
On the Properties of GZ-Aggregates in Answer Set Programming⇤

Mario Alviano and Nicola Leone
Department of Mathematics and Computer Science

University of Calabria, Italy
{alviano,leone}@mat.unical.it

Abstract
Gelfond and Zhang recently proposed a new stable
model semantics based on Vicious Circle Principle
in order to improve the interpretation of logic pro-
grams with aggregates. A detailed complexity anal-
ysis of coherence testing and cautious reasoning
under the new semantics highlighted similarities
and differences versus mainstream stable model se-
mantics for aggregates, which eventually led to the
design of compilation techniques for implementing
the new semantics on top of existing ASP solvers.

1 Introduction
Answer set programming (ASP) is a declarative language
for knowledge representation and reasoning [Brewka et al.,
2011] powered by many efficient systems [Calimeri et al.,
2016]. ASP specifications are sets of logic rules, possibly
using disjunction and default negation, interpreted according
to the stable model semantics [Gelfond and Lifschitz, 1988;
1991]. Default negation in particular eases the representation
of decisions to be taken based on assumptions on unknown
knowledge. In fact, a stable model I of an ASP program ⇧
has to satisfy all logic rules in ⇧, and in addition has to sat-
isfy a stability condition: everything in I is necessary in order
to satisfy all logic rules in ⇧ under the assumptions provided
by I itself for default negated literals. Hence, the stability
condition guarantees correctness of the assumptions on the
unknown knowledge used in the reasoning process. More-
over, the stability condition enforces the vicious circle prin-

ciple, which essentially asserts that the truth of an atom must
be inferred by means of a definition not referring, directly or
indirectly, to the truth of the atom itself.

The basic language is extended by several constructs to
ease the representation of practical knowledge. Aggregate
functions are among these extensions [Simons et al., 2002;
Pelov et al., 2007; Son and Pontelli, 2007; Shen et al., 2014;

⇤This work is based on a paper presented at the International
Conference on Logic Programming (ICLP 2015) [Alviano and
Leone, 2015], and was partially supported by the Italian Min-
istry of University and Research under PON project “Ba2Know
(Business Analytics to Know) Service Innovation - LAB”, No.
PON03PE 00001 1, and by Gruppo Nazionale per il Calcolo Sci-
entifico (GNCS-INdAM).

Liu et al., 2010; Faber et al., 2011; Bartholomew et al., 2011],
and allow to express properties on sets of atoms declaratively.
For example, aggregate functions are often used to enforce
functional dependencies; a rule of the following form:

? R0(X), COUNT[Y : R(X,Y,Z)] > 1

constrains relation R to satisfy the functional dependency
X ! Y, where X [Y [Z is the set of attributes of R,
and R0 is the projection of R on X. Aggregate functions are
also commonly used in ASP to constrain a nondeterministic
guess. For example, in the knapsack problem the total weight
of the selected items must not exceed a given limit, which can
be modeled by the following rule aggregating over a multiset:

? SUM[W,O : object(O,W,C), in(O)] > limit .

As a further example, aggregate functions ease the represen-
tation of logic circuits made of gates of unbounded fan-in
[Gelfond and Zhang, 2014]; the following rule models that
the output value of an XOR gate is 1 if an odd number of its
inputs have value 1:

v(O, 1) xor(G), out(G,O), ODD[I : in(G, I), v(I, 1)].

This last example is of particular interest, as it includes
a recursive definition involving an aggregate. In fact, a
strength of ASP is the possibility to represent and reason
on recursive definitions, which are quite common in math-
ematics and computer science. However, when aggregates
are involved in recursive definitions, the notion of stable
model is nontrivial, and actually still under debate. Of the
several semantics proposed for ASP programs with aggre-
gates, two of them [Ferraris, 2011; Faber et al., 2011] are
implemented in popular ASP solvers [Gebser et al., 2012;
Faber et al., 2008], agree for programs without negated ag-
gregates [Alviano et al., 2015], and are referred here as F-
stable model semantics. They are essentially based on the
stability condition reported at the beginning of this introduc-
tion: everything in a stable model I of an ASP program ⇧ is
necessary for satisfying all logic rules in ⇧ under the assump-
tions provided by I itself for default negated literals.

