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Abstract

In recent years, there has been considerable
progress on fast randomized algorithms that ap-
proximate probabilistic inference with tight tol-
erance and confidence guarantees. The idea here
is to formulate inference as a counting task over
an annotated propositional theory, called weighted
model counting (WMC), which can be partitioned
into smaller tasks using universal hashing. An in-
herent limitation of this approach, however, is that
it only admits the inference of discrete probability
distributions. In this work, we consider the prob-
lem of approximating inference tasks for a proba-
bility distribution defined over discrete and contin-
uous random variables. Building on a notion called
weighted model integration, which is a strict gen-
eralization of WMC and is based on annotating
Boolean and arithmetic constraints, we show how
probabilistic inference in hybrid domains can be
put within reach of hashing-based WMC solvers.
Empirical evaluations demonstrate the applicability
and promise of the proposal.

1

Weighted model counting (WMC) on a propositional knowl-
edge base is an effective and general approach to probabilis-
tic inference in a variety of formalisms, including Bayesian
and Markov Networks. It extends the model counting task, or
#SAT, which is to count the number of assignments (or mod-
els) that satisfy a logical sentence [Gomes et al., 2009]. In
WMC, one accords a weight to every model, and computes
the sum of the weights of all models. The WMC formula-
tion has recently emerged as an assembly language for prob-
abilistic reasoning, offering a basic formalism for encoding
various inference problems. State-of-the-art reasoning algo-
rithms for Bayesian networks [Chavira and Darwiche, 2008],
probabilistic programs [Fierens et al., 2013] and probabilistic
databases [Suciu et al., 2011] reduce their inference problem
to a WMC computation. Exact WMC solvers are based on
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knowledge compilation or component caching [Chavira and
Darwiche, 2008].

However, exact inference is #P-hard [Valiant, 19791, and
so, there is a growing interest in approximate model coun-
ters. Beginning with Stockmeyer [1983], who showed that
approximating model counting with a tolerance factor can
be achieved in deterministic polynomial time using a Z‘; -
oracle, a number of more recent results show how random
polynomial-time realizations are possible using an NP-oracle,
such as a SAT solver [Jerrum et al., 1986; Karp et al., 1989;
Ermon et al., 2013; Chakraborty ef al., 2014]. The central
idea here is the use of random parity constraints, in the form
of universal hash functions [Sipser, 1983], that partition the
model counting solution space in an inexpensive manner.
Most significantly, such methods come with tight tolerance-
confidence guarantees, unlike classical variational methods
that only provide asymptotic guarantees.

The popularity of WMC can be explained as follows. Its
formulation elegantly decouples the logical or symbolic rep-
resentation from the statistical or numeric one, which is en-
capsulated in the weight function. When building solvers, this
allows us to reason about logical equivalence and reuse SAT
solving technology (such as constraint propagation and clause
learning). WMC also makes it more natural to reason about
deterministic, hard constraints in a probabilistic context. Nev-
ertheless, WMC has a fundamental limitation: it is purely
Boolean. This means that the advantages mentioned above
only apply to discrete probability distributions.

To counter this, in a companion paper [Belle er al.,
2015b], we proposed the notion of weighted model inte-
gration (WMI). It is based on satisfiability modulo theories
(SMT), which enable us to reason about linear arithmetic
constraints. The WMI task is defined on the models of an
SMT theory A, containing mixtures of Boolean and contin-
uous variables. For every assignment to these variables, the
WMI problem defines a weight. The total WMI is computed
by integrating these weights over the domain of solutions of
A, which is a mixed discrete-continuous space. Consider, for
example, the special case when A has no Boolean variables,
and the weight of every model is 1. Then, WMI simplifies
to computing the volume of the polytope encoded in A. More
generally, weighted SMT theories admit a natural encoding of
hybrid graphical models, analogous to the encodings of dis-
crete graphical models using weighted propositional theories.



In this work, we consider the problem of approximating
inference tasks for a probability distribution defined over dis-
crete and continuous random variables. Formulated as a WMI
task, we address the question as to whether fast hashing-based
approximate WMC solvers can be leveraged for hybrid do-
mains. What we show is that an NP-oracle can indeed ef-
fectively partition the model counting solution space of the
more intricate mixed discrete-continuous case using univer-
sal hashing. (Of course, volume computation via integration
is still necessary, but often over very small spaces.) In this
sense, hybrid domains can now be put within reach of approx-
imate WMC solvers.! In particular, the hashing approach that
we consider here builds on the recent work of Chakraborty et
al. [2014] on approximate WMC, and inherits their tolerance-
confidence guarantees. In our empirical evaluations, the ap-
proximate technique is shown to be significantly faster than
an exact WMI solver. We then demonstrate the practical ef-
ficacy of the system on a complex real-world dataset where
we compute conditional queries over intricate arithmetic con-
straints that would be difficult (or impossible) to realize in
existing formalisms.

