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Abstract
Tackling the decision-making problem faced by a
prosumer (i.e., a producer that is simultaneously a
consumer) when selling and buying energy in the
emerging smart electricity grid, is of utmost im-
portance for the economic profitability of such a
business entity. In this work, we model, for the
first time, this problem as a factored Markov De-
cision Process. By so doing, we are able to rep-
resent the problem compactly, and provide an ex-
act optimal solution via dynamic programming—
notwithstanding its large size. Our model success-
fully captures the main aspects of the business deci-
sions of a prosumer corresponding to a community
microgrid of any size. Moreover, it includes ap-
propriate sub-models for prosumer production and
consumption prediction. Experimental simulations
verify the effectiveness of our approach; and show
that our exact value iteration solution matches that
of a state-of-the-art method for stochastic planning
in very large environments, while outperforming it
in terms of computation time.

1 Introduction
In recent years, the term prosumer has been coined in order
to describe an entity that both produces and consumes energy,
implying that prosumers possess the ability to play a key role
to the stabilization of the electricity network [Asmus, 2010;
Ramchurn et al., 2012].As such, and assuming prosumers are
able to adjust their behaviour according to dynamic indica-
tors, their smooth integration into the shaping Smart Grid

is of critical importance [Rogers et al., 2012]. Viewed as
a business entity, a prosumer could correspond to a single
residence, a specific industry, or to whole neighborhoods of
houses that are served by a dedicated microgrid—which may
or may not be connected to the rest of the electricity Grid. Our
focus of attention in this paper will be optimizing the business
decisions of a micro grid-corresponding prosumer, produc-
ing electricity from (mainly) renewable energy resources, and
which has the option of buying and selling energy from utility
companies residing in the larger electricity Grid. Paradigms
of such community-oriented and renewable energy-relying
microgrids will be commonplace in the future [Asmus, 2010].

Notwithstanding its importance, essentially no work to
date has, to the best of our knowledge, attacked this spe-
cific problem heads on. By contrast, in our work, first pre-
sented in [Angelidakis and Chalkiadakis, 2015a], we model,
for the first time, the decision problem faced by a microgrid-
prosumer planning its energy production, storage and usage
strategy for the day ahead as a factored Markov Decision Pro-

cess

[Boutilier et al., 1999]. Our formulation enables us to
provide an exact optimal solution (bar certain discretization-
related modeling decisions) for the problem faced by a pro-
sumer corresponding to a microgrid of essentially any size.
In addition, we equip our consumer with specific production-
consumption predicting submodels (encompassing Gaussian
Processes and Bayesian Linear Regression), which provide
the necessary input signals on which to base its decisions.

Given our model, the solution to the prosumer decision
problem can then be computed using standard dynamic pro-
gramming techniques. Specifically, we employed value it-
eration for this purpose. The effectiveness and efficiency of
our approach is verified by comparisons to the performance
of Stochastic Planning using Decision Diagrams (SPUDD), a
state-of-the-art method for stochastic planning in large envi-
ronments. Our value iteration method, operating over a prob-
lem horizon corresponding to 24 hours, is shown to produce
policies that coincide with those produced by SPUDD [Hoey
et al., 1999]. However, SPUDD cannot produce a solution in
within the required 24-hour timeframe.

The rest of this paper is organized as follows. Section 2
provides a brief background on factored MDPs and reviews
related work; Section 3 then describes our model, while the
value iteration algorithm is described in Section 4; Section 5
presents our methods for predicting the future production and
consumption of the prosumer; Section 6 presents our simula-
tion experiments; and, finally, Section 7 concludes.

