
Reactive Policy Checking for Action Languages

⇤

Zeynep G

¨

ozen Saribatur

Technische Universität Wien
Vienna, Austria

zeynep@kr.tuwien.ac.at

Abstract

As autonomous systems become more common in
our lives, the issue of verifying that they behave
as intended and that their design policies are cor-
rect becomes more important. This thesis aims to
build foundations for such a verification capability
for policies with a reactive behavior, with a focus
on combining the representation power of action
languages with model checking techniques.

1 Introduction

Agents are autonomous systems that have a knowledge base
that describes their capabilities, represents facts about the
world and helps them in reasoning about their course of ac-
tions. Thus, they are able to decide for themselves what to do
to satisfy their design objectives. Reactive agents, in particular,
are able to interact with the environment according to a de-
signed policy. They can perceive the current state of the world,
figure out their next actions, execute them and observe the
outcomes. One needs to be sure that by following the policy,
the agent will achieve the desired results. It would be highly
costly, time consuming and sometimes even fatal to realize on
runtime that it does not provide the expected properties.

For example, in search scenarios, an agent needs to find
a missing person in unknown environments. A policy for
the agent can be “move to the farthest unvisited point that
is visible, until a person is found”. Following this reactive
policy, the agent would traverse the environment by choosing
its actions accordingly, and reiterating the decision process
after reaching a new state. The agent may also remember the
locations it has been in and gain information (e.g. obstacle
locations) it senses on the way. Verifying beforehand whether
or not the designed policy of the agent satisfies the desired goal
(e.g. can the agent always find the person?), in all possible
instances of the environment is nontrivial.

Action languages [Gelfond and Lifschitz, 1998] are a useful
tool for defining actions and reasoning about them, by model-
ing dynamic systems as transition systems. Their declarative
setup helps in describing dynamic systems in an understand-
able, concise language. They also address the problems en-
countered when reasoning about actions. As they are closely

⇤This research has been supported by the Austrian Science Fund
(FWF) project W1255-N23.

related to classical logic and answer set programming (ASP)
[Brewka et al., 2011], they can be translated into logic pro-
grams and queried for computation.

As action languages are convenient tools to describe dy-
namic systems, one can make use of them to represent reactive
agents and define reactive policies. However, the shortage of
representations that are capable of modeling reactive policies
prevents one from verifying such policies using action lan-
guages before putting them into use. Furthermore, verifying
reactive behaviors of agents in environments by considering
all possible instances and sizes is a challenging task by itself.
The infamous state explosion problem arises when dealing
with large environments with different types in terms of ob-
servability and determinism.

In this thesis, our goal is to gain the capability of checking
and verifying properties of reactive policies with a focus on
action languages. Such a capability should give the power to
determine the possible outcomes of an agent executing a policy.
This way, the shortcomings of the policy can be detected and
thus improved.

1.1 Related Work

Notice that our aim is different from finding a policy (i.e.
global plan) that satisfies certain properties (i.e. goals) in an
unknown environment. On the contrary, we assume that we
are already given a representation of a system with a certain
policy, and we want to check what it is capable (or incapable)
of. Therefore, we do not address the problem of synthesizing
plans by verifying properties.

The works on verifying properties of dynamic systems [Cal-
vanese et al., 2013] can be relevant. However, the problem
is addressed in the presence of description logic, and real life
environment settings are not considered. Meanwhile, works
on verifying properties of agent programs based on the BDI
approach [Dennis et al., 2012] consider complex architectures
which may be effective only for specific settings.

2 Research Goals

Our key objectives comprise of the following goals.
Semantics for Reactive Policies. In order to gain the capa-

bility of verifying policies with a reactive behavior, our first
goal is to express these policies using the representation power
of the transition systems described by action languages.

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

4024



Competence in Verifying Properties of Policies. After
obtaining a representation of reactive policies, we aim to ad-
dress to issue of checking and verifying properties of such
policies. In order to solve these problems practically, mak-
ing use of model checking techniques is necessary. More
specifically, we aim to investigate the following aspects and
incorporate them into the syntax and semantics of action lan-
guages.

• Abstraction and Refinement

Removing or simplifying details of the representation
that are irrelevant to the policy or the desired properties
would help in omitting some of the constraints and enrich-
ing the behavior. We want to describe such an abstraction
to reduce the state space, and make verifying more effi-
cient. In addition, we intend to employ ideas from the
counterexample-guided abstraction refinement (CEGAR)
method [Clarke et al., 2003] to compute precise abstract
representations.