Let us finally mention that current inference algorithms for
hybrid graphical models often make strong assumptions on
the form of the potentials, such as Gaussian distributions,
or approximate using variational methods [Murphy, 1999].
There is also a recent focus on piecewise-polynomial poten-
tials [Shenoy and West, 2011; Sanner and Abbasnejad, 2012],
which are based on generalizations of techniques such as
the join-tree algorithm. Such piecewise-polynomials can also
be represented in the WMI context, but in a general frame-
work allowing arbitrary Boolean connectives and determinis-
tic hard constraints.

2 Weighted Model Integration

We briefly review the ideas behind WMI.

From a probabilistic perspective, we are imagining a set
of Boolean random variables 5 and real-valued random vari-
ables X. In particular, we let (b,x) = (b1,...,bp, X1,...,Xn)
be an element of the probability space {0, 1}" x R", and we
let Pr(b, x) denote the probability of the assignments (b, X) to
the variables in B U X'. Assuming the joint probability den-
sity function Pr can be suitably factorized, e.g. via graphical
models, we would like to perform probabilistic inference, that
is, compute things like the partition function and conditional
probabilities [Koller and Friedman, 2009].

For the discrete case, that is, when limited to Boolean vari-
ables B only,?, a prominent approach to perform inference
is WMC [Chavira and Darwiche, 2008]. The idea is to en-
code the graphical model as a weighted propositional theory,

'In an independent and recent effort, Chistikov et al. [2015] also
introduce the notion of approximate model counting for SMT the-
ories. The most significant difference between the proposals is that
they focus only on unweighted model counting. Moreover, they de-
fine model counting as a measure on first-order models. Our ap-
proach is a simpler one that, as we will see, allows us to cast state-
ments for WMI in terms of WMC.

’Handling random variables that take values from finite sets,
rather than {0, 1}, is also possible [Sang ez al., 2005], but we omit a
discussion on this for simplicity.
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and then compute the model count on this theory. Recall that
SAT is the problem of finding a satisfying assignment M to a
propositional formula ¢. WMC, an extension of #SAT, com-
putes the number of models of ¢, and defines a weight to each
of these based on the input theory. Formally, Given a formula
A in propositional logic over literals £, and a weight function
w: L — R, WMC is defined as:

WMC(A, w) = Z w(M)
MEA

where, w(M) is shorthand for [],c,, w(l). Here, given an as-
signment (or model) M, we write M |= ¢ to denote satisfac-
tion. We write [ € M to denote the literals (that is, proposi-
tions or their negations) that are satisfied at M. We often write
M(¢) to mean the set of models of ¢.

The key insight behind WMI is that for hybrid graphical
models, we would need to talk about satisfiability and model
counting over logical theories with propositions (for ) as
well as real-valued variables (for X). This is made possible
by satisfiability modulo theories (SMT) technology [Barrett
et al., 2009]. More precisely, in SMT, DPLL is generalized to
decide the satisfiability of a (typically quantifier-free) first-
order formula with respect to some decidable background
theory 7. Formally, assume a bijection between ground first-
order atoms (from the language of linear arithmetic) and a
propositional vocabulary; formula abstraction, denoted ¢,
proceeds by replacing the atoms by propositions, and refine-
ment, denoted ¢*, replaces the propositions with the atoms.
For example, if A = (x < 4) A(x < 5),then A~ = pAg
where (say) p denotes x < 4 and g denotes x < 5; also,
gt = x < 5. Then, suppose A is an linear arithmetic theory
over Boolean and rational variables 13 and X, and literals L.
Suppose w : L — EXPR(X), where EXPR(X) are expres-
sions over X'. WMI is defined as:

WMI(A, w) = Z VOL(M, w)
Ml=A-
where, VOL(M, w) = f w(M) dX.
{1+:1em}

The intuition is as follows. The WMI of a linear arithmetic
theory A is defined in terms of the models of its propositional
abstraction A~. For each such model, we compute its vol-
ume, that is, we integrate the weight values of the literals that
are true at the model. The interval of the integral is obtained
from the refinement of each literal. Finally, EXPR(X) is the
weight function mapping an expression e to its density func-
tion, which is usually another expression mentioning the vari-
ables in e.