Technically, F-stable models do not satisfy the vicious cir-
cle principle, as inference of atoms via definitions referring
the truth values of the atoms themselves is not inhibited. Ac-
tually, in some cases violating the vicious circle principle is
necessary for associating some stable models to a given ASP

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

4105

Table 1: Complexity of G-coherence testing and G-cautious reasoning. All complexity bounds are tight, and K denotes constant
complexity. An " denotes an increase in complexity with respect to F-stable model semantics, where the considered complexity
classes are K ✓ P ✓ NP ✓ ⌃P

2 , and K ✓ P ✓ co-NP ✓ ⇧P
2 . Similarly, # denotes a decrease in complexity.

COHERENCE TESTING CAUTIOUS REASONING

{} {⇠} {_} {⇠,_} {} {⇠} {_} {⇠,_}
— K NP K ⌃P

2 P co-NP co-NP ⇧P
2

M P " NP ⌃P
2 """ ⌃P

2 P co-NP ⇧P
2 " ⇧P

2
C NP NP ⌃P

2 ⌃P
2 co-NP co-NP ⇧P

2 ⇧P
2

N NP # NP # ⌃P
2 ⌃P

2 co-NP # co-NP # ⇧P
2 ⇧P

2

program [Alviano and Faber, 2015b]. However, when possi-
ble, stable models obeying the vicious circle principle may be
preferred, and this fact motivated an alternative semantics that
was recently proposed by [Gelfond and Zhang, 2014], and is
here referred to as GZ- or G-stable model semantics. In the
new semantics, an assumption is also done on satisfied ag-
gregates: they are satisfied because of the true atoms in their
domains. The stability condition thus requires that everything
in a stable model I of an ASP program ⇧ is necessary for sat-
isfying all logic rules in ⇧ under the assumptions provided
by I itself for both default negated literals and aggregates.
Interestingly, G-stable models are F-stable models, but the
converse is not always true [Alviano and Faber, 2015a].

Our previous paper [Alviano and Leone, 2015], honored
with the Best Paper Award at the 31st International Con-
ference on Logic Programming (ICLP 2015), explored this
new semantics, reporting a detailed complexity analysis of
coherence testing and cautious reasoning

[Eiter and Gottlob,
1995], two of the main computational tasks in ASP. In a nut-
shell, coherence testing amounts to check the existence of a
stable model of an input program, while cautious reasoning
consists in checking whether a given atom is true in all stable
models of the input program. A summary of the complex-
ity results is reported in Table 1, where programs combining
monotone (M), convex (C) and non-convex (N) aggregates
with negation (⇠) and disjunction (_) are considered.

Concerning coherence testing, membership in ⌃P
2 was

proved in [Gelfond and Zhang, 2014], and we proved ⌃P
2 -

hardness already for negation-free programs with a very lim-
ited form of aggregate functions, referred to as monotone ag-
gregates in the literature. This result is in contrast with F-
stable model semantics, for which coherence of negation-free
programs with monotone aggregates is guaranteed. Indeed,
this is likely to be an unwanted artifact of G-stable models,
which however also comes with an interesting and unique
property: the increase in complexity also adds expressive
power to the language, as aggregates referred to as mono-
tone in the literature allow to simulate integrity constraints
and possibly default negation when interpreted according to
the semantics by [Gelfond and Zhang, 2014]. Eventually, the
simulation of integrity constraints and default negation are
the gadgets that we used to prove some complexity results for
G-stable model semantics.

On the other hand, there are also many cases in which G-
stable models actually decrease the complexity of the reason-
ing tasks. In fact, while any non-convex aggregate [Alviano

and Faber, 2013] is sufficient to show ⌃P
2 -hardness for F-

coherence testing already for disjunction-free programs, G-
coherence testing was proved to be NP-complete in general
for disjunction-free programs. Finally, P-completeness was
proved for programs with monotone aggregates if disjunction
and negation are not used, a result compatible with F-stable
model semantics. However, also in this case G-stable models
allow to simulate integrity constraints, which is not possible
with F-stable models.

