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Abstract

Formalizing and automating aspects of human
plausible reasoning is an important challenge for
the field of artificial intelligence. Practical ad-
vances, however, are hampered by the fact that
most forms of plausible reasoning rely on back-
ground knowledge that is often not available in a
structured form. In this paper, we first discuss how
an important class of background knowledge can be
induced from vector space representations that have
been learned from (mostly) unstructured data. Sub-
sequently, we advocate the use of qualitative ab-
stractions of these vector spaces, as they are easier
to obtain and manipulate, among others, while still
supporting various forms of plausible reasoning.

1 Introduction

Many applications require forms of plausible inference, i.e.
drawing conclusions that cannot be obtained using standard
logical deduction but are nonetheless plausible, typically
by applying some kind of implicit background knowledge.
Broadly speaking, there are at least two types of background
knowledge that can be applied to arrive at such plausible con-
clusions. First, we can use statistical knowledge, e.g. only
knowing that Tweety is a bird, we can plausibly derive that
Tweety can fly, as we know that this is the case for most
birds. Note that our available statistical background knowl-
edge could be encoded numerically (e.g. as a Bayesian net-
work) or qualitatively (e.g. as a set of rules in some default
logic). Second, we may derive plausible conclusions based on
semantic knowledge, i.e. background knowledge about how
the entities and categories of the given domain are conceptu-
ally related. An example of this kind of reasoning is studied
in the psychology literature as category-based induction [Os-
herson et al., 1990], i.e. inducing properties about categories
of objects based on known properties of particular instances
or subcategories. For instance, knowing that (i) BBC is reg-
ulated by Ofcom and (ii) ITV is regulated by Ofcom, we can
plausibly derive that all British broadcasters are regulated by
Ofcom. Plausible reasoning based on semantic knowledge
is also often needed to deal with conflicts between different
knowledge bases in a natural way (see Section 2).

The question we focus on in this paper is how we can ac-
quire the semantic background knowledge that is needed to
support such forms of plausible reasoning, and how much of
this knowledge can be encoded qualitatively. One common
approach is to rely on existing open-domain taxonomies such
as WordNet. Either we can use such taxonomies qualitatively
(e.g. if ITV and BBC are encoded by the taxonomy to be
British broadcasters, then statements which are true for both
ITV and BBC might be defeasibly generalized to all British
broadcasters) or we can use them to estimate a numerical sim-
ilarity score between different concepts [Resnik, 1999] (e.g.
if bistro is found to be taxonomically close to restaurant then
we might plausibly derive that properties that hold for restau-
rants also hold for bistros).

For many types of inferences, however, taxonomies are too
limiting. A key problem is that often there are many ways
in which a given group of entities can be partitioned, which
means that either arbitrary choices need to be made or that
taxonomies end up being too shallow to support meaning-
ful inductive inferences. For example, depending on the in-
tended application, it might be preferable for beach to be tax-
onomically closer to harbor than to desert (beach and harbour
being coastal features), whereas other applications might re-
quire the opposite (beach and desert consisting of sand). In
the context of plausible reasoning, a better alternative is to
explicitly capture the various ways in which entities and con-
cepts can be grouped. For example, [Kok and Domingos,
2007] proposes a method to learn such multi-clusterings that
are maximally predictive. A second important limitation of
taxonomies as a basis for plausible reasoning is that induc-
tive inferences commonly use non-taxonomic relations, es-
pecially when made by domain experts [Coley et al., 2005].
For example, when we only know about some university that
its staff are not permitted to travel in business class, we can
plausibly derive that its staff will not be allowed to travel in
first class either. Note in particular that we would not de-
rive such a conclusion for economy class, despite the fact
that economy class and first class are taxonomically equally
close to business class. In such examples, conclusions depend
on the underlying causal relations (e.g. staff cannot travel
in business class because it is too expensive). To automate
such forms of plausible reasoning, we typically need to rely
on non-taxonomic relations (e.g. first class is more expensive
than business class).
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In the next section, we look more closely at some exam-
ples of applications that require plausible reasoning. Section
3 then discusses the use of vector space embeddings as a ba-
sis for plausible reasoning. Finally, in Section 4, we argue
that qualitative abstractions of vector space embeddings offer
several advantages over numerical representations.

