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Abstract
In today’s big data era, huge amounts of ranking
and choice data are generated on a daily basis, and
consequently, many powerful new computational
tools for dealing with ranking and choice data have
emerged in recent years. This paper highlights
recent developments in two areas of ranking and
choice modeling that cross traditional boundaries
and are of multidisciplinary interest: ranking from
pairwise comparisons, and automatic discovery of
latent categories from choice survey data.

1 Introduction
In today’s big data era, huge amounts of data are generated in
the form of rankings and choices on a daily basis: restaurant
ratings, product choices, employer ratings, hospital rankings,
and so on. Given the increasing universality of such ranking
and choice data, many powerful new computational tools for
dealing with such data have emerged over the last few years
in areas related to AI, including in particular machine learn-
ing, statistics, operations research, and computational social
choice. Here we briefly highlight such developments in two
broad areas: ranking from pairwise comparisons, and auto-
matic discovery of latent categories from choice data.

As is well known, humans generally find it easier to ex-
press preferences in the form of comparisons between two
items, rather than directly ranking a large number of items.
Indeed, in many domains, one is given outcomes of pairwise
comparisons among some set of items (such as movies, can-
didates in an election, or sports teams), and must estimate a
ranking of all the items from these observed pairwise compar-
isons. Due to the ubiquitous nature of the problem, several
different algorithms have been developed for ranking from

pairwise comparisons in different communities, including
e.g. maximum likelihood estimation methods [Bradley and
Terry, 1952; Luce, 1959], spectral ranking methods [Kendall,
1955; Keener, 1993; Negahban et al., 2012], noisy sorting
methods [Braverman and Mossel, 2008], and many others;
however, little has been understood about when one algo-
rithm should be preferred over another. In the first part of the
paper (Section 2), we discuss recent developments in under-
standing these issues, including understanding the conditions
under which different ranking algorithms succeed or fail, and

how to design new algorithms for ranking form pairwise com-
parisons that achieve desirable goals under various conditions
[Rajkumar and Agarwal, 2014; 2016a; Rajkumar et al., 2015;
Rajkumar and Agarwal, 2016b].

In marketing, when presenting products to users in a store
or on a website, it is important to categorize related products
together so that users can quickly find what they are looking
for. These categories should ideally be based on how users
themselves make choices, so that products that tend to be
liked or disliked together are grouped together. In the second
part of the paper (Section 3), we describe a new approach for
automatic discovery of categories from choice data, which
brings together ideas from random utility choice models and
topic models in order to automatically discover latent cate-
gories from choice survey data [Agarwal and Saha, 2016].

2 Ranking from Pairwise Comparisons
Ranking from pairwise comparisons is a ubiquitous problem
that arises in a variety of applications. The basic types of
questions of interest here are the following: Say there are n
items, denoted [n] = {1, . . . , n}, and we observe the out-
comes of a number of pairwise comparisons among them
(such as pairwise preferences among movies, pairwise judg-
ments among job candidates, or pairwise game outcomes
among sports teams). Based on these pairwise comparisons,
can we find a good ranking of the n items, or identify a ‘best’
item or a ‘good’ set of items among them? How many com-
parisons do we need? What sorts of algorithms can we use?
Under what conditions do these algorithms succeed?

A natural statistical framework for analyzing such ques-
tions assumes that for each pair of items (i, j), there is an
underlying pairwise preference probability Pij 2 [0, 1] such
that whenever items i and j are compared, item i beats item
j with probability Pij and j beats i with probability Pji =

1� Pij . Collectively, these pairwise preference probabilities
form an underlying pairwise preference matrix P 2 [0, 1]n⇥n

(with Pii =

1
2 8i). Different statistical models for pairwise

comparisons lead to different conditions on P. For exam-
ple, if the pairwise preference probabilities follow the well-
known Bradley-Terry-Luce (BTL) statistical model for pair-
wise comparisons, then there is a score vector w 2 Rn

++
such that Pij =

wi
wi+wj

8i, j [Bradley and Terry, 1952;
Luce, 1959]; if they follow the ‘noisy permutation’ (NP)
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Condition on P Property satisfied by P

Bradley-Terry-Luce (BTL) 9w 2 Rn
++ : Pij =

wi
wi+wj

Low-noise (LN) Pij > 1
2 )

P
k Pik >

P
k Pjk

Logarithmic LN (LogLN) Pij > 1
2 )