2 Background and Related Work
Factored Markov Decision Processes (FMDPs)

[Boutilier et

al., 1999] provide a compact alternative to standard MDP rep-
resentation. Specifically, they decompose states into sets of
state variables in order to represent the transition and model
compactly—since transitions and rewards may rely on spe-
cific model aspects, corresponding to subsets of variables
only. Thus, the set of states in a factored MDP representa-
tion correspond to multivariate random variables, s = hs

i

i,
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with the s
i

variables taking on values in their correspond-
ing DOM(s

i

) domains. Intuitively, state variables corre-
spond to a selection of features which are sufficient to de-
scribe the system state. In FMDPs, actions are also quite
often described as random variables, while reward functions
used are assumed to be factored into specific (usually addi-
tive) components. Furthermore, FMDP models allow for ex-

ternal signals, described by signal variables, affecting state
variables; while temporal Bayesian networks (TBNs) and in-

fluence diagrams can be employed to represent the effects
of actions on state transitions and rewards. A multitude of
techniques that exploit the resulting representational structure
can then be used to solve large problems, at least approxi-
mately (e.g., approximate linear programming, stochastic al-
gebraic decision diagrams, and so on) [Guestrin et al., 2003;
Boutilier et al., 1999].

Stochastic Planning Using Decision Diagrams
(SPUDD) [Hoey et al., 1999], in particular, is a well-
known algorithm for finding (near-)optimal policies in
very large problems represented as factored MDPs. It is
essentially a value iteration algorithm that uses algebraic
decision diagrams (ADDs) [Bahar et al., 1997] to represent
value functions and policies, assuming an ADD input repre-
sentation of the FMDP. Specifically, SPUDD operates over
an input script describing the factored states and actions, and
the FMDP transition model and reward function.

Now there have been a few recent papers dealing with op-
timal decision-making when buying and selling energy in
the Smart Grid. However, most of them do not focus on
prosumers. For instance, TacTex [Urieli and Stone, 2014]
was the champion agent for the 2013 Power Trading Agent
Competition (PowerTAC). In PowerTAC, self-interested, au-
tonomous agents corresponding to brokers compete with each
other with the goal of maximizing profits through energy trad-
ing. Similarly to TacTex, the work of Peters et al. (2013)
also deals with optimising the long-term behaviour of broker
agents during retail electricity trading.

We are only aware of two papers that focus on prosumer
decision-making. First, Nikovski and Zhang (2010) propose a
method for finding the optimal conditional operational sched-
ule for a set of power generators, assuming stochastic elec-
tricity demand and stochastic generator output. However,
in contrast to our work, they do not tackle the problem of
selling or storing the generated power. Second, Kanchev
et al. (2011) propose an energy management system which
could be employed by a prosumer managing photovoltaic
generators, storage units, and a gas microturbine. However,
they assume a deterministic system, not accounting for uncer-
tainty and errors during the prosumer’s operation time.

3 Our Model
The prosumer we consider in this work corresponds to a mi-

crogrid distributing power to a community. As such, it pro-
duces energy by means of renewable energy sources, and
is responsible for the well-being of residential consumers.
Moreover, the prosumer has access to storage devices (bat-

teries), which it can use to store energy for future use. Our
prosumer is connected to the wider Grid, and it has to take

decisions regarding the amounts of energy to purchase or sell
to the Grid at pre-specified intervals during the next day. We
assume that the Grid is represented by some utility company
that can specify tariffs determining the sell and buy prices of
electricity, to which the prosumer can subscribe (at any one
of the aforementioned time intervals). The tariffs available
to prosumers for the day-ahead are announced by the utility
company at the beginning of each day. Then, the problem
facing the prosumer is taking the right decisions as to which
tariff to subscribe to and what amounts of energy to buy, sell,
or store at any given interval of the day-ahead—so as to meet
demand at a minimum cost and make a profit by selling the
electricity to the utilities.

3.1 Factored Representation
We now describe our problem’s factored representation in
some length. More detail can be found in [Angelidakis and
Chalkiadakis, 2015a]. To begin, the factored states can be
described as a multivariate random variable s = hs

i

i, where
each variable s

i

can take a value in its domain DOM(s
i

).
There are three factored state variables. The first one, tms,
takes as values the specific time steps at which the prosumer
is able to act. Its domain is originally set to [1 . . . 24] (one
time step per hour in the day). The second one, bat, cor-
responds to the amount of energy available in the batteries,
and its domain is [0 . . . Battery

max

], with Battery
max

corresponding to the maximum capacity of the storage de-
vice(s). Finally, tf corresponds to the tariff the prosumer
has assigned to at the moment, and its domain is the enu-
merated tariffs that the utility offers during the day. That is,
DOM(tf)={tf1, · · · , tf

