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Abstract
We study online boosting, the task of converting
any weak online learner into a strong online learner.
Based on a novel and natural definition of weak on-
line learnability, we develop two online boosting
algorithms. The first algorithm is an online ver-
sion of boost-by-majority. By proving a matching
lower bound, we show that this algorithm is essen-
tially optimal in terms of the number of weak learn-
ers and the sample complexity needed to achieve a
specified accuracy. The second algorithm is adap-
tive and parameter-free, albeit not optimal.

1 Introduction
We study online boosting, the task of boosting the accuracy
of any weak online learning algorithm. The theory of boost-
ing in the batch setting has been studied extensively, leading
to a huge practical success. See the book by [Schapire and
Freund, 2012] for a thorough discussion.

In the batch setting, we typically have a fixed training set S
drawn from the underlying distribution. A boosting algorithm
assumes access to a weak learner that achieves error at most
1

2

�� on any distribution over S, for some fixed small “edge”
� > 0. Each round of boosting typically makes a pass over
S, reweighting the examples and running a copy of the weak
learner on this specially reweighted dataset.

On the other hand, online learning algorithms receive ex-
amples one by one, updating the predictor after seeing each
new example. An online booster has to operate in the same
fashion, reweighting and passing each example through all
copies of the online weak learner before seeing any sub-
sequent examples. In contrast to the batch setting, online
learning algorithms typically do not make any stochastic as-
sumptions about the data. They are often much faster, more
memory-efficient, and can adapt to the best predictor chang-
ing over time.

The success of boosting in batch learning prompted an
investigation of whether online learning algorithms can be
boosted as well [Oza and Russell, 2001; Grabner and Bischof,
2006; Liu and Yu, 2007; Grabner et al., 2008; Chen et al.,
2012; 2014]. From a theoretical viewpoint, the work by
[Chen et al., 2012] is perhaps most interesting. The authors
proposed an online generalization of the batch weak learning

assumption, and made a connection between online boosting
and batch boosting that produces smooth distributions over
the training examples. The resulting algorithm is guaranteed
to achieve an arbitrarily small error rate as long as the number
of weak learners and the number of examples are sufficiently
large. No assumptions need to be made about how the data is
generated, e.g., the data can be generated by an adversary.

We present a new online boosting algorithm, based on the
boost-by-majority (BBM) algorithm of [Freund, 1995]. This
algorithm, called Online BBM, improves upon the work of
[Chen et al., 2012] in several ways:

1. Our assumption on online weak learners is weaker and
can be seen as a direct online analogue of the standard
batch weak learning assumption.

2. Our algorithm does not require importance weighted on-
line learning, instead using a sampling technique similar
to the one used in boosting by filtering in the batch set-
ting [Freund, 1992; Bradley and Schapire, 2008].

3. Our algorithm is optimal in the sense that no online
boosting algorithm can achieve the same error rate with
fewer weak learners or examples asymptotically.

The following table presents a comparison of the two pa-
pers for the setting where the weak learner is derived from
an online learning algorithm with an O(

p
T ) regret bound.

Here N is the number of weak learners and T is the number
of examples needed to achieve error rate ✏, and � is an online
analog of the “edge” of the weak learning oracle.1

Algorithm N T
Online BBM

(Section 3), optimal
O(

1

�2 ln
1

✏ )
˜O(

1

✏�2 )

AdaBoost.OL
(Section 4), adaptive

O(

1

✏�2 )
˜O(

1

✏2�4 )

OSBoost
[Chen et al., 2012]

O(

1

✏�2 )
˜O(

1

✏�2 )

A clear drawback of both Online BBM and the algorithm
in [Chen et al., 2012] is their lack of adaptivity. These al-
gorithms require knowledge of � as a parameter. More im-
portantly, this also means that the algorithm treats each weak
learner equally and ignores the fact that some weak learners

1In this paper, we use the Õ(·) and ⌦̃(·) notation to suppress
dependence on polylogarithmic factors in the natural parameters.
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are actually doing better than the others. The best example
of adaptive boosting algorithm is the well-known parameter-
free AdaBoost algorithm [Freund and Schapire, 1997], where
each weak learner is naturally weighted by how accurate it
is. In fact, adaptivity is known to be one of the key features
that lead to the practical success of AdaBoost, and therefore
should also be essential to the performance of online boost-
ing algorithms. In Section 4, we propose AdaBoost.OL, an
adaptive and parameter-free online boosting algorithm. As
shown in the table, AdaBoost.OL is theoretically suboptimal
in terms of N and T . However, empirically it generally out-
performs OSBoost and sometimes even beats the optimal On-
line BBM (see Section 5).