P
k ln(

Pik
Pki

) >
P

k ln(
Pjk

Pkj
)

Markov consistency (MC) Pij > 1
2 ) ⇡i > ⇡j

Stochastic transitivity (ST) Pij > 1
2 , Pjk > 1

2 ) Pik > 1
2

Condorcet winner (CW) 9i : Pij > 1
2 8j 6= i

Noisy permutation (NP) 9� 2 Sn, p < 1
2 : Pij =

n
1� p if i �� j
p otherwise

Low rank (LR( , r)) rank( (P))  r ( : [0, 1]!R, r 2 [n])

Figure 1: Conditions on the matrix of underlying pairwise preference probabilities P and relationships among them. These
conditions play an important role in determining the success of different algorithms for ranking from pairwise comparisons.

model, then there is a permutation � 2 Sn and noise param-
eter p 2 [0, 1

2 ) such that 8i 6= j, Pij = 1 � p if �(i) < �(j)
(which we also denote as i �� j), and Pij = p otherwise
[Braverman and Mossel, 2008; Wauthier et al., 2013]. Sev-
eral other conditions on P are also of interest: see Figure 1.

One of our goals in recent work has been to understand
how the matrix of underlying pairwise probabilities P affects
the ranking goals that can be achieved, the success of differ-
ent algorithms in achieving those goals, and the number of
pairwise comparisons that are needed. We focus here mostly
on settings where item pairs to be compared are selected ran-
domly (or fixed in advance), but similar concerns also apply
when pairs to be compared are selected in an active fashion.1

As it turns out, the matrix P plays a huge role in deter-
mining the success of different algorithms for ranking from
pairwise comparisons. For example, spectral ranking algo-
rithms such as Rank Centrality perform well when P satis-
fies the BTL condition or the slightly more general Markov
consistency (MC) condition, but can fail miserably under
more general settings of P; indeed, if P is known only
to satisfy stochastic transitivity (ST), then using an SVM-
based ranking algorithm or a topological sort based algo-
rithm can be a better choice [Rajkumar and Agarwal, 2014;
2016a]. If P does not satisfy ST, then all these algorithms
fail to even recover a good set of items at the top, but one can
use other algorithms for this purpose [Rajkumar et al., 2015].
When comparisons can be made among only O(n log n) non-
actively sampled pairs, then under suitable conditions on P,
one can use algorithms based on low-rank matrix completion
[Rajkumar and Agarwal, 2016b]. Below we summarize some
of these findings and give pointers for further investigation.

2.1 Finding an Optimal Ranking
Let us start by considering the setting where all

�n
2

�
pairs

are compared a fixed number of times, say K times each.2

1The literature on dueling bandits provides a nice entry point
for understanding similar issues when item pairs are allowed to be
actively selected; e.g. see [Busa-Fekete and Hüllermeier, 2014] for
a recent survey.

2The results we discuss in this setting also extend to settings
where for each pairwise comparison to be made, a pair of items to
be compared is selected randomly and independently according to
some probability distribution µ 2 �

(

[n]
2 )

with µij > 0 8i < j (see
[Rajkumar and Agarwal, 2014] for details); we consider the basic

Thus the input pairwise comparison data here is of the form
{y1ij , . . . , yKij }i<j , with ykij = 1 denoting that the k-th com-
parison between i and j resulted in i beating j, and ykij = 0

denoting the reverse; under the statistical model discussed
above, each comparison outcome ykij is a random draw from
a Bernoulli random variable with parameter Pij . Given this
pairwise comparison data, consider the goal of finding a good
ranking or permutation of the n items, b� 2 Sn.

A natural measure of the quality of a permutation � is
its pairwise disagreement error w.r.t. the underlying pairwise
preference probabilities P:

dis(�,P) =

1�n
2

�
X

i<j

1
�
(Pij � 1

2 )(�(j)� �(i)) < 0

�
.

An optimal ranking or permutation �⇤ is then one that mini-
mizes this pairwise disagreement error:

�⇤ 2 argmin�2Sn
dis(�,P) .

Under what conditions on P can we find an optimal ranking
from the observed pairwise comparison data? Clearly, as the
number of comparisons K per pair increases, we expect to be
able to construct increasingly accurate estimates of P. Which
ranking algorithms have the property that as K increases, the
rankings they produce approach an optimal ranking?