As for the complexity of cautious reasoning, membership
and hardness in the complementary complexity classes were
proved for all the analyzed fragments of the language. These
complexity results also implicitly characterize the compu-
tational complexity of another common reasoning task in
ASP, known as brave reasoning, which consists in check-
ing whether a given propositional atom is true in some sta-
ble model of an input program. In fact, brave reasoning has
the same complexity of coherence testing when programs are
interpreted under G-stable model semantics.

Further interesting results in [Alviano and Leone, 2015]
are the two rewriting techniques for compiling programs in-
terpreted according to G-stable model semantics into pro-
grams interpreted according to F-stable model semantics.
While the first rewriting is simpler and introduces fewer aux-
iliary symbols, the second has the advantage of producing
programs with non recursive aggregates only. These two
rewritings, recalled in Section 3, are polynomial, faithful and

modular translation functions [Janhunen, 2006], and are im-
plemented in a system prototype. It is publicly available
(http://alviano.net/software/g-stable-models/) and allows for
experimenting with this newly proposed semantics.

2 Background
After defining the syntax of logic programs with aggregates,
two semantics are introduced, referred to as F- [Ferraris,
2011; Faber et al., 2011] and G-stable models [Gelfond and
Zhang, 2014]. (The original definitions are properly adapted
to better fit the results in this paper.)

2.1 Syntax
Let T,F denote the Boolean truth values true and false, re-
spectively. Let U be a finite set of propositional atoms. An
aggregate A is a Boolean function whose domain, denoted
dom(A), is a subset of U . A literal is a propositional atom or
an aggregate possibly preceded by (one or more occurrences
of) the negation as failure symbol ⇠. A rule r is an expression

4106

of the following form:

p1 _ · · · _ pm l1, . . . , ln (1)

where p1, . . . , pm are propositional atoms, l1, . . . , ln are lit-
erals, m � 1 and n � 0. Set {p1, . . . , pm} is the head of r,
denoted H(r), and set {l1, . . . , ln} is the body of r, denoted
B(r). A program ⇧ is a finite set of rules of the form (1). The
set of propositional atoms occurring in ⇧ is denoted At(⇧).

Example 1. Let A1 be an aggregate such that dom(A1) =
{a, b} and A1(C) = |{a, b}\C| � 1, for all C ✓ dom(A1).
A program using A1 is ⇧1 = {a ⇠⇠a; b _ c A1}. ⌅

2.2 Semantics
An interpretation I is a subset of U . Let S, S0 be sets of in-
terpretations, and C be a set of propositional atoms. Sets S
and S0 are equivalent in the context C, denoted S ⌘C S0, if
|S| = |S0| and {I \ C | I 2 S} = {I \ C | I 2 S0}.

Aggregates are classified in three groups [Liu and
Truszczynski, 2006]. An aggregate A is monotone if A(I) =
T implies A(J) = T, for all I ✓ J ✓ U . An aggregate
A is convex if A(I) = A(K) = T implies A(J) = T, for
all I ✓ J ✓ K ✓ U . The remaining aggregates are called
non-convex. Note that monotone aggregates are convex, and
the inclusion is strict.

Example 2. Let k be a natural number, and I be an inter-
pretation. An aggregate A such that A(I) := |dom(A) \
I| � k is monotone. An aggregate A such that A(I) :=
|dom(A) \ I| = k is convex. An aggregate A such that
A(I) := |dom(A) \ I| 6= k is non-convex. ⌅

Relation |= is inductively defined as follows: for a proposi-
tional atom p 2 U , I |= p if p 2 I; for an aggregate A, I |= A
if A(I \ dom(A)) = T; for a negated literal ⇠l, I |= ⇠l if
I 6|= l; for a set or conjunction C, I |= C if I |= p holds for
each p 2 C; for a rule r, I |= r if H(r) \ I 6= ; whenever
I |= B(r). I is a model of a program ⇧ if I |= ⇧, i.e., if
I |= r for all r 2 ⇧.