2 Motivating examples

Merging logical theories Different ontologies often con-
tain conflicting information. For example, SUMO1 considers
that rugby ball is separate from ball, reserving the latter con-
cept for objects that have a spherical shape. Wikidata2, on the
other hand, considers rugby ball to be a subclass of football,
which is in turn considered to be a subclass of ball. Finally,
OpenCYC3 considers rugby ball and football to be separate
subtypes of ball.

Note that, despite the conflict, the information coming
from these three ontologies is not erroneous. A natural way to
obtain a unified and consistent logical theory, in such a case,
is to explicitly model the fact that concepts such as football
and ball can be used with slightly different meanings. An ap-
proach for merging conflicting (propositional) theories based
on this view was proposed in [Schockaert and Prade, 2011b].
It considers that the precise meaning of a concept is always
source-specific, but that we can make assumptions about how
these source-specific interpretations are related. Specifically,
it starts from the default assumption that all sources assign
the same meaning to all concepts, and only weakens this as-
sumption to the extent needed to restore consistency. To spec-
ify how the initial assumption can be weakened, it relies on
extra-logical background information which can be encoded
using a directed graph. For example, Figure 1 encodes how
different interpretations of the concept football might be re-
lated. Because football and soccer ball are connected, we
allow for the possibility that what one source calls football
might include what another source calls soccer ball or Amer-
ican football. If two rounds of weakening are needed to re-
store consistency, we also allow for the possibility that the
other source’s interpretation of football includes rugby ball.
Following [Freksa, 1991], concepts such as football and soc-
cer ball, which are connected in the diagram, are called con-
ceptual neighbors.

Conflicts between logical theories can also be resolved us-
ing taxonomies. For example, if one source claims that Mary
studied computer science in Cardiff, while another source
claims that she only studied in Oxford, the inconsistency can
be resolved by weakening both claims as “Mary studied com-
puter science in the UK”. Note that in this case, the required
semantic knowledge can be encoded as part of the logical the-
ory itself. Conceptual neighborhood relations, on the other
hand, are essentially extra-logical. The advantage of the con-
ceptual neighborhood approach, however, is that it allows
us to weaken the initial assertions in a more targeted way,
whereas taxonomy-based weakening is often too cautious.

1https://github.com/ontologyportal/sumo/blob/master/Sports.kif
2https://www.wikidata.org/wiki/Q2881344
3http://sw.opencyc.org/2012/05/10/concept/en/Ball

Figure 1: Conceptual neighborhood graph for the concept
football.

Knowledge base completion Most knowledge bases are
incomplete. For example, SUMO encodes that Piano, Vio-
lin and Guitar are subclasses of StringInstrument, but does
not include any facts about Harpsichord. Even if we did not
know anything about the concept StringInstrument, we could
plausibly derive that Harpsichord is a subclass of String-
Instrument. The intuitive reason is because harpsichord is
conceptually between piano, violin and guitar, in the sense
that properties which tend to be true for pianos, violins and
guitars also tend to be true for harpsichords. A method
for automatically completing rule bases using this form of
inference, which is called interpolation, was introduced in
[Schockaert and Prade, 2013] (where a related form of in-
ference, called extrapolation, was also discussed).

Note that taxonomy based approaches cannot be used here,
as this example is about dealing with a missing taxonomic re-
lationship. Intuitively, however, we can think of interpolation
as a generalization of taxonomy-based induction to multi-
clusterings, i.e. the fact that harpsichord is conceptually be-
tween piano, violin and guitar could be interpreted as mean-
ing that harpsichord belongs to all natural clusters that also
contain piano, violin and guitar.

The aforementioned approaches are all qualitative. Numer-
ical approaches can be used for this task as well, typically
by using a form of similarity based reasoning. For example,
[Beltagy et al., 2013] presents an approach that uses Markov
logic to encode the soft constraint that if a given property
holds for a given concept, then it should also hold for similar
concepts. Another example of similarity based reasoning is
[Raina et al., 2005], which proposed a method for deciding
whether one natural language statement entails another. This
is formalized as an abductive reasoning problem, where cer-
tain assumptions are allowed to be made to prove the entail-
ment (at a cost). The considered assumptions include replac-
ing one concept for a similar one. A key problem of similarity
based reasoning methods, however, is the difficulty of linking
similarity degrees to probabilities in a principled way.