In recent work [Rajkumar and Agarwal, 2014; 2016b], we
show that if the underlying pairwise probabilities P satisfy
the LN condition, then both the simple matrix Borda algo-
rithm and the popular method of maximum likelihood esti-
mation under a BTL model succeed in recovering (with high
probability) an optimal ranking (for sufficiently large K); if
P satisfies the LogLN condition, then the least squares rank-
ing algorithm succeeds in recovering such an optimal rank-
ing; and if P satisfies the MC condition, then the Rank Cen-
trality algorithm recovers an optimal ranking. Outside these
conditions on P, however, all these algorithms can fail mis-
erably. We also give alternative algorithms for ranking from
pairwise comparisons, including an SVM-based ranking al-
gorithm and a topological sort based algorithm, that provably
recover an optimal ranking from pairwise comparisons under
more general P satisfying only stochastic transitivity. See
Table 1 for a summary, and [Rajkumar and Agarwal, 2014;
2016a] for further details.

setting here, with all
�
n
2

�
pairs compared K times, for simplicity.
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Table 1: Properties of different ranking algorithms when all
�n
2

�
pairs are compared.

Ranking Algorithm Finds optimal ranking? Finds Finds Finds
BTL LN LogLN MC ST Condorcet winner? top cycle? Copeland set?

Matrix Borda X X ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
BTL-MLE X X ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Least Squares Ranking X ⇥ X ⇥ ⇥ ⇥ ⇥ ⇥
Rank Centrality X ⇥ ⇥ X ⇥ ⇥ ⇥ ⇥
SVM-Based Ranking X X X X X ⇥ ⇥ ⇥
Topological Sort X X X X X ⇥ ⇥ ⇥
Matrix Copeland X X X X X X X X

In general, when P does not satisfy ST, finding an optimal
ranking is hard even under exact knowledge of P; indeed,
this corresponds to the minimum weighted feedback arc set
(MWFAS) problem, which is known to be NP-hard.3 In such
cases, one may still like to be able to find a ranking that places
‘good’ items at the top; we discuss this next.

2.2 Finding Good Items at the Top

As discussed above, when the underlying pairwise probabil-
ities P do not satisfy stochastic transitivity, then even un-
der exact knowledge of P, finding an optimal ranking of
all n items as above is NP-hard. In such settings, it is nat-
ural to ask that an algorithm return a ranking that places
‘good’ items at the top. For example, when P admits a
Condorcet winner (an item that beats each other item with
probability greater than half), it is natural to ask this item
be placed at the top. More generally, when there is no Con-
dorcet winner, one can consider various notions of tourna-
ment solutions, each of which gives a different way to define
sets of winners in a tournament with cycles [Moulin, 1986;
Brandt et al., 2016], and ask that the items in the correspond-
ing tournament solution be ranked at the top. For example,
the top cycle is the smallest set of items W ✓ [n] for which
each item in the set beats each item outside the set with prob-
ability greater than half (i.e. for which Pij > 1

2 8i 2 W, j /2
W ); the Copeland set is the set of items C ✓ [n] that beat
the largest number of items with probability greater than half
(i.e. C = argmaxi

P
j 1(Pij >

1
2 )); and so on.

As we showed recently [Rajkumar et al., 2015], when the
underlying preference probabilities P do not satisfy ST, most
commonly used algorithms for ranking from pairwise com-
parisons are unable to find even the Condorcet winner when
it exists, and more generally, fail to rank items in various nat-
ural tournament solutions at the top (see Table 1). However,
it is possible to design ranking algorithms that do find such
tournament solutions at the top. For example, given enough
pairwise comparisons (i.e. for large enough K), the Matrix
Copeland algorithm successfully places both the top cycle
and the Copeland set at the top (Table 1).4 See [Rajkumar
et al., 2015] for further examples and discussion.

3When P satisfies ST, the graph induced by P is acyclic, and in
this case the MWFAS problem under knowledge of P is easy.

4The Copeland set is always a subset of the top cycle.

Table 2: Conditions under which different ranking algorithms
are known to have associated performance guarantees when
only O(n log n) randomly selected pairs are compared.

