solve an instance; see [Achterberg and Wunder-
ling, 2013] for extensive experiments. Existing approaches
for branching are based on either Strong Branching (SB) or
Pseudocost branching (PC). However, both SB and PC suffer
from serious limitations in terms of time-efficiency (for SB),
node-efficiency, or reliance on expert manual tuning (for PC).

2.1 A Supervised Learning Approach
I have developed a novel framework for data-driven, on-the-
fly design of variable selection strategies, see [Khalil et al.,
2016]. By leveraging research in supervised ranking, the aim
is to produce strategies that gather the best of all properties:
1) using a small number of search nodes, approaching the
good performance of SB, 2) maintaining a low computation
footprint as in PC, and 3) selecting variables adaptively based
on the properties of the given instance.

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

4004



In our novel framework, and in the context of a sin-
gle branch-and-bound search, we first observe the decisions
made by SB, and collect: features that characterize variables
at each node of the tree, and labels that discriminate among
branching variables. In a second phase, we learn an easy-
to-evaluate surrogate function that mimics SB, by solving a
learning-to-rank problem, with the collected data being used
for training. In a third phase, the learned ranking function is
used for branching.

Compared to recent machine learning methods for node
and variable selection in MIP [He et al., 2014; Alvarez et
al., 2014], our approach: 1) can be applied to instances on-
the-fly, without an upfront offline training phase on a large
set of instances, and 2) consists of solving a ranking prob-
lem, as opposed to regression or classification, which are less
appropriate for variable selection.

Results. We do not give details of the experimental setup
here, and refer to our paper instead [Khalil et al., 2016].
Our approach, SB+ML, significantly outperforms competing
methods, solving more instances than both PC and SB+PC (a
hybrid of SB and PC), while also requiring around 36% and
16% fewer nodes on average, respectively. In terms of run-
ning time, our method incurs some additional overhead per-
node due to feature computations, yet it can be 15 to 20%
faster than the competitors overall on instances of medium
and hard difficulties, thanks to large savings in the number of
nodes processed.

2.2 An Online Learning Approach
I have also studied variable selection through the lens of on-
line learning, specifically multi-armed bandits. I have worked
on bandit approaches that automatically balance exploitation
(selecting the variable with the best average performance in
previous nodes) with some exploration (selecting variables
that are rarely selected), or alternatively with risk-aversion
(selecting variables which have been selected more often), of-
fering more nuanced selection rules. Extensive experimental
results show that one of our methods can outperform the clas-
sical pseudocost branching (PC) strategy. To our knowledge,
this is the first attempt at integrating online bandit learning
with branching, a promising direction for tackling selection
tasks within exact search algorithms.

Our main observation is that the variable selection problem
can be cast as a multi-armed bandit (MAB) problem [Rob-
bins, 1985], a prominent paradigm in online learning. In the
multi-armed bandit problem, at each round an algorithm se-
lects one out of a set of arms (actions), and observes the re-
ward associated with the selected arm only; the goal is to se-
lect arms so as to minimize the regret w.r.t. the best arm. In
branch-and-bound, the variable selection problem is naturally
formulated in MAB terms as follows: each node of the search
tree is a round, each variable is an arm, and some performance
measure, function of the children resulting from the branch-
ing, is the reward of the selected variable. This work makes
the case for more integrated research in search algorithms and
online learning, as there is much room for developing better
theory and algorithms for learning during search.

Results. The experimental setup is similar to that in [Khalil
et al., 2016]. The risk-averse MAB rule we propose, RA–VAR,

is shown to outperform PC, solving more instances, and using
around 6% fewer nodes, on average. For instances solved by
both RA–VAR and PC, RA–VAR uses fewer nodes for 55% of
those instances. The improvement we obtain is statistically
significant in a Wilcoxon signed-rank test.

3 Research Plan
Over the long term, I plan on expanding my research along
two main axes. First, in terms of ML approaches, I will de-
velop fully online learning algorithms for decision-making in
branch-and-bound, in the spirit of the work presented in sec-
tion 2.2, and fully offline learning algorithms for families of
instances with similar structure. Second, I will apply the data-
driven approach to other components of branch-and-bound,
such as primal heuristics and node selection. I believe that
working along these two axes will bring about a thesis that
fully integrates search, optimization and learning, with strong
practical impact. Next, I discuss short-term research steps.

I am currently working on improving the supervised learn-
ing framework that I proposed in [Khalil et al., 2016] by
adapting the learning to the structure of the input instance,
through dynamically adjusting the number of training nodes
(in the data collection phase), depending on the usefulness
of the current data and associated ranking model, or learning
multiple models in adaptation to the search progress.

Another topic I am currently working on is primal heuris-
tics, algorithms that try to find feasible solutions during the
search. Modern solvers implement many of these heuristics
(44 in SCIP), and deciding which heuristics to run and when
to run them (i.e. at which nodes) is an important task. Solvers
currently have pre-set parameter values that address these two
questions, without taking into account the structure of the in-
stance at hand, nor the evolution of the search. I am address-
ing these questions using bandit ideas, and expect to have
concrete algorithms and results by the end of the year.

References
[Achterberg and Wunderling, 2013] Tobias Achterberg and Roland

Wunderling. Mixed integer programming: Analyzing 12 years of
progress. In Michael Jünger and Gerhard Reinelt, editors, Facets
of Combinatorial Optimization. 2013.

[Achterberg, 2009] Tobias Achterberg. SCIP: solving constraint
integer programs. Mathematical Programming Computation,
1(1):1–41, 2009.

[Alvarez et al., 2014] Alejandro Marcos Alvarez, Quentin Lou-
veaux, and Louis Wehenkel. A supervised machine learning ap-
proach to variable branching in branch-and-bound. 2014. Tech-
nical Report, Université de Liège.

[He et al., 2014] He He, Hal Daumé III, and Jason Eisner. Learning
to search in branch-and-bound algorithms. In NIPS, 2014.

[Khalil et al., 2016] Elias B. Khalil, Pierre Le Bodic, Le Song,
George Nemhauser, and Bistra Dilkina. Learning to branch in
mixed integer programming. In AAAI, 2016.

[Lodi, 2013] Andrea Lodi. The heuristic (dark) side of MIP solvers.
In Hybrid Metaheuristics, pages 273–284. Springer, 2013.

[Robbins, 1985] Herbert Robbins. Some aspects of the sequen-
tial design of experiments. In Herbert Robbins Selected Papers,
pages 169–177. Springer, 1985.

4005


