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Abstract
What can only humans do? What can humans do
that machines cannot? These questions have long
been tantalizing scientists and philosophers. Many
areas, such as creativity and humor, are tradition-
ally considered to be outside the reach of com-
puters. We believe that these territories define an
intriguing set of challenges for computer science.
We present two approaches for tackling such chal-
lenges – an axiomatic one and a data-driven one –
and demonstrate our ideas on two real-world appli-
cations: finding narratives in large textual corpora
and identifying humorous cartoon captions.

1 Introduction
Daniel Gilbert says that all psychologists must, at some
point in their professional lives, publish an article containing
this sentence: “The human being is the only animal that...”
[Gilbert, 2009]. Indeed, many versions of this sentence have
been written over the years; often, they are later discovered to
be wrong and are discarded.

Initially, those sentences were debunked by studies of an-
imals. For example, humans were considered to be the only
animal that could use language, until we found that chim-
panzees could learn sign language. Today, the battle for hu-
mans’ sense of uniqueness is increasingly waged against com-
puters. Computers can now perform many tasks that were
once considered uniquely human, such as playing Go [Silver
et al., 2016] or Jeopardy [Ferrucci et al., 2010].

Today, there are still many areas that are considered to be
outside the reach of computer science. For example, creativ-
ity and humor are viewed as distinctly human traits; even in
science fiction, robots and computers are almost always por-
trayed as humorless – no matter how proficient they are with
language or other skills.

We believe that such territories define an intriguing set of
challenges for computer science. Improvements in these ar-
eas can immediately translate to improvements in human-
computer interaction and collaboration; even more impor-
tantly, they could lead to new insights about human cogni-
tion. In the following, we present two approaches for tackling
such challenges. The axiomatic approach aims to formalize
intuitive concepts, crafting an objective function to emulate

elusive intuitions. We demonstrate this approach in Section
2, summarizing methods we have developed to capture the
structure and development of complex news stories.

Coming up with objective functions can be difficult. Luck-
ily, recent advancements in data collection and machine
learning have made it easier to discover potential axioms. The
data-driven approach uses data to guide the objective formu-
lation. In Section 3, we show how we used crowdsourced data
to automatically identify humorous cartoon captions.

2 Axiomatic Approach: Information
Cartography

We now demonstrate the axiomatic approach, summarizing
methods we have previously developed to tackle information
overload [Shahaf et al., 2012b; 2012a; 2013; 2015a].

When information is abundant, people struggle to make
sense of complex issues, such as presidential elections or
economic reforms. Methods that summarize and visual-
ize narratives [Swan and Jensen, 2000; Yan et al., 2011;
Allan et al., 2001] often work only for simple (and linear)
stories. In contrast, complex stories are non-linear: stories
spaghetti into branches, side stories, and intertwining narra-
tives. To explore such stories, users need a map to guide them
through unfamiliar territory.

We have introduced a methodology for creating structured
summaries of information, which we call metro maps. Metro
maps consist of a set of lines which can intersect or overlap.
Most importantly, metro maps explicitly show the relations
among different pieces in a way that captures the evolution
of a story. Each metro stop is a cluster of articles, and lines
follow coherent narrative threads. Different lines focus on
different aspects of the story.

For example, Figure 1 summarizes the 2014 Crimean cri-
sis. The map was automatically generated for the query
“Crimea”. The lines correspond to the Russian, Ukrainian,
and Western points of view. Timeline appears at the bot-
tom, and important words appear next to each line. The Rus-
sian (green) line starts with the Crimea parliament voting and
Putin recognizing Crimean independence. The Ukrainian (or-
ange) line starts with Ukraine’s former prime minister urging
the West to stop Russian aggression. The Ukrainian line then
joins the Western (blue) line, discussing the West’s attempts
to support Ukraine. The Russian and Ukrainian lines intersect
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Figure 1: Sample output: Metro map about the 2014 Crimean crisis. Legend on the left of each line shows the important words
for the line: the lines correspond to the Russian, Ukrainian, and Western points of view. Each metro stop is a cluster of articles
(the callout bubbles are manual annotations of the content). The timeline appears at the bottom of the map.

when pro-Russia men take over police stations in Ukraine.

2.1 Crafting an Objective Function
Before we can come up with an algorithm for computing
good maps, we must craft an objective function. This is es-
pecially important because the objective is not a priori clear:
Recognizing whether a map is good or not is easy for humans,
but it is a very intuitive notion.

In a nutshell, the axiomatic approach attempts to formalize
soft, intuitive concepts by breaking them down into a list of
axioms. For example, later we argue that the map objective
must guarantee diversity of articles, and that guarantee should
be formalized as a submodular function over sets of articles.