Our techniques are also very different from those of [Chen
et al., 2012], which rely on the smooth boosting algorithm
of [Servedio, 2003]. As far as we know, all other work on
smooth boosting [Bshouty and Gavinsky, 2003; Bradley and
Schapire, 2008; Barak et al., 2009] cannot be easily gener-
alized to the online setting, necessitating completely differ-
ent methods not relying on smooth distributions. Our Online
BBM algorithm builds on top of a potential based family that
arises naturally in the batch setting as approximate minimax
optimal algorithms for so-called drifting games [Schapire,
2001; Luo and Schapire, 2014]. The decomposition of each
example in that framework naturally allows us to generalize
it to the online setting where example comes one by one. On
the other hand, AdaBoost.OL is derived by viewing boosting
from a different angle: loss minimization [Mason et al., 2000;
Schapire and Freund, 2012]. The theory of online loss mini-
mization is the key tool for developing AdaBoost.OL.

2 Setup and Assumptions
We describe the formal setup of the task of online classifica-
tion by boosting. At each time step t = 1, . . . , T , an adver-
sary chooses an example (xt, yt) 2 X ⇥ {�1, 1}, where X is
the domain, and reveals xt to the online learner. The learner
makes a prediction on its label ŷt 2 {�1, 1}, and suffers the
0-1 loss 1{ŷt 6= yt}. As is usual with online algorithms, this
prediction may be randomized.

For parameters � 2 (0, 1

2

), � 2 (0, 1), and a constant S >
0, the learner is said to be a weak online learner with edge
� and excess loss S if, for any T and for any input sequence
of examples (xt, yt) for t = 1, 2, . . . , T chosen adaptively,
it generates predictions ŷt such that with probability at least
1� �,

TX

t=1

1{ŷt 6= yt}  (

1

2

� �)T + S. (1)

The excess loss requirement is necessary since an online
learner cannot be expected to predict with any accuracy with
too few examples. Essentially, the excess loss S yields a
kind of sample complexity bound: the weak learner starts ob-
taining a distinct edge of ⌦(�) over random guessing when
T � S

� . Typically, the dependence of the high probability
bound on � is polylogarithmic in 1

� ; thus in the following we
will avoid explicitly mentioning �.

For a given parameter ✏ > 0, the learner is said to be a
strong online learner with error rate ✏ if it satisfies the same

conditions as a weak online learner except that its edge is
1

2

�✏, or in other words, the fraction of mistakes made, asymp-
totically, is ✏. Just as for the weak learner, the excess loss S
yields a sample complexity bound: the fraction of mistakes
made by the strong learner becomes O(✏) when T � S

✏ .

2.1 Discussion of Weak Online Learning
Assumption

We now justify our definition of weak online learning, viz.
inequality (1). In the standard batch boosting case, the
corresponding weak learning assumption (see for example
[Schapire and Freund, 2012]) made is that there is an algo-
rithm which, given a training set of examples and an arbitrary
distribution on it, generates a hypothesis that has error at most
1

2

� � on the training data under the given distribution. This
statement can be interpreted as making the following two im-
plicit assumptions:

1. (Richness.) Given an edge parameter � 2 (0, 1

2

), there
is a set of hypotheses, H, such that given any training
set (possibly, a multiset) of examples U , there is some
hypothesis h 2 H with error at most 1

2

� �, i.e.
X

(x,y)2U

1{h(x) 6= y}  (

1

2

� �)|U |.

2. (Agnostic Learnability.) For any ✏ 2 (0, 1), there is an
algorithm which, given any training set (possibly, a mul-
tiset) of examples U , can compute a nearly optimal hy-
pothesis h 2 H, i.e.
X

(x,y)2U

1{h(x) 6= y}  inf

h02H

X

(x,y)2U

1{h0
(x) 6= y}+ ✏|U |.