i

, · · · , tf

K

}, with K being the number
of tariffs available on a specific day. Each tf

i

tariff is charac-
terized by a buying and a selling price, denoted buying

i

and
selling

i

respectively, and communicated to the prosumer via
external signals.1

Then, actions can be described as a multivariate random
variable a = ha

i

i where each variable a
i

affects the transition
from some factored state to another, and takes a value in its
domain DOM(a

i

). The discretization for each DOM(a
i

) is
performed dynamically: it is based on the discretization of
the DOM(s

i

) domains, in a way that from any given state,
actions can lead to any other.

There are three factored actions. First, action buy, which
describes the amount of energy bought from the electric util-
ity. Positive values for buy denote the actual buying of energy
from the utility, while negative values mean the prosumer
sells energy to the utility. With Load

max

being the maximum
total expected residential consumption load, and the nominal
power generating capacity of the renewable energy sources
denoted by RES

nom

, the domain for buy is set to [-RES
nom

1Notice that tariffs can be key to group together a range of con-
sumer preferences, that would have had to be represented by distinct
state or action variables otherwise. For instance, one would have
wished to represent preferences to consume when buying prices are
low, e.g. at night, and sell when selling prices are high—and distinct
sell and buy variables would have been required to allow this. Tar-
iffs could potentially incorporate more information, such as special
discounts, and so on. Thus, the use of tariffs can be key at reducing
the state-action space in such problems.
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. . . Load
max

]. Second, factored action chg, which signifies
the attempt to store an amount of energy to the batteries. Its
value range is [-Battery

max

. . .Battery
max

]. Positive val-
ues represent charging the battery, and negative values rep-
resent discharging the battery. Finally, the third action, sel

tf

,
corresponds to a selection of tariff by the prosumer. Its do-
main is [0 . . . K]. The value 0 signifies a choice to remain
attached to its current tariff, while values 1 to K signify a
choice to move to some other of the K tariffs available.2

Now, there are three types of external signals the prosumer
receives. and can be described as multivariate random vari-
able sg = hsignal

i

i where each variable signal
i

can take a
value in its domain DOM(signal

i

). The prosumer employs
these signals in order to determine its actions. The first two,
prod and cons, specify the current estimates about the pro-
duction and consumption levels of the prosumer (at a specific
time step). Their domains are defined given the RES

nom

and Load
max

values introduced above. The third signal type,
price

tf

, specifies, once a day, the buy and sell prices (buying

i

and selling

i

) for each one of the K tariffs, and for each t time
step of the day ahead.

Notice that all factored variables in our formulation are in-
dependent of the size of the prosumer microgrid—i.e., they
are not affected by the number of generators or homes popu-
lating it. In what follows, we use the x

t

to denote the value
of a state, action, or signal variable at time t.

3.2 Physical Constraints and Transition Function
There are certain constraints that our state and action vari-
ables must adhere to. First, in a setting involving energy ex-
changes, the balance energy constraint

[Kirschen and Strbac,
2005] must be respected at all times. This means that, at any
time step t, power produced (including that bought) should
match power consumed (including that stored):

prod

t

� cons

t

� chg

t

+ buy

t

= 0 (1)

The second constraint refers to the storage unit(s) of the pro-
sumer. A storage unit cannot be charged over its capacity:

chg

t

 Battery
max

� bat

t

(2)

Similarly, the energy quantity discharged from a unit cannot
exceed that currently stored in the unit:

�chg

t

 bat

t

(3)
Finally, for safety reasons, the battery storage level must be

always kept between 20% and 100% [Chiasson and Vairamo-
han, 2005]:

0.2  bat

t

/Battery
max

 1 (4)

State transitions in our model are in general stochastic, since
faults may occur while taking actions like charging or dis-
charging the storage devices and buying or selling energy to
the utility. We define certain bounded regions (with distinct
boundaries for each variable), which include a subset of dis-
crete factored states lying close to the factored state intended

2The additional ‘stay-with-current-tariff’ action is required as
subscribing and resubcribing would entail a subscription cost (thus
the action protects the prosumer from that cost).

to transition to by performing a factored action taken at time t
(see [Angelidakis and Chalkiadakis, 2015a] for details). The
boundaries can be set to any values required. Since distinct
factored actions can be simultaneously utilized —i.e., the pro-
sumer can select a new tariff, buy energy, and charge the bat-
tery at the same time step t— the overall transition probability
is given by Eq. 5 as follows.