Ranking Algorithm Condition for
Performance Guarantee

Rank Centrality BTL
Balanced Rank Estimation NP
Low-Rank Pairwise Ranking LR( , r) \ ST

2.3 Ranking from Comparisons of O(n log n) Pairs
The above discussion focused on the setting when all

�n
2

�

pairs can be compared. However, when n is large, comparing
all pairs is impractical. A natural question that arises then is:
Under what conditions on P can we find a good ranking from
comparisons of only O(n log n) (randomly sampled) pairs?
Previous work has shown this is possible under the BTL con-
dition via the Rank Centrality algorithm [Negahban et al.,
2012] and under the NP condition via the Balanced Rank Es-
timation algorithm [Wauthier et al., 2013]; in recent work,
we show that this is in fact possible under a broader family of
‘low-rank’ conditions (which includes the BTL condition as a
special case, but is considerably more general; see Figure 1),
via a low-rank matrix completion based algorithm that we call
Low-Rank Pairwise Ranking. See Table 2 for a summary, and
[Rajkumar and Agarwal, 2016b] for further details.

3 Discovery of Categories from Choice Data
Consider now a marketing situation with n items or products,
which need to be grouped into categories based on their being
liked (or disliked) together. Say we have choice survey data
from M users, in which each user m is shown some subset
of items Sm ✓ [n] and is asked to indicate his or her prefer-
ences among these items, e.g. by indicating his or her top few
choices in the set, or by assigning a rating (say 1–5) to each
item in the set. Can we automatically discover meaningful
categories from such choice data?

Suppose there are K unknown categories to be discovered.
We model each category k via a random utility model (RUM)
that associates n random variables Xk1, . . . , Xkn with the n
items. In order to allow different users to have different pref-
erences among these categories, we posit that each user m
has a hidden preference vector ✓m 2 �K indicating his or
her preferences among the K categories. We then posit a
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Figure 2: Categories discovered from sports choice survey
data in which 253 respondents each rated the following 7
sports on a scale of 1–5 based on how much they liked them:
Baseball, Basketball, Cycling, Football, Jogging, Swimming,
Tennis. The first category emphasizes individual sports; the
second category emphasizes team sports; the third category
separates out jogging. Categories can overlap: e.g. the above
categories suggest cycling is likely to be co-enjoyed both with
swimming and tennis and with jogging.

generative model for the observed choice data, whose param-
eters are the parameters of the K RUMs (i.e. parameters of
the distributions of Xki), as well as parameters of a shared
Dirichlet prior on the preference vectors ✓m; given the ob-
served choice data, we then fit these parameters to the data
using a variational expectation-maximization procedure.

Under our generative model, given a set of items Sm ✓ [n],
user m picks her first choice as follows: she draws a category
k1 according to her preference vector ✓m, then draws util-
ity values x1

i for all items i 2 Sm according to {Xk1,i :

i 2 Sm} and picks an item with the highest drawn util-
ity: i1 2 argmaxi2Sm x1

i . Having picked her first choice
i1, in order to pick her second choice, she draws a cate-
gory k2 according to ✓m, then draws utility values x2

i for
all items i in Sm except the previously chosen item i1 ac-
cording to {Xk2,i : i 2 Sm \ {i1}}, and then picks an item
i2 2 argmaxi2Sm\{i1} x

2
i . This process is repeated until the

desired number of choices have been made. To model ratings
data, which can be viewed as partial ranking data, we average
over all choices that are consistent with the observed ratings.

As one example, Figure 2 shows the results obtained by
applying our method to sports choice survey data in which
253 respondents each rated 7 sports on a scale of 1–5 based
on how much they enjoyed each sport.5 As can be seen,
the method accurately discovers two categories correspond-
ing to individual and team sports, and identifies a third cate-
gory for jogging; this is consistent with previous studies that
have found that people tend to have strong likes or dislikes for
jogging independent of their liking for other sports [Marden,
1995]. Further examples and details can be found in [Agar-
wal and Saha, 2016].

4 Conclusion
Given the increasing availability of ranking and choice data,
there is considerable need for new and innovative computa-
tional approaches to ranking and choice modeling. In this
brief paper, we have highlighted some recent developments
in ranking from pairwise comparisons and in automatic dis-
covery of categories from choice data. There are many fas-

5Here we modeled each category via a multinomial logit choice
model, which corresponds to taking Xki to be independent Gumbel
random variables [McFadden, 1974].

cinating questions that remain open, and ranking and choice
models will likely continue to be active areas of research in
AI and related fields for many years to come.
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