Our weak online learning assumption can be seen as arising
from a direct generalization of the above two assumptions to
the online setting. Namely, the richness assumption stays the
same, whereas the agnostic learnability of H assumption is
replaced by an agnostic online learnability of H assumption
(c.f. [Ben-David et al., 2009]). I.e., there is an online learning
algorithm which, given any sequence of examples, (xt, yt)
for t = 1, 2, . . . , T , generates predictions ŷt such that

TX

t=1

1{ŷt 6= yt}  inf

h2H

TX

t=1

1{h(xt) 6= yt}+R(T ),

where R : N ! R
+

is the regret, a non-decreasing, sublin-
ear function of the number of prediction periods T . Since on-
line learning algorithms are typically randomized, we assume
the above bound holds with high probability. The following
lemma shows that richness and agnostic online learnability
immediately imply our online weak learning assumption (1).2

Lemma 1. Suppose the sequence of examples (xt, yt) is ob-
tained from a data set for which there exists a hypothesis class
H that is both rich for edge parameter 2� and agnostically
online learnable with regret R(·). Then, the agnostic online
learning algorithm for H satisfies the weak learning assump-
tion (1), with edge � and excess loss S = maxT (R(T )��T ).

2All proofs can be found in [Beygelzimer et al., 2015].
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Algorithm 1 Online BBM
1: for t = 1 to T do
2: Receive example xt.
3: Predict ŷt = sign(

PN
i=1

WLi
(xt)), receive label yt.

4: Set s0t = 0.
5: for i = 1 to N do
6: Set sit = si�1

t + ytWLi
(xt).

7: Set kit = bN�i�si�1
t +1

2

c.

8: Set wi
t =

�N�i
ki
t

� �
1

2

+

�
2

�ki
t
�
1

2

� �
2

�N�i�ki
t .

9: Pass training example (xt, yt) to WLi

with probability pit =
p
N�i+1

4

wi
t.

10: end for
11: end for

Various agnostic online learning algorithms are known to
have a regret bound of O(

q
T ln(

1

� )), e.g., Hedge [Freund
and Schapire, 1995]. If we use such an online learning al-
gorithm as a weak online learner, then a simple calculation

implies, via Lemma 1, that it has excess loss ⇥(

ln(

1

� )

� ).

3 An Optimal Algorithm
The Online BBM algorithm (see Algorithm 1) is an op-

timal online boosting algorithm, as indicated in Theorem 1
below. The algorithm (hereafter referred to as “booster”)
works by maintaining N copies of the weak online learner,
for some positive integer N to be specified later. Denote
the weak online learners WLi for i = 1, 2, . . . , N . At time
step t, the prediction of i-th weak online learner is given by
WLi

(xt) 2 {�1, 1}. Note the slight abuse of notation here:
WLi is not a function, rather it is an algorithm with an internal
state that is updated as it is fed training examples. Thus, the
prediction WLi

(xt) depends on the internal state of WLi, and
for notational convenience we avoid reference to the internal
state.

In each round t, the booster works by taking a majority
vote of the weak learners’ predictions. That is, the prediction
is sign(

PN
i=1

WLi
(xt)), where sign(·) is 1 if the argument is

nonnegative and �1 otherwise. After making the prediction,
the true label yt is revealed by the environment. The booster
then updates WLi by passing the training example (xt, yt)
to WLi with a carefully chosen sampling probability pit (and
not passing the example with the remaining probability). The
sampling probability pit is obtained by computing a weight wi

t

and setting pit =
p
N�i+1

4

wi
t.

We can prove the following performance guarantee for the
Online BBM algorithm:
Theorem 1. Given a weak online learning algorithm with
edge � and excess loss S and any target error rate ✏ > 0,
the Online BBM boosting algorithm constructs a strong on-
line learning algorithm with error rate ✏ using O(

1

�2 ln(
1

✏ ))

copies of the weak online learner, and with excess loss ˜O(

S
� +

1

�2 ). Its sample complexity is thus ˜O(

1

✏ (
S
� +

1

�2 )). Further-

Algorithm 2 AdaBoost.OL
1: Initialize: 8i : vi

1

= 1,↵i
1

= 0.
2: for t = 1 to T do
3: Receive example xt.
4: for i = 1 to N do
5: Set ŷit = sign(

Pi
j=1

↵j
tWLj

(xt)).
6: end for
7: Randomly pick it with Pr[it = i] / vit.
8: Predict ŷt = ŷitt , receive label yt.
9: Set s0t = 0.

10: for i = 1 to N do
11: Set zit = ytWLi

(xt).
12: Set sit = si�1

t + ↵i
tz

i
t .

13: Set ↵i
t+1

= ⇧

⇣
↵i
t +

⌘tz
i
t

1+exp(sit)

⌘
with ⌘t = 4/

p
t.