Let us recall our goal again: We seek to compute a metro
map to summarize and organize an input set of documents.
Metro lines are ordered sequences of stops (which are sub-
sets of articles). Line follow coherent narrative threads, with
different lines focus on different aspects. Intersections reveal
interactions between storylines. This intuitive definition gives
rise to a set of (sometimes conflicting) criteria, such as coher-
ence of lines. In the following, we motivate and formalize
these criteria, resulting in a set of axioms we need to satisfy.
Coherence. A first requirement is that each metro line tells
a coherent story: Following the articles along a line should
give the user a clear understanding of the evolution of a story.

For the sake of the presentation, we focus metro stops that
are singletons: each cluster is a single document. A natural
first step in defining coherence is to measure similarity be-
tween each pair of consecutive documents. However, local
similarities may give rise to associative, incoherent lines. For
example, suppose a line consists of three documents. Doc-
uments 1,2 could share half their words, as well as 2,3, but
documents 1,3 may still have nothing in common.

We note that coherent lines are often characterized by a
small set of words that are important throughout the line. In

other words, coherence is a global property of the line, and
cannot be deduced solely from local interactions.

We translate the axioms into a linear programming prob-
lem, where the goal is to choose a small set of words, and
score the line based solely on them. To ensure that each tran-
sition is strong, the score of a chain is the score of the weakest
link. See [Shahaf and Guestrin, 2010] for details.
Coverage. Coherence is crucial for good maps, but it is not
sufficient. Maximally coherent lines often revolve around
unimportant, esoteric topics. Furthermore, as there was no
notion of diversity, multiple lines contained redundant infor-
mation. Thus, another key property is coverage: lines should
cover diverse topics which are important to the user.

We define a set of elements we wish to cover: For news
articles, we use words (e.g., “Obama”, “China”) [Shahaf et
al., 2012b], so a high-coverage map discusses many impor-
tant words. For the scientific corpus, we use papers [Shahaf
et al., 2012a], so map should cover large part of the corpus.

We define a coverage function, measuring how well a set
of documents covers each element. To encourage diversity,
this function should be submodular. Thus, if the map already
covers an element well, similar documents provide little extra
coverage, encouraging us to cover new topics. In addition,
weights biases the map towards covering important elements.
In [Shahaf et al., 2012b], we discuss learning weights from
user feedback for a personalized notion of coverage.
Connectivity. Finally, a map is more than just its content;
there is information in its structure as well. Our last prop-
erty is connectivity: The map should convey the underlying
structure of the story, and how aspects of the story interact.

Intuitively, different stories have different structure. Some
stories are almost linear, while others are much more com-
plex. In order to capture the structure of a story, we compute
the minimum number of lines that cover all metro stops. This
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objective pushes for long storylines whenever possible: linear
stories become linear maps, while complex stories maintain
their interweaving threads.
Tying it all Together. Next, we consider tradeoffs among the
properties we defined. For example, maximizing coherence
often results in low coverage. Therefore, it is better to treat
coherence as a constraint: a chain is either coherent enough to
be included in the map, or not. Coverage and connectivity, on
the other hand, should both be optimized. Finally, we define
our objective:

Problem 2.1 (Metro Maps: Informal).
A map should satisfy:

• High coverage, High connectivity
Subject to:

• Minimal level of line coherence, Minimal cluster quality,
Maximal map size

See [Shahaf et al., 2013] for a formal statement of the axioms,
as well as the optimization algorithm.

2.2 Applications and Evaluation
Maps are very easy to apply to domains other than news. The
principles stay the same, but one can use domain knowledge
to adapt the objectives (while still obeying the axioms). In
addition to news, we applied the algorithm to science (help
researchers understand the state-of-the-art), legal documents
(help lawyers prepare for a case), and books (elucidate the
structure of complex books – in particular, Lord of the Rings).

Evaluating metro maps is difficult, as ground truth is hard
to define. Since the goal of the maps is to help people nav-
igate through information, we conducted an extensive set of
user studies to better understand the value of the methodol-
ogy. For lack of space, we only describe one study in the
scientific domain. In that study, we recruited students and
asked them to conduct a literature survey in an area they were
not familiar with. We measured precision (fraction of re-
trieved papers that are relevant), and subtopic recall (fraction
of relevant research areas retrieved). Map users outperformed
Google Scholar users in every parameter: Precision (84.5%
to 74.2%), recall (73.1% to 46.4%) and number of seminal
papers found (1.62 to 1.2).

3 Data-Driven Approach: Identifying
Humorous Cartoon Captions

In the previous section we demonstrated the axiomatic
method. We now demonstrate the data-driven method in
the humor domain. A considerable amount of discussion has
been devoted to the nature and function of humor. To date,
most investigations of humor have been undertaken within
psychology, philosophy, and linguistics, while computational
research is still in its infancy.

We believe that endowing machines with capabilities for
recognizing humor could enhance interaction through im-
proved understandings of semantics, intentions, and senti-
ment. Humor can also be harnessed to increase attention, re-
tention, and engagement, and thus has numerous applications
in education, health, communications, and advertising.