To see a very simple example, let A = (0 < x) A (x < 10),
and suppose w maps (0 < x) to 2 and (x < 10) to x. Suppose
p A q is the abstraction. Then A has only one model, namely
the one where both p and g are true, and we find:

VOL({p. 4} .w) = f

0<x<10

2xdx =[]y = 100.

Thus, WMI(A, w) = 100.
The correctness of WMI and the fact that it is a strict gener-
alization of WMC are argued elsewhere [Belle ef al., 2015b].



3 Approximating WMI

The purpose of this section is to identify how to approximate
WMI(A, w). As mentioned before, we would like such an al-
gorithm to come with strong theoretical guarantees. To bet-
ter understand what we offer, consider the well-understood
WMC version [Chakraborty ef al., 2014]:

Definition 1: Given a propositional sentence A and a weight
function w, an exact algorithm for WMC returns WMC(A, w).
An approximate algorithm for WMC given tolerance € €
(0, 1] and confidence 1 — 6 € (0, 1], simply called an (e, 9)-
algorithm, returns a value v such that

WMC(A, w)

P
r l+e€

<v<(1+€eWMCA,wW)|>1-6

Intuitively, when the weight of every model is 1, an exact al-
gorithm returns the size of the set M(A) = {M | M |= A}
while an approximate one samples from that solution space.
The main question, then, is how can we sample from an un-
known solution space while offering such tight bounds? We
return to this question shortly.

3.1 Problem Statement

To see how the above notion applies to our task, consider an
SMT theory A and weight function w. We observe that

WMI(A, w) = WMC(A™, u)

where, for any model M of A™, u is a weight function such
that u(M) = VOL(M,w). More precisely, u is to be seen as
a weight function that does not factorize over literals and di-
rectly maps interpretations to R. (This is without any loss of
generality.) Thus, our problem statement becomes:

Definition 2: An (e, 6)-algorithm for a WMI problem over
A and w is an (e, d)-algorithm for WMC over A~ and
weight function u, where for any model M of A™, u(M) =
VOL(M, w).

The idea is that by treating the volumes of models as weights
over propositional interpretations, we can view WMI simply
in terms of WMC. Theoretical results can then be inherited.

There are two caveats, however. First, the weights on the
propositional abstraction need to be actually computed using
integration during inference. Second, such an algorithm sam-
ples feasible satisfying assignments for A, but these need
not be consistent in arithmetic. For example, if p denotes
x < 3 and ¢ denotes x > 5, then the interpretation {p, g}
is not a model in linear arithmetic. We refer interested read-
ers to the full paper [Belle er al., 2015a] for details on how
these are addressed.

3.2 Approach

Approximate algorithms for model counting (i.e. when the
weights are uniform) with strong guarantees have been the
focus of many papers, e.g. [Jerrum et al., 1986; Karp et al.,
1989; Ermon et al., 2013; Chakraborty et al., 2014]. The
main technical device is the use of uniform hash functions
[Sipser, 1983], a discussion of which we omit here. Roughly
speaking, given a propositional theory ¢, rather than counting

M(¢) exactly, which is #P-hard, one computes the models of
¢ A x, where y is a random parity constraint corresponding to
the hash function. The parity constraint has the effect of par-
titioning M(¢) into a set of well-balanced cells: such a cell is
a relatively small subset of the solution space. We count so-
Iutions for such cells, which is relatively easy owing to their
size, and leverage that count as an estimate for the solution
space as a whole. It can be shown that for an efficient fam-
ily of hash functions, such an approach provides the desired
bounds.

At this point, our formulation for approximating WMI is
basically agnostic about the counting algorithm used, giving
us a direct way to adapt its bounds. In this paper, we demon-
strate that by leveraging the work of Chakraborty et al. [2014]
(CFMSYV henceforth). As argued by Ermon er al. [2013],
the one major limitation when applying approximate model
counters for probabilistic inference is that weights play an im-
portant role in deeming which samples are interesting. There-
fore, uniformly sampling from M(¢) is not appealing, and
would lead to poor estimates of conditional probabilities. The
approach taken by CFMSYV is to bias the sampling by means
of a parameter called filz.

Definition 3: Suppose (A, w) is a weighted propositional the-
ory. Let wpa,x = maxyw(M) and let wyy, = minyw(M). We
define the tilt 6 to be the ratio wiax/Wmin-

They introduce an algorithm WEIGHTMC(A, w, €, 6,6) for
which they show (our rewording):

Theorem 4 : [CFMSV] Suppose (A,w) is a weighted
propositional theory, and €,6,0 are as above. Then
WEIGHTMC(A, w, €,6,6) is an (€, 0)-algorithm  for
WMC(A,w). Given a SAT-oracle, it runs in time poly-
nomial in log,(1/9), 6, |A| and 1/€ relative to the oracle.

