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1 Introduction

Research on future energy systems shows that an electricity
network is often tolerant to failures but may collapse after en-
countering a certain number of failures that take place within
a short period of time. The smart grid is the upcoming gen-
eration of electricity networks. Challenges faced in the smart
grid include prompt, reliable, and informative alarm process-
ing to detect the points of failure. Another aspect is infer-
ring the root cause for failures. Being able to accurately and
promptly determine the fault occurrences allows rapid inter-
vention, which leads to faster restoration and lower vulnera-
bility to multiple faults. This work focuses on systems mod-
eled by a Discrete Event System (DES). A DES is a system
model representing state dynamics in a discrete manner [Cas-
sandras and Lafortune, 2008]. DES provides a common mod-
eling framework for diagnosis problems retaining the proper-
ties with a discrete nature.

2 Research Questions and Contributions

Diagnosis is a topic of Artificial Intelligence (AI) knowledge
representation and reasoning. AI diagnosis refers to the de-
tection and identification of failures in a system, which offers
the capability to address some of the challenges mentioned
above while research questions still remain in the context of
on-line diagnosis for DES. The problem of on-line diagno-
sis of a DES was initially defined by [Sampath et al., 1995].
Given a flow of observable events generated by the under-
lying system, the problem consists in determining whether
the DES is operating normally or not, based on a behavioral
model of the system. This work uses the term belief state to
represent the set of global states that the system is possibly
in after the given observations [Pencolé and Cordier, 2005;
Rintanen, 2007]. On-line diagnosis means diagnosing a sys-
tem on the fly and in real time such that constraints on com-
putational time and memory space are imposed. The chal-
lenge is to deal with the complexity of a diagnostic algorithm
that monitors on the fly the observable flow and generates
a succession of belief states consistent with the flow. How-
ever, the size of each belief state and their representation,
e.g., in Binary Decision Diagrams (BDD), are exponential
w.r.t. the number of system states in the worst case [Rinta-
nen, 2007]. The existing work, except SAT diagnosis, pro-
poses diagnostic algorithms that attempt to compute at any

time a belief state consistent with the observable flow from
the time when the system starts operating to the current time.
The main drawback of such a conservative strategy is the in-
ability to follow the observable flow for a large system due to
the exponential size of the generated belief states and there-
fore the temporal complexity to handle them. Although SAT
diagnosis computes one trace in the system for an observa-
tion sequence, the complexity of a SAT problem is proved to
be exponential w.r.t. the number of propositional variables,
which is linear to the number of state variables [Grastien et

al., 2007]. Therefore, SAT diagnosis is not suitable for on-
line diagnosis as the number of observations keeps increas-
ing. Because diagnosis of DES is a hard problem, the use of
faster diagnostic algorithms is inevitable. However, these al-
gorithms may be less precise to diagnose a diagnosable sys-
tem than using an exact model-based diagnostic algorithm,
e.g., the diagnoser [Sampath et al., 1995]. Faults are very
harmful to a system and expensive to recover from if not cor-
rectly diagnosed. Hence, it is essential to examine how to
measure the quality of using a potentially imprecise diagnos-
tic algorithm w.r.t. a diagnosable DES model.

This work has made four contributions. First, it defines
the precision of a diagnostic algorithm w.r.t. a DES model
and proposes a novel approach to verify the precision by con-
structing a simulation

[Su and Grastien, 2014a]. Diagnos-

ability of DES is an important property to measure the qual-
ity of diagnosis and the capability of a diagnostic system to
identify faults. Diagnosability holds if using the model, a
fault can always be diagnosed after it occurs [Sampath et

al., 1995]. Furthermore, diagnosability testing has been a
well-studied problem. [Jiang et al., 2001] showed that prov-
ing non-diagnosability amounts to finding a critical witness,
which is a pair of infinite executions on the model that are
indistinguishable, i.e., they produce the same observations
where one of them is faulty and the other one is nominal.
Thus, diagnosability is proved by showing that there is no
such witness. This approach is known as the twin plant

method. A diagnostic algorithm is defined as precise if the
algorithm will diagnose the fault after it occurs. Precision can
be verified using the twin plant method on the condition that
a simulation is built. This work defines simulation, which is
a modified model that simulates how a diagnostic algorithm
runs on a given DES model. The precision holds iff there is
no critical witness in the synchronization of the DES model
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and the simulation.
Second, this work proposes a new class of on-line DES di-

agnostic algorithms, called Independent-Window Algorithms
(IWAs), namely Al1, Al2, and Al3 [Su and Grastien, 2013].
The strategy of IWAs differs from the conservative approach.
IWAs only apply on the very last events of an observable flow
and forget about the past, which helps to reduce the size of a
belief state representation, e.g., in BDD. IWAs slice an obser-
vation sequence into time windows so that each time window
is diagnosed independently. IWAs diagnose a specified num-
ber of observations for one time window and move to another
time window without keeping any information. The differ-
ences among three IWAs are the time window selections.

Third, this work proposes Time-Window Algorithms
(TWAs), namely Al5 and Al6 [Su and Grastien, 2014b]. A
TWA is a compromise between the extreme strategies of ex-
act diagnosis and imprecise diagnosis, e.g., a compromise be-
tween the diagnoser [Sampath et al., 1995] and IWAs [Su and
Grastien, 2013]. Such a compromise is achieved by looking
for the minimum piece of information to remember from the
past, called abstracted belief state, so that a window-based al-
gorithm will certainly ensure the same precision as using an
exact diagnostic algorithm. Compared to Al5, Al6 improves
the precision without requiring a more detailed state catego-
rization, called abstract states.

Finally, this work evaluates the performance of IWAs and
TWAs measured by the precision of diagnosis, computational
time, peak memory use, average memory use, and diagnostic
distance. Diagnostic distance refers to the number of obser-
vations between a fault occurrence and the fault diagnosis of
a diagnostic algorithm. This work compares IWAs and TWAs
in the above aspects with the exact diagnostic algorithm en-
coded by BDD [Schumann, 2007], named as Al0. This work
also examines the impact of the time window size. The results
of IWAs show that Al3 can achieve the same precision as us-
ing Al0 to diagnose a component-based DES model. Also,
the run time and the average memory use are consistently re-
duced compared to using Al0. The results of Al3 indicate that
using a larger time window, i.e., fewer time windows, leads to
shorter computational time, as well as lower peak and average
memory use than using a smaller time window. The results
of TWAs demonstrate that Al5 and Al6 reduce the peak and
average memory use compared to using Al0. However, the
trade-off is that the computational time is longer than that of
using Al0 due to the operations performed on abstract belief
states between the time windows.

3 Future Work

The future work consists of four aspects. The first aspect is to
investigate the impact of using an imprecise diagnostic algo-
rithm on a non-diagnosable system, e.g., categorizing a sce-
nario into nominal, faulty, or ambiguous. The performance
needs to compared with the result of using an exact diagnos-
tic algorithm. Second, backbone diagnosis aims to identify
what is known for sure during a diagnostic process. Both
TWAs and backbone diagnosis remember some of the infor-
mation from the past. The difference is that TWAs keep track
of the abstract belief state of a system while backbone diag-

nosis maintains the known information, e.g., a certain vari-
able holds or not. The third aspect is to join diagnosis with
planning so that diagnosis leads to accurate alarm processing
while planning leads to robust configuration and restoration.
The goal is to improve the efficiency of event handling, min-
imize the impact of power loss, and restore to a robust state
withholding the diagnosability property. The fourth aspect
is extending to research on activity recognition and real-time
sensor data segmentation using varied time windows [Okeyo
et al., 2014].
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