Pr(tms

t+1, bat

t+1, tf

t+1|tms

t

, bat

t

, tf

t

, chg

t

, sel

tf,t

) =

Pr(bat

t+1|bat

t

, chg

t

) · Pr(tf
t+1|tft, sel

tf,t

) (5)

given that the battery level at any time step depends on the
previous battery level state and on whether a chg action was
used, while the tariff in place is affected by tariff selection.

3.3 Factored Reward Representation
The next step is to determine the reward function for our fac-
tored MDP. The reward function is associated with (a) either
the gain from selling power to the utility or the cost of buy-
ing power in a certain price; (b) the running costs for being
subscribed to a tariff; and (c) the operation costs of using
the storage devices. As such, we choose to represent the re-
ward function as a cost function with three main components.
Specifically, the function describing the immediate cost for
a transition from state s

t

to s0
t+1 by executing some a

t

at
time-step t, is defined as follows:

Cost(s
t

,a
t

, s0
t+1) = C

energy

+ C
period

+ C
bl

(6)

The first component, C
energy

, captures the cost per Wh for
buying electricity (or the profits from selling it to the utility),
given the buy/sell rates prescribed by the tariff in effect. The
second component captures the periodic costs C

periodic

in-
flicted on the prosumer for being subscribed into a tariff: The
third component of the cost function, C

bl

, captures the costs
associated with battery life losses. That is, the costs inflicted
from charging (or discharging) the storage devices (batteries)
with a charge amount of chg

t

, at a given time-step t when the
stored energy amount is at bat

t

.

4 Solving the FMDP
With the above FMDP at hand, the optimal policy can be de-
rived by solving the corresponding Bellman equations. Dy-
namic programming (DP) methods can be used to obtain the
optimal solution [Sutton and Barto, 1998]. In our work here
we used value iteration (VI) as the DP method of choice. Our
problem is naturally a finite-horizon problem, thus we em-
ployed a finite-horizon VI method. By setting the horizon T
to be equal to the number of time steps at which the prosumer
is required to act, we can incorporate the tms factored state
into the problem’s horizon, thus effectively reducing the size
of the state space.

Then, with s0
t

denoting the potential successor states
of s

t

; with Pr(s0
t+1 |a

t

, s
t

) denoting the probability of
state transitions from s

t

to possible successor states s0
t+1,

given that action a
t

was taken; and R(s
t

,a
t

, s0
t+1) =

�Cost(s
t

,a
t

, s0
t+1) denoting the corresponding immediate

reward (the negative immediate cost), the VI algorithm itera-
tively estimates the value function for the factored states, and
outputs an optimal policy ⇡, as shown in Alg. 1.
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for all instantiations of s do
set VT+1(s) = 0

end
for t stages-to-go (i.e., with 1, · · · , T stages-to-go) do

for all instantiations of st do
Vt(st) max

at

X

s0
t+1

Pr(s0
t+1 |at, st)·

�
R(st,at, s

0
t+1) + Vt+1(s

0
t+1)

�

end
end
for all instantiations of s and all t stages-to-go do

⇡(s, t) =
argmax

a

P
s0

Pr(s0 |a, s) (R(s,a, s0
) + Vt+1(s

0
))

end
Algorithm 1: Value iteration for solving the FMDP

5 Production and Consumption Models
Naturally, the estimated production from the renewable en-
ergy sources distributed on the microgrid, and the predicted
load consumption of the connected consumers, affect the pol-
icy of the prosumer. The prosumer is notified about the ex-
pected production and consumption values via the prod and
cons signals. Thus, it is necessary to predict values for those
signals that are as accurate as possible, to assist the decision-
making process of the prosumer.