Example 3. Continuing Example 1, the models of ⇧1, re-
stricted to the atoms occurring in the program, are the follow-
ing: ;, {a, b}, {a, c}, {a, b, c}, {b}, {b, c}, and {c}. ⌅

F-stable models. Let ⇧ be a program and I an interpreta-
tion. The F-reduct of ⇧ with respect to I is defined as fol-
lows: F (⇧, I) = {F (r, I) | r 2 ⇧, I |= B(r)}, where
F (r, I) = p1_ · · ·_pm F (l1, I), . . . , F (ln, I) for r being
of the form (1), F (l, I) = l if l is a propositional atom or an
aggregate A, and F (l, I) = ; if l is a negative literal. I is an
F-stable model of ⇧ if I |= ⇧ and there is no J ⇢ I such that
J |= F (⇧, I). The set of F-stable models of ⇧ is denoted
FSM (⇧).

Example 4. The F-stable models of ⇧1 in Example 1 are the
following: ;, {a, b}, and {a, c}. Indeed, note that F (⇧1, ;) =
;, F (⇧1, {a, b}) = F (⇧1, {a, c}) = {a ; b _ c A1},
and each model is minimal for its reduct. On the other
hand, {b} is not an F-stable model because ; is a model of
F (⇧1, {b}) = {b _ c A1}. ⌅

G-stable models. Let ⇧ be a program and I an interpreta-
tion. The G-reduct of ⇧ with respect to I is defined as fol-
lows: G(⇧, I) = {G(r, I) | r 2 ⇧, I |= B(r)}, where
G(r, I) = p1 _ · · · _ pm G(l1, I), . . . , G(ln, I) for r be-
ing of the form (1), G(l, I) = l if l is a propositional literal,
G(l, I) = I \dom(A) if l is an aggregate A, and G(l, I) = ;
if l is a negative literal. I is a G-stable model of ⇧ if I |= ⇧
and there is no J ⇢ I such that J |= G(⇧, I). The set of
G-stable models of ⇧ is denoted GSM (⇧).
Example 5. The G-stable models of ⇧1 in Example 1 are
the following: ; and {a, c}. Indeed, G(⇧1, ;) = ; and
G(⇧1, {a, c}) = {a ; b _ c a}. Note that A1

is replaced by a in the last rule of G(⇧1, {a, c}) because
{a, c}\dom(A1) = {a}. Also observe that {a, b} is not a G-
stable model because G(⇧1, {a, b}) = {a ; b _ c a, b},
and {a} is a model of this reduct. ⌅

Let X 2 {F,G}. A program ⇧ is X-coherent if ⇧ has at
least one X-stable model; otherwise, ⇧ is X-incoherent. X-

coherence testing is the computational problem of checking
whether an input program ⇧ is X-coherent. A propositional
atom p is an X-cautious consequence of ⇧ if p belongs to all
X-stable models of ⇧. X-cautious reasoning is the compu-
tational problem of checking whether a given propositional
atom p is an X-cautious consequence of an input program ⇧.

3 Compilation
G-stable models of a logic program can be computed via
compilations into F-stable model semantics. Actually, two
different rewritings are presented in this section. The first
rewriting is more compact, in the sense that it introduces
fewer auxiliary atoms. The second rewriting instead requires
more auxiliary atoms, but has the advantage that the output
program only comprise stratified aggregates (essentially, in
these programs no recursive definition involves an aggregate;
see [Faber et al., 2011] for a formal definition).

First Rewriting. Let rew(⇧) be the program obtained from
program ⇧ by performing the following operations:

1. For each p 2 At(⇧) occurring in aggregates, a fresh
atom p0 and the following rules are introduced:

p0 ⇠p p0 p (2)

2. For each rule r 2 ⇧ and each aggregate A 2 B(r) such
that dom(A) = {p1, . . . , pn} (for some n � 0), literals
p01, . . . , p

0
n are added to the body of r.