3 Entity embeddings

The applications discussed in the previous section require se-
mantic background knowledge that is not contained in exist-
ing resources such as WordNet, CYC, ConceptNet or Free-
base. This includes information about conceptual neighbor-
hood, betweenness, and relative features (e.g. a relation such
as “more expensive than” between travel modes). To learn
such semantic relations from data, [Schockaert and Prade,
2011a] proposed to induce a vector space by applying multi-
dimensional scaling (MDS) to a bag-of-words representation
of each entity. In the resulting representation, entities cor-
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respond to points while concepts and properties correspond
to convex regions (estimated based on the convex hull of
their instances), in accordance with the theory of concep-
tual spaces [Gärdenfors, 2000]. It was found that geomet-
ric betweenness in this vector space is useful for identify-
ing conceptual betweenness (e.g. the region for Harpsichord,
in a space of musical instruments, should be approximately
in the convex hull of the regions for Piano, Violin and Gui-
tar). Furthermore, parallel directions in the space were found
to intuitively correspond to analogies. This initial approach
was significantly improved in [Derrac and Schockaert, 2015],
where it was shown how directions could be identified in the
space which model relative features (e.g. “more violent than”
in a space of movies). Specifically, these directions allow
us to rank the entities of that space according to how much
they have the corresponding feature. Recently, [Jameel and
Schockaert, 2016] further improved on this method by learn-
ing a 300-dimensional open-domain vector space represen-
tation for 1.2M entities, in which all instances of a given se-
mantic type are located in a particular lower-dimensional sub-
space. This is illustrated in Figure 2, which shows the two-
dimensional subspace that was found for the entities of type
Civilization (which is itself embedded in the 300-dimensional
space). In this way, semantic relations between entities of dif-
ferent semantic types can be taken into account to improve
the representation (e.g. knowing that films A and B have sim-
ilar directors provides evidence that these films are similar),
while the use of subspaces ensures that we can still identify
domain-specific relations. For example, in Figure 2, the di-
rection from left to right approximately models the relation
“more recent than”, while the upwards direction is related to
how populous/influential different civilizations were.

Recently, a number of popular models have been proposed
for automatically completing knowledge graphs, i.e. sets of
triples of the form (e, r, f), encoding that entity e is in re-
lation r with entity f . Most of these approaches are based
on the view that relations can be modelled as translations in a
vector space [Bordes et al., 2013]. For example, to model that
Paris is the capital of France, the vector space representation
can be constrained such that pfrance + rcapital of ⇡ pparis. While
these vector space embeddings share some similarities with
the aforementioned entity embeddings, there are a number of
key differences. For example, knowledge graph embedding
models are supervised methods for learning correlations be-
tween a given set of relations (often between entities of dif-
ferent types), whereas the aforementioned entity embedding
models are used to induce semantic relations between entities
of the same type in an unsupervised way (i.e. the salient re-
lations for each domain are identified automatically). More-
over, knowledge graph embedding models primarily capture
statistical knowledge, rather than semantic knowledge. Con-
sider for example the following default rule: if “person a
works for company b” and “company b is located in city c”
then typically “person a lives in city c”. While not deduc-
tively valid, this rule may be satisfied for many triples (a, b, c)
in a given knowledge graph. In the resulting embedding we
then expect rworks for+rlocated in ⇡ rlives in. In principle, a single
vector space cannot capture such statistical correlations and
at the same time faithfully model semantic relations between

Figure 2: Subspace with entities of type Civilization.

the entities. For example, it is possible for persons a and b to
be semantically similar (e.g. similar age, profession, hobbies,
geographic location) while their brothers are not. In the trans-
lation model, on the other hand, if a and b are similar then
a+rbrother of and b+rbrother of are similar as well4. On the other
hand, there is some evidence that in practice, learning a single
vector space that captures semantic relatedness (induced from
bag of words representations) as well as correlations from a
knowledge graph can actually be beneficial, in the sense that
both the modelling of semantic relatedness and the knowl-
edge graph relations might be improved [Zhong et al., 2015;
Jameel and Schockaert, 2016].