To obtain the production estimates of the photovoltaic sys-
tems (PVS) and wind turbine generators (WTG) of our micro-
grid, we employ RENES

[Panagopoulos et al., 2012], a web-
based PVS and WTG production prediction tool. RENES
generates PVS and WTG production estimates given time,
geographical coordinates and online weather forecasts, and it
comes with specific performance guarantees.

Then, in order to predict the load consumption of the pro-
sumer we evaluated the use of Gaussian Processes (GPs) and
Bayesian Linear Regression [Bishop, 2006]. Our evaluation
demonstrated that GP with Gaussian kernel performs better
and is used for consumption prediction in our work.

6 Experiments and Results
We evaluate our model by examining a residential prosumer
at New Hampshire, New England, northeastern United States.
The data used in our prediction of residential load consump-
tion for the area, comes from the Public Service Company
of New Hampshire, and is freely available in their web-
site (http://www.psnh.com/). Our simulated prosumer serves
30 households and includes 20 photovoltaic modules with
nominal power 60kW, 2 windturbines with nominal power
1000kW and 24 deep cycle 12Volts batteries, with cost of
each battery 269,00 e. Estimated battery lifetime is 10-12
years. All experiments were conducted on a 2.10 GHz x 4
Intel Core i3-2310M processor, with 8GB of memory.

Our results, reported in [Angelidakis and Chalkiadakis,
2015a], show that the optimal policy computed through value
iteration and SPUDD for the day-ahead coincide with each
other, for state-action spaces with various sizes. Neverthe-
less, value iteration produced the optimal policy in approxi-

Horizon |S ⇥A| Bounded
Region Size Value Iteration (hours) SPUDD (hours)

Script Runtime

24 664290 15 1.76 13.4992 0.184
90 15.84 46.9188 1.19

2624490 15 8.7603 36.98 0.73975
48 664290 15 3.5 16.8221 0.4271

Table 1: Running time of value iteration and SPUDD for four
different scenarios. “Script” refers to the pre-processing time
required for the SPUDD input files to be generated, while
“Runtime” denotes the subsequent SPUDD execution time.

mately 15% or 25% of the required time for SPUDD to ex-
tract the same policy. Moreover, SPUDD was often not able
to produce a solution within 24 hours, and could not generate
a final policy with the available memory, in contrast to our VI
method. The exact running times are presented in Table 1.

Our experiments thus demonstrate the limitations of
SPUDD when used for problems that do not possess enough
structure to allow for a compact enough representation of the
required transitions in its input files.

7 Conclusions

This paper employs, for the first time, factored MDPs to
model the decision problem faced by a prosumer planning its
energy flow management for the day-ahead. Our model incor-
porates the key factors responsible for the effective operation
of a microgrid prosumer, regardless of its size; and allows us
to obtain the exact optimal solution to the problem. We used
a simple value iteration algorithm to compute the solution to
this sequential decision making problem, and demonstrated
our method’s effectiveness and efficiency by comparing it to
the performance of SPUDD. By so doing, we exposed the
limitations of this particular FMDP solver. While our model
enables the simple VI method to compute the optimal so-
lution within a reasonable time, the problem does not have
enough structure to allow the creation of a compact input file
for SPUDD to operate on, resulting to poor performance. In
addition, this work provides specific predictive tools for ob-
taining prosumer consumption and production estimates, and
exhibits how Gaussian processes and Bayesian linear regres-

sion techniques can be used for consumption prediction in
this setting (with GPs emerging as the most successful).

In a recent follow-up paper to this work [Angelidakis and
Chalkiadakis, 2015b], we used approximate MDP solution
methods for taking decisions in this domain without the need
of discretizing the state space. Specifically, we employed fit-
ted value iteration, a sampling-based approximation method
that is known to be well behaved [Munos and Szepesvári,
2008]. By so doing, we generalized our factored MDP solu-
tion method to continuous state spaces. Future work includes
more prosumer actions into our model and incorporating it
within renewable energy sources cooperatives

3, the emer-
gence of which is of extremely high economic, social, and
environmental importance [Chalkiadakis et al., 2011].

3 http://www.rescoop.eu.
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