What’s it going to take to get you in this car today?
Relax! It just smells the other car on you.
It runs entirely on legs.
Just don’t tailgate during mating season.
It’s only been driven once.
He even cleans up his road kill.
The spare leg is in the trunk.
Comfortably eats six.
She runs like a dream I once had.

Figure 2: Example cartoon from the New Yorker contest, with
the shortlist of submitted captions.

Computational work to date on humor focuses largely on
humor generation in limited domains, such as puns and hu-
morous acronyms [Binsted and Ritchie, 1994; Stock and
Strapparava, 2005]. Several other projects focus on the re-
lated task of humor recognition [Mihalcea and Pulman, 2007;
Taylor and Mazlack, 2004; Tsur et al., 2010].

In this section we describe a new direction we proposed
in the realm of humor recognition [Shahaf et al., 2015b].
We focus on the task of identifying humorous captions for
cartoons. Specifically, we consider cartoons from The New
Yorker magazine. The New Yorker holds a weekly contest in
which it publishes a cartoon in need of a caption. Readers are
invited to submit their suggestions for captions. The judge se-
lects a shortlist of the funniest captions, and members of the
editorial staff narrow it down to three finalists. All three final-
ists’ captions are then published in a later issue, and readers
vote for their favorites. Figure 2 shows an example cartoon.
In this cartoon, a car salesperson attempts to sell a strange,
hybrid creature that appears to be part car, part animal. The
judge’s shortlist appears under the cartoon.

3.1 Crafting an Objective Function
We wish to formulate the humorousness of the captions. Un-
like the previous section, it is much harder to describe desired
properties of funny captions. This task seems to require un-
derstanding deeper, more universal underpinnings of humor.

Thus, we use data to guide our process. Unlike the ax-
iomatic approach, in the data-driven approach we do not state
in advance desired properties we must satisfy. Rather, we
construct candidate axioms from data – either from the digital
traces we all leave behind or through direct experimentation.

For our task, we create a dataset of crowdsourced New
Yorker competition captions, along with human judgments.
We recruited crowdworkers via Mechanical Turk. Workers
saw a cartoon and multiple captions, and proceeded to rank
the captions from the funniest to the least funny. We selected
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pairs of captions that achieved high agreement among the
rankers (80% agreement or more, similar length, ranked by
at least five people). These pairs served as our ground truth.

Next, we conducted a search of the humor-research liter-
ature, looking for useful attributes for discriminating funnier
captions. For example, Mihalcea and Pulman [Mihalcea and
Pulman, 2007] suggest a frequent use of negative words (can-
not, bad, illegal, mistake) in humorous texts. In this spirit,
we used a sentiment analysis tool to annotate the captions.
Patrick House, a winner of the New Yorker contest, wrote an
article about his winning strategy [House, 2008]. He suggests
to use “common, simple, monosyllabic words” and to “Steer
clear of proper nouns that could potentially alienate”. Follow-
ing this advice, we measure readability metrics and proper
nouns. Similarly, we extracted multiple other potential hy-
potheses from the literature (some of them contradicting), as
well as some of our own – in particular, metrics that take the
cartoon itself into account.

Using our data, we could test potential axioms. For exam-
ple, we found that funnier captions indeed use significantly
fewer proper nouns and 3rd person words. This information
enabled us to try and formalize a notion of humor. See details
in [Shahaf et al., 2015b].

3.2 Evaluation
We formulate a pairwise evaluation task and construct a clas-
sifier that, given two captions and a cartoon, determines
which caption is funnier. Our classifier achieves 69% accu-
racy for captions hinging on the same joke, and 64% accuracy
comparing any two captions. We implemented an algorithm
that ranks all captions. On average, all of the judges’ top-10
captions are ranked in the top 55.8%, thereby suggesting that
the methods can be used to significantly reduce the workload
faced by judges.

4 Conclusions
We proposed two ways to tackle areas that are traditionally
considered to be outside the scope of computers. We used an
axiomatic approach to construct metro maps, concise struc-
tured sets of documents that follow the development of com-
plex stories. We formalized soft terms like “coherence” and
“coverage”, resulting in objectives that capture people’s intu-
itive notions. We applied metro maps to help people under-
stand news stories, research areas, legal cases, and works of
literature. User studies suggest that metro maps help users to
acquire knowledge efficiently.

Next, we demonstrated a data-driven approach in the hu-
mor domain. We investigated the challenge of learning to rec-
ognize the degree of humor perceived for cartoons and cap-
tions. We extracted a useful set of features from linguistic
properties of captions and the interplay between captions and
pictures. We harnessed a large corpus of crowdsourced car-
toon captions and developed a classifier that could pick the
funnier of two captions 64% of the time. We used the clas-
sifier to find the best captions, significantly reducing the load
on the cartoon contest’s judges.

We believe that formalizing areas that are viewed as “dis-
tinctively human” will find myriad applications across mul-
tiple domains. Beyond applications, pursuing formal models

could reveal new insights about fascinating aspects of the hu-
man cognition.
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