• Compositional Reasoning

In order to deduce the properties of large systems, we aim
to find a method to decompose them into properties that
describe the sub-behaviors of the components, inspired
by the ideas in [Inclezan and Gelfond, 2016].

• Parameterization

The desire to verify policies in all possible sizes of the
environment brings the issue of verification in parameter-
ized systems which is undecidable in general. We aim to
address this issue and reduce it to verifying policies in a
finite number of instances, up to some cutoff size.

Implementation. Last but not least, a prototypical imple-
mentation should be provided for the evaluation of the elabo-
rated methods within the thesis.

3 Progress

We consider agents with a reactive behavior that determine
targets to achieve during their interaction with the environment.
Such agents also come with an (online) planning capability
that computes plans to reach the targets.

We have described the semantics of such a reactive policy,
by a high-level transition system that integrates components of
target establishment and online planning [Saribatur and Eiter,
2016]. The flexibility in the components allow for a range of
possibilities for designing behaviors. For example, one can use
HEX [Eiter et al., 2005] to describe a program that determines
a target given the current state of an agent, finds the respective
plan and the execution schedule. ACTHEX programs [Fink
et al., 2013], in particular, are a tool to define such reactive
behaviors by allowing iterative evaluation of the logic pro-
grams. In addition, we have related these semantics to action
languages (in particular action language C) and investigated
possibilities of policy formulation.

Currently, we are focused on fixed-size environments and
exploring ways of abstracting away from the described transi-
tion system. We consider the possibility of an abstraction by
omitting the details irrelevant to the policy, and investigate the
employment of the CEGAR method. We use branching-time
logics to express the properties of the policies. Additionally,

we are looking into the possibilities of integrating such an
abstraction with the syntax and semantics of action languages
and similarly with answer set programming.

4 Future Work

It remains to consider a parameterization of the system where
the parameter will be the size of the environment. To address
the undecidability issue, instead of putting restrictions on
the agent or on the topology of the environment, we plan to
have this parameter bounded. Furthermore, the presence of
a compositional structure should help in dealing with large
systems.

In order to understand the scalability limits, a complexity

analysis on the methods will be done. Finally, in the devel-
opment of a prototype implementation, we may use available
model checkers. However, issues may arise from reasoning
about actions or outsourced tasks. In that case, we intend to
make use of ASP reasoners.

In summary, this thesis will yield a theoretical foundation
for gaining the capability of verifying (human-designed) reac-
tive policies for AI agents with a focus on action languages.

References

[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter, and
Mirosaw Truszczyski. Answer set programming at a glance.
Communications of the ACM, 54(12):92–103, 2011.

[Calvanese et al., 2013] Diego Calvanese, Giuseppe De Gia-
como, Marco Montali, and Fabio Patrizi. Verification and
synthesis in description logic based dynamic systems. In
RR, pages 50–64, 2013.

[Clarke et al., 2003] Edmund Clarke, Orna Grumberg,
Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-
guided abstraction refinement for symbolic model checking.
Journal of the ACM, 50(5):752–794, 2003.

[Dennis et al., 2012] Louise A. Dennis, Michael Fisher,
Matthew P. Webster, and Rafael H. Bordini. Model check-
ing agent programming languages. Automated Software

Engineering, 19(1):5–63, 2012.
[Eiter et al., 2005] Thomas Eiter, Giovambattista Ianni, Ro-

man Schindlauer, and Hans Tompits. A uniform integra-
tion of higher-order reasoning and external evaluations in
answer-set programming. In Proc. of IJCAI, pages 90–96,
2005.

[Fink et al., 2013] Michael Fink, Stefano Germano, Giovam-
battista Ianni, Christoph Redl, and Peter Schüller. Acthex:
Implementing HEX programs with action atoms. In LP-

NMR, pages 317–322, 2013.
[Gelfond and Lifschitz, 1998] Michael Gelfond and Vladimir

Lifschitz. Action languages. Electronic Transactions on

AI, 3(16), 1998.
[Inclezan and Gelfond, 2016] Daniela Inclezan and Michael

Gelfond. Modular action language ALM. Theory and

Practice of Logic Programming, 16(2):189–235, 2016.
[Saribatur and Eiter, 2016] Zeynep G. Saribatur and Thomas

Eiter. Reactive policies with planning for action languages.
In Proc. of NMR Workshop, pages 143–152, 2016.

4025