Example 6. Consider again program ⇧1 from Example 1,
whose G-stable models are ; and {a, c}, as shown in Exam-
ple 5. Program rew(⇧1) is the following:

a ⇠⇠a b _ c A1, a0, b0

a0 ⇠a a0 a b0 ⇠b b0 b

Its F-stable models are the following: ; [X and {a, c} [
X , where X = {a0, b0}. In fact, a0, b0 are necessarily true
because of rules of the form (2). Moreover, note that if a is
false in some model I then a0 is necessarily true in any model
of the reduct F (⇧1, I). On the other hand, if a is true in I
then a0 can be possibly assumed false in a model of F (⇧1, I).
Similarly for b and b0. ⌅

4107

A drawback of this first compilation is that the evalua-
tion of the resulting program may be in a higher complexity
class than the evaluation of the original program. For exam-
ple, G-coherence testing of disjunction-free programs is NP-
complete in general, while a ⌃P

2 procedure will be used to
test F-coherence of the rewritten program.
Example 7. Let A2 be a non-convex aggregate such that
dom(A2) = {a, b} and A2(C) = |{a, b} \ C| 6= 1, for all
C ✓ dom(A2). Let ⇧2 be the following program:

a A2 a b b a

and rew(⇧2) be its rewriting:

a A2, a0, b0 a b b a
a0 ⇠a a0 a b0 ⇠b b0 b

Note that GSM (⇧2) = FSM (rew(⇧2)) = ;. How-
ever, G-coherence testing of ⇧2 is in NP, while F-coherence
testing of programs with non-convex aggregates such as
rew(⇧2) is ⌃P

2 -complete in general. In fact, F-reducts
may still contain (non-convex) aggregates; since a poly-
time procedure for testing subset minimality of a model for
such programs is unknown, a nondeterministic guess is re-
quired in general. Continuing with program rew(⇧2), its F-
reduct with respect to {a, b, a0, b0} is the following program
F (rew(⇧2), {a, b, a0, b0}):

a A2, a0, b0 a b b a a0 a b0 b

which still contains the non-convex aggregate A2. In this
case, {a, b, a0, b0} is not an F-stable model because ; is a
model of F (rew(⇧2), {a, b, a0, b0}). ⌅

Such a drawback motivates the introduction of a second
compilation. To ease the presentation, the syntax of the lan-
guage is extended with integrity constraints, that is, rules of
the form (1) with empty heads. Note that the semantics pro-
vided in Section 2 can already cope with such an extension.

Second Rewriting. Let str(⇧) be the program obtained
from program ⇧ by performing the following operations:

1. For each p 2 At(⇧) occurring in aggregates, two fresh
atoms p0, p00 and the following rules are introduced:

p0 ⇠p p0 p (3)
p00 ⇠⇠p00 ⇠p00, p p00,⇠p (4)

2. For each rule r 2 ⇧ and each aggregate A 2 B(r)
such that dom(A) = {p1, . . . , pn} (n � 0), literals
p01, . . . , p

0
n are added to B(r), and A is replaced by a

new aggregate A00 such that dom(A00) = {p001 , . . . , p00n}
and A00(I) = A({p 2 U | p00 2 I}), for all I ✓ U .

Example 8. Resorting again program ⇧1 from Example 1,
str(⇧1) is the following program:

a ⇠⇠a b _ c A00
1 , a

0, b0

a0 ⇠a a0 a b0 ⇠b b0 b
a00 ⇠⇠a00 ⇠a00, a a00,⇠a
b00 ⇠⇠b00 ⇠b00, b b00,⇠b

where dom(A00
1) = {a00, b00} and A00

1(I) = |{a00, b00} \ I| �
1, for all I ✓ U . The F-stable models of str(⇧1) are the

following: ;[X and {a, c}[X[{a00}, where X = {a0, b0}.
In fact, for atoms a0, b0, comments in Example 6 apply. Atom
a00 instead is forced to have the same truth value of a because
of rules of the form (4). Similarly for b00 and b. ⌅

Note that the additional auxiliary atoms of the form p00 in
the second rewriting are used to fix the interpretation of ag-
gregates in program reducts.
Example 9. Consider again program ⇧2 from Example 7,
and its rewriting str(⇧2):

a A00
2 , a

0, b0 a b b a
a0 ⇠a a0 a b0 ⇠b b0 b
a00 ⇠⇠a00 ⇠a00, a a00,⇠a
b00 ⇠⇠b00 ⇠b00, b b00,⇠b

where dom(A00
2) = {a00, b00} and A00

2(I) = |{a00, b00}\I| 6= 1,
for all I ✓ U . The rewritten program str(⇧2) still contains
a non-convex aggregate, namely A00