For our purposes, we adapt the notion as follows:

Definition 5: Suppose (A, w) is a weighted SMT theory. Let
Wmax = maxy VOL(M, w) and let wy,;, = miny VOL(M, w).
We define the rilt 0 to be the ratio Wax/Wmin-

We then compute:
WMI(A, w, €,6,0) = WEIGHTMC(A™, u, €, 6, 6)

where u is calculated using u(M) = VOL(M, w).

We are (almost) done. The algorithm WeiGHTMC has to be
adapted to address the caveats mentioned earlier (theory con-
sistency, computing integrals optimally). We argued in [Belle
et al., 2015a] that this adaption does not affect the algorithm’s
theoretical properties, which allows us to show:

Corollary 6: Suppose A is an SMT theory, w is a weight
function, and €,9,0 are as above. Suppose u is the derived
weight function for A—. Then, WEIGHTMC(A™, u, €, 6, 0) is
an (e,0)-algorithm for WMI(A, w). Suppose we are given
an oracle to the weight function u and a SAT-oracle.
Then, WEIGHTMC(A ™, u, €,9,0) runs in time polynomial in
log,(1/6),0, |A~| and 1/e relative to the oracles.

The oracle to u computes the volumes of 7 -consistent mod-
els, which is shown to be efficient by Baldoni et al. [2011].
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Figure 1: At most two junctions from A6.

4 Empirical Evaluations

We now study the scaling behavior and expressivity of an
approximate inference system on a complex real-world sce-
nario; see [Belle et al., 2015a] for a comprehensive report
and implementation details. The scenario involves computing
conditional queries over arithmetic constraints, and is based
on a data series released by the UK government that provides
the average journey time, speed and traffic flow information
on all motorways in England, known as the Strategic Road
Network.> Motorways are split into junctions, and each in-
formation record refers to a specific junction, day and time
period. Figure 1 shows the portion of the network around the
A6 motorway, limited to at most two junctions from A®6.

Imagine a planning problem for a supply system for mo-
torway service stations. The operations center (located, say,
somewhere along A6) receives supply requests from a num-
ber of stations, and needs to predict whether the delivery vehi-
cle will be able to reach all stations and return within a certain
amount of time. Travel time between every pair of stations,
and between stations and the operations center, is computed
in terms of shortest paths across the network. We compute
shortest paths for both minimum and maximum travel times,
so as to get a distribution for the shortest path duration wrt
every pair of relevant points (stations and operations center).
Then, given a certain route between stations, the probability
of completing it within the desired time can be computed by
integrating over travel time distributions between consecutive
stops.

For example, based on our statistical model, the probability
of beginning from the operations center at 8 a.m. and com-
pleting the route touching A14, A1304, A43, and A5199 by 9
a.m. is: Pr(T < 3600) = 0.765. Here, T is the time taken for
the route in seconds. Suppose, however, we request that sta-
tion A14 should be reached only after visiting A1304 (owing
to a delivery request between these two stations) but A1304
should not be visited before 8:30 a.m. (say, because the pack-
age to deliver will not be available until then). Then the sys-

3http://data\ .gov.uk/dataset/dft-eng-srn-routes-journey-times
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tem would compute: Pr(T < 3600 | IA14 > TA1304 N\ EA1304 >
1800) = 0.557. Finally, suppose a last constraint were to re-
quire the station A5199 to be also visited after 8:30 a.m. (say,
when a package to be delivered to the operations center will
be made available). This additional constraint makes it in-
feasible to complete the route in the required time: Pr(T" <
3600 | fa1s > taizos A taizos > 1800 A tasigo > 1800) = 0.

We use this construction as a template for considering cy-
cle paths of increasing lengths to study the implementation
extensively (see the full paper for details). To the best of our
knowledge, a probabilistic inference system for hybrid spec-
ifications against intricate Boolean combinations of proposi-
tional and arithmetic constraints has not been deployed on
such a scale previously.

5 Conclusions

We introduced a novel way to leverage a fast hashing-based
approximate WMC methodology for inference with discrete
and continuous random variables. On the one hand, SAT
technology can now be exploited in challenging inference
and learning tasks in hybrid domains. On the other, strong
tolerance-confidence guarantees can be inherited in this more
complex setting. Weighted SMT theories allow a natural en-
coding of hybrid graphical networks while also admitting the
specification of arithmetic constraints in conditional queries,
all of which are difficult to realize in standard formalisms. We
demonstrated its practical efficacy in a complex novel appli-
cation, deployed on a scale not considered previously.
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