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Abstract

In supervised learning, many techniques focus on
optimizing training phase to increase prediction
performance. Active inference, a relatively novel
paradigm, aims to decrease overall prediction er-
ror via selective collection of some labels based on
relations among instances. In this research, we use
dynamic Bayesian networks to model temporal sys-
tems and we apply active inference to dynamically
choose variables for observation so as to improve
prediction on unobserved variables.

1 Introduction

In supervised learning, a mathematical model is trained by
tuning its parameters using labeled data in order to automat-
ically predict labels for unseen data. Many studies have fo-
cused on training. For example, active learning tries to train a
model using fewer labeled data by selecting most informative
instances. This helps reducing labeling cost [Settles, 2012].
A relatively new approach, active inference, maximizes
prediction performance by selective information gathering
during prediction [Bilgic and Getoor, 2009]. In this approach,
relations between instances are utilized with the intuition that
knowing true label of some instances help predicting others.
Dynamic Bayesian network (DBN) is a generative statis-
tical model which asserts probabilities of random variables
accounting complex dependencies. Two main properties of
DBNs make them powerful: i) factorizing joint probability
distributions into conditional probability distributions, ii) dy-
namically representing random variables in time dimension.
In majority of cases, lack of evidence degrades prediction
performance in DBNs over time. As random variables are
correlated, observing one contributes to evaluating probabili-
ties on its dependents. In some scenarios, observed variables
are specified by definition. Otherwise, selecting variables to
observe arises as a problem to tackle. Therefore, active in-
ference can help to detect variables to observe and eventually
it can increase prediction performance significantly. This ob-
jective revolves around assessment of prediction uncertainty
and calculating observation cost. To the best of our knowl-
edge, this is the first time active inference is applied on DBNs.
In the following, Section 2 presents description of these
objectives on two practical problems along with results ob-
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tained. Section 3 continues with short and long term research
plans, followed by a conclusion in Section 4.

2 Preliminary Research and Results

In this section, our proposed method, active inference for dy-
namic Bayesian networks, will be described and evaluated on
two practical problems: 1) detecting optimal time for obser-
vation for tissue engineering, and ii) dynamic detection of
optimal observation subset on wireless sensor networks.

2.1 Active Inference for Tissue Engineering

In tissue engineering domain, experts seek conditions for op-
timal tissue development. One criterion for optimal develop-
ment is blood vessel network which should develop in tandem
with tissue, also named as vascularization. Though many fac-
tors affect the performance of vascularization, few are known.
Therefore, this phenomenon is partially observable, hence
stochastic. Given an initial configuration, e.g initial blood
vessel and tissue cell locations, stress level of tissue cells, we
try to estimate probabilities of each atomic locations being
occupied by blood vessel in a sequence of time stamps.

We modeled the environment as a grid, of which each cell
represents an atomic location. We assumed that the direc-
tion of blood vessel progress is from bottom to top. We de-
signed a DBN in which each random variable represents a lo-
cation whose parents are lower neighbors from previous time.
Hence occurrence of blood vessel in a location becomes more
likely when parents have blood vessel [Komurlu et al., 2014].
Given initial settings, i.e. each location’s value at time slice
t = 0, we compute probabilities at following time slices un-
til the final time slice, " — 1. Next, we find most probable
complete observation of each time slice. Then for each most
probable observation, we compute uncertainty of predictions
on the final time slice. The objective is to find the earliest
time slice, t*, on which observation for each location yields
an uncertainty at time slice 7" less than a given threshold o.

For three different stress levels of tissue cells, we computed
uncertainty at each time slice which can be seen in Figure 1.
Note that the uncertainty computation is expensive and we
cannot merely generate this uncertainty curve for any given
initial setting. Therefore, we tried some search methods to
find t* in the search space of uncertainty and we made ana-
lytical evaluation. The reference article is hidden as it is under
revision of a journal.
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Figure 1: Uncertainty at slice T" for each slice as observed.

2.2 Active Inference for Wireless Sensor Networks

Second problem we focused on is battery optimization on
wireless sensor networks (WSNs). In WSNs, sensors rely on
their own batteries and they consume most energy when they
communicate. So our approach is, observing a subset of sen-
sors and predicting the rest in lieu of observing all. The size
of the subset is defined by a budget B. As our first objective,
we resort to DBNs as predictive models. We represented each
sensor as a Gaussian variable. We learned the topology from
training data [Komurlu and Bilgic, 2016]. We selected Gaus-
sian Process (GP) and Kalman filter (KF) as baseline models.

The second objective here is to choose an observation set
at each time slice so as to minimize the prediction error. On
our DBN, we designed a selection method, net impact-based
selection (NBS), based on each variable’s impact on its neigh-
bors. We compared our selection method against random se-
lection (RND) and sliding window selection (SW).

We used Intel Lab Data [Deshpande et al., 2004]. We
focused on temperature and humidity readings. Our results
show that on smaller B, e.g. %10 of all sensors, GP and
KF yield smaller error than our DBN as they utilize local
attributes. On larger B, our DBN outperforms the baseline
models. We are able to compare NBS with baseline methods
on only DBN, since GP and KF are not compatible with NBS.
Our results show that on all B, NBS is either the best method
or ties with the best baseline. Figure 2 shows prediction errors
of model-method combinations we tried.

Prediction Error on Temperature Data

1.75
1.5
1.25

0.75
0.5
0.25

1 M ’“ﬁEﬂEﬂl Nl e

30% 40% 50%

10%

SGP-RND  BGP-SW m KF-RND @ KF-SW B KFnoZ-RND

B KFnoZ-SW & dGBn-RND OdGBn-SW B dGBn-NBS

Figure 2: Error of all model-methods on B from 10% to 50%
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3 Future Work

In short-term, we will work on information fusion, that is col-
laborating different domains in one DBN modeling. This col-
laboration will help exploit correlations across domains. For
example, in WSN problem, we modeled temperature and hu-
midity separately. We believe that a DBN that involves both
domains can exploit dependencies between two domains and
can help active inference with a larger observation space that
will eventually reduce prediction error more than it does on
DBNs modeling each domain separately, given same budget.

In long-term, we will focus on variance-based active infer-
ence. In the first phase, which we call maximum variance
selection, we will select variables with maximum variance, at
each time slice, since higher variance can result higher pre-
diction error. Yet, computing variance of a variable in a DBN
is not trivial as it requires computing all ancestors’ variances
and incorporating all evidences including ones provided to
children. In the second phase, which we call expected vari-
ance reduction, we will try to find variables for which evi-
dence will result maximum reduction on other variables’ vari-
ances. Note that as we do not know the observed value be-
forehand, we need to compute expectation over all possible
values that can be observed.

4 Conclusion

In the first two phases of this research, we formulated active
inference for dynamic Bayesian networks (DBNs) in the con-
text of two different problems. We showed that in tissue engi-
neering, active inference helps detecting the optimal time to
make an observation. We also showed that in wireless sensor
networks (WSNs), active inference helps optimizing battery
consumption. In future research, we will work on information
fusion to provide more flexibility to active inference. Then we
will continue with variance based active inference methods.
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