4 Qualitative entity embeddings

While vector space embeddings have proven remarkably
successful in tasks like knowledge base completion, they
also have several drawbacks compared to taxonomies. Tax-
onomies, even when learned from data, are easy to understand
and debug by domain experts, and easier to reuse in new ap-
plications. Due to their qualitative nature, taxonomies are
also easier to extend, e.g. by extracting taxonomic relations
directly from text documents [Hearst, 1992]. Note, however,
that the applications discussed in Section 2 only rely on qual-
itative relations that have been derived from the vector space
representation, rather than on the vector space representation
itself. In this section, we outline how the advantages of tax-
onomies and vector space representations could be combined
by using a qualitative abstraction of entity embeddings.

Given an embedding of the entities of a given domain (e.g.
movies), we can use the method from [Derrac and Schock-
aert, 2015] to identify the directions d1, ..., dn that correspond
to the most salient features of that domain (e.g. more scary
than). Each of these directions di induces a ranking of the en-
tities, which can be encoded as a mapping �i from the set of
entities to the set of ranks {1, ..., n}. Experiments in [Derrac
and Schockaert, 2015] have shown that classifiers using only
these rankings can be as accurate as classifiers that directly
operate on the vector space representation.

Given the rankings �1, ...,�n of all entities, we can repre-
sent concepts by defining for each concept C and each rank-
ing �i an interval [liC , u

i
C ]. An entity e is then assumed to

4While extensions of this translation model exist that allow for
more flexibility, e.g. by considering translations in a subspace [Wang
et al., 2014], the principle remains that knowledge graph constraints
could distort the way in which semantic relations are modelled.
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belong to the concept C if liC  �i(e)  ui
C for every

i 2 {1, ..., n}. Intuitively, this use of intervals is similar to
representing concepts geometrically as hyperrectangles, al-
though the directions corresponding to the rankings need not
be orthogonal and the number of rankings can be chosen
higher than the number of dimensions. Note that it is straight-
forward to learn suitable intervals [liC , u

i
C ] from positive and

negative examples of the concept. Furthermore, we can easily
generalize this interval representation to capture the vague-
ness of category boundaries. To estimate whether concept D
is between concepts C1, ..., Ck we can simply check whether

[liD, ui
D] ✓ [

k
min

j=1
liCj

,
k

max

j=1
ui
Cj
] (1)

for every i. Note that this condition is not sufficient for D
to be in the convex hull of C1, ..., Ck in the vector space, al-
though we can always avoid false positives by adding addi-
tional directions. Another possibility is to augment the rank-
ings with explicit information about how the regions are spa-
tially related, using an appropriate qualitative spatial calculus
[Schockaert and Li, 2013]. Furthermore note that in prac-
tice we are mostly interested in approximate betweenness, in
which case the inclusion in (1) should be replaced by a soft
constraint (i.e. liD should be greater than or close to minj liCj

,
and similar for the upper bound). Checking whether C and D
are conceptual neighbors can be done in a similar way.

The rankings �1, ...,�n thus offer a qualitative view of
the entity embedding, which can support plausible reason-
ing without having to rely on computationally expensive ge-
ometric computations (e.g. convex hulls in high-dimensional
spaces). Furthermore, given that each ranking corresponds
to an interpretable, salient property of the domain of inter-
est, this representation is easy to improve by domain ex-
perts, crowdsourcing, or by taking into account information
extracted from natural language (e.g. using surface patterns
such as “[X] is somewhat between [Y] and [Z]”). Finally, the
qualitative representation also makes it easier to take into ac-
count the context-dependent nature of many semantic rela-
tions, by only considering those rankings that correspond to
features that are relevant in the given application context.

5 Conclusions

We have proposed the use of qualitative entity embeddings to
represent the semantic background knowledge that is needed
for various forms of plausible reasoning. This is motivated
by the fact that we can thus combine the data-driven nature of
vector space embeddings with the transparency and ease-of-
use of symbolic representations, such as taxonomies.
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