2 , which however is such
that its interpretation is fixed in program reducts. Hence, any
F-reduct of str(⇧2) can be considered as a program with-
out negation and aggregates. For example, the F-reduct of
str(⇧2) with respect to {a, b, a0, b0, a00, b00} is the following
program F (str(⇧2), {a, b, a0, b0, a00, b00}):

a A00
2 , a

0, b0 a b b a
a0 a b0 b a00 b00

Note that a00 and b00 are necessarily true in any model of the
above program, which in turn implies truth of A2. ⌅

Correctness of the two rewritings presented in this section
was formally proved by [Alviano and Leone, 2015].
Theorem 1. If ⇧ is a program, then

GSM (⇧) ⌘At(⇧) FSM (rew(⇧)) ⌘At(⇧) FSM (str(⇧)).

4 Conclusion
G-stable models are a recent proposal for interpreting logic
programs with aggregates. A detailed complexity analysis
of the main reasoning tasks for this new semantics was re-
ported in [Alviano and Leone, 2015], and briefly recalled in
the introduction of this paper, highlighting similarities and
differences versus mainstream ASP semantics, here referred
to as F-stable models. A practical link between G- and F-
stable models is provided by the rewritings in Section 3:
G-stable models of an input program can be obtained by
computing F-stable models of a rewritten program, where
the size of the rewritten program is linear with respect to
the size of the original program. It is interesting to ob-
serve that the second rewriting in Section 3 is such that all
atoms occurring in aggregates are defined only by rules of
the form p00 ⇠⇠p00. This fact is sufficient to guarantee
that the rewritten programs contain stratified aggregates only,
which are handled efficiently by modern ASP solvers. A
prototype system for computing G-stable models is thus ob-
tained by means of these rewritings and using existing ASP
solvers as back-end. As a final remark, it is interesting to
observe that the second rewriting in Section 3 can be com-
bined with the rewritings by [Bomanson and Janhunen, 2013;
Bomanson et al., 2014] in order to completely remove GZ-
aggregates from ASP programs.

4108

References
[Alviano and Faber, 2013] Mario Alviano and Wolfgang

Faber. The complexity boundary of answer set program-
ming with generalized atoms under the FLP semantics. In
Pedro Cabalar and Tran Cao Son, editors, LPNMR 2013,

Corunna, Spain, September 15-19, 2013, volume 8148 of
LNCS, pages 67–72. Springer, 2013.

[Alviano and Faber, 2015a] Mario Alviano and Wolfgang
Faber. Stable model semantics of abstract dialectical
frameworks revisited: A logic programming perspective.
In Qiang Yang and Michael Wooldridge, editors, IJCAI

2015, Buenos Aires, Argentina, July 25-31, 2015, pages
2684–2690. AAAI Press, 2015.

[Alviano and Faber, 2015b] Mario Alviano and Wolfgang
Faber. Supportedly stable answer sets for logic programs
with generalized atoms. In Balder ten Cate and Alessan-
dra Mileo, editors, RR 2015, Berlin, Germany, August 4-5,

2015, volume 9209 of LNCS, pages 30–44. Springer, 2015.
[Alviano and Leone, 2015] Mario Alviano and Nicola

Leone. Complexity and compilation of gz-aggregates in
answer set programming. TPLP, 15(4-5):574–587, 2015.

[Alviano et al., 2015] Mario Alviano, Wolfgang Faber, and
Martin Gebser. Rewriting recursive aggregates in answer
set programming: back to monotonicity. TPLP, 15(4-
5):559–573, 2015.

[Bartholomew et al., 2011] Michael Bartholomew,
Joohyung Lee, and Yunsong Meng. First-order se-
mantics of aggregates in answer set programming via
modified circumscription. In Logical Formalizations of

Commonsense Reasoning, Papers from the 2011 AAAI

Spring Symposium, Technical Report SS-11-06, Stanford,

California, USA, March 21-23, 2011. AAAI, 2011.
[Bomanson and Janhunen, 2013] Jori Bomanson and Tomi

Janhunen. Normalizing cardinality rules using merging
and sorting constructions. volume 8148 of LNCS, pages
187–199. Springer, 2013.

[Bomanson et al., 2014] Jori Bomanson, Martin Gebser, and
Tomi Janhunen. Improving the normalization of weight
rules in answer set programs. In Eduardo Fermé and João
Leite, editors, JELIA 2014, Funchal, Portugal, September

24-26, 2014. Proceedings, volume 8761 of LNCS, pages
166–180. Springer, 2014.

[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter, and
Miroslaw Truszczynski. Answer set programming at a
glance. Commun. ACM, 54(12):92–103, 2011.

[Calimeri et al., 2016] Francesco Calimeri, Martin Gebser,
Marco Maratea, and Francesco Ricca. Design and results
of the fifth answer set programming competition. Artif.

Intell., 231:151–181, 2016.
[Eiter and Gottlob, 1995] Thomas Eiter and Georg Gottlob.

On the computational cost of disjunctive logic program-
ming: Propositional case. Ann. Math. Artif. Intell., 15(3-
4):289–323, 1995.

[Faber et al., 2008] Wolfgang Faber, Gerald Pfeifer, Nicola
Leone, Tina Dell’Armi, and Giuseppe Ielpa. Design and

implementation of aggregate functions in the DLV system.
TPLP, 8(5-6):545–580, 2008.

[Faber et al., 2011] Wolfgang Faber, Gerald Pfeifer, and
Nicola Leone. Semantics and complexity of recursive
aggregates in answer set programming. Artif. Intell.,
175(1):278–298, 2011.

[Ferraris, 2011] Paolo Ferraris. Logic programs with propo-
sitional connectives and aggregates. ACM Trans. Comput.

Log., 12(4):25, 2011.
[Gebser et al., 2012] Martin Gebser, Benjamin Kaufmann,

and Torsten Schaub. Conflict-driven answer set solving:
From theory to practice. Artif. Intell., 187:52–89, 2012.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In Robert A. Kowalski and Ken-
neth A. Bowen, editors, Logic Programming, Proceedings

of the Fifth International Conference and Symposium,

Seattle, Washington, August 15-19, 1988 (2 Volumes),
pages 1070–1080. MIT Press, 1988.

[Gelfond and Lifschitz, 1991] Michael Gelfond and
Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation

Comput., 9(3/4):365–386, 1991.
[Gelfond and Zhang, 2014] Michael Gelfond and Yuanlin

Zhang. Vicious circle principle and logic programs with
aggregates. TPLP, 14(4-5):587–601, 2014.

[Janhunen, 2006] Tomi Janhunen. Some (in)translatability
results for normal logic programs and propositional the-
ories. Journal of Applied Non-Classical Logics, 16(1-
2):35–86, 2006.

[Liu and Truszczynski, 2006] Lengning Liu and Miroslaw
Truszczynski. Properties and applications of programs
with monotone and convex constraints. J. Artif. Intell. Res.

(JAIR), 27:299–334, 2006.
[Liu et al., 2010] Lengning Liu, Enrico Pontelli, Tran Cao

Son, and Miroslaw Truszczynski. Logic programs with
abstract constraint atoms: The role of computations. Artif.

Intell., 174(3-4):295–315, 2010.
[Pelov et al., 2007] Nikolay Pelov, Marc Denecker, and

Maurice Bruynooghe. Well-founded and stable semantics
of logic programs with aggregates. TPLP, 7(3):301–353,
2007.

[Shen et al., 2014] Yi-Dong Shen, Kewen Wang, Thomas
Eiter, Michael Fink, Christoph Redl, Thomas Krennwall-
ner, and Jun Deng. FLP answer set semantics without cir-
cular justifications for general logic programs. Artif. In-

tell., 213:1–41, 2014.
[Simons et al., 2002] Patrik Simons, Ilkka Niemelä, and

Timo Soininen. Extending and implementing the stable
model semantics. Artif. Intell., 138(1-2):181–234, 2002.

[Son and Pontelli, 2007] Tran Cao Son and Enrico Pontelli.
A constructive semantic characterization of aggregates in
answer set programming. TPLP, 7(3):355–375, 2007.

4109