14: Pass example (xt, yt) to WLi with probability pit =
wi

t = 1/(1 + exp(si�1

t )).
15: Set vit+1

= vit · exp(�1{yt 6= ŷit}).
16: end for
17: end for

more, if S � ˜

⌦(

1

� ), then the number of weak online learners
is optimal up to constant factors, and the sample complexity
is optimal up to polylogarithmic factors.

The requirement that S � ˜

⌦(

1

� ) in the lower bound is not
very stringent; this is precisely the excess loss one obtains
when using standard online learning algorithms with regret
bound O(

p
T ), as is explained in the discussion following

Lemma 1. Furthermore, since we require the bound (1) to
hold with high probability, typical analyses of online learning
algorithms will have an ˜O(

p
T ) deviation term, which also

leads to S � ˜

⌦(

1

� ).

4 An Adaptive Algorithm
Although the Online BBM algorithm is optimal, it is unfor-

tunately not adaptive since it requires the knowledge of � as
a parameter, which is unknown ahead of time. As discussed
in the introduction, adaptivity is essential to the practical per-
formance of boosting algorithms such as AdaBoost. We now
design an adaptive online boosting algorithms using the the-
ory of online loss minimization.

We conceptually define N different “experts” giving ad-
vice on what to predict on the current example xt. In round t,
expert i predicts by combining the first i weak learners using
a weighted majority rule with weights ↵j

t for WLj , as follows:

ŷit = sign(
Pi

j=1

↵j
tWLj

(xt)).

Now as in the batch boosting algorithm AdaBoost.L
[Schapire and Freund, 2012, Chapter 7], the weight wi

t for
WLi is obtained by computing the logistic loss of the predic-
tion of expert i� 1, i.e. `(si�1

t ), and then setting wi
t to be the

negative derivative of the loss:

wi
t = �`0(si�1

t ) =

1

1 + exp(si�1

t )

2 [0, 1].

4122



Table 1: Performance of various online boosting algorithms on various datasets. The lowest loss attained for each dataset is
bolded. The baseline is the loss obtained by running the weak learner, VW, on the data.

Dataset VW baseline Online BBM.W AdaBoost.OL.W AdaBoost.OL OSBoost.OCP OSBoost
20news 0.0812 0.0775 0.0777 0.0777 0.0791 0.0801

a9a 0.1509 0.1495 0.1497 0.1497 0.1509 0.1505
activity 0.0133 0.0114 0.0128 0.0127 0.0130 0.0133
adult 0.1543 0.1526 0.1536 0.1536 0.1539 0.1544
bio 0.0035 0.0031 0.0032 0.0032 0.0033 0.0034

census 0.0471 0.0469 0.0469 0.0469 0.0469 0.0470
covtype 0.2563 0.2347 0.2495 0.2450 0.2470 0.2521

letter 0.2295 0.1923 0.2078 0.2078 0.2148 0.2150
maptaskcoref 0.1091 0.1077 0.1083 0.1083 0.1093 0.1091

nomao 0.0641 0.0627 0.0635 0.0635 0.0627 0.0633
poker 0.4555 0.4312 0.4555 0.4555 0.4555 0.4555
rcv1 0.0487 0.0485 0.0484 0.0484 0.0488 0.0488

vehv2binary 0.0292 0.0286 0.0291 0.0291 0.0284 0.0286

In terms of the weight of WLi, i.e. ↵i
t, ideally we wish to

mimic AdaBoost.L and use a fixed ↵i for all t such that the to-
tal logistic loss is minimized: ↵i

= argmin↵
PT

t=1

`(si�1

t +

↵zit). Of course this is not possible because ↵i depends on
the future unknown examples. Nevertheless, it suffices to re-
strict the ↵i

t’s to the set [�2, 2] and tune them using online
gradient descent [Zinkevich, 2003], which allows us perform
almost as well as the best fixed choice (↵i) in hindsight. This
is implemented in step 13 of the algorithm:

↵i
t+1

= ⇧

�
↵i
t � ⌘tf

0
t(↵

i
t)
�
= ⇧

✓
↵i
t +

⌘tz
i
t

1 + exp(sit)

◆
,

where ⌘t is a time-varying learning rate and ⇧ represents pro-
jection onto the set [�2, 2], i.e., ⇧(·) = max{�2,min{2, ·}}.

Finally, it remains to specify the algorithm’s final predic-
tion ŷt. It turns out that at least one of the N experts will have
high accuracy. Using the well-known Hedge algorithm [Lit-
tlestone and Warmuth, 1994; Freund and Schapire, 1997], we
can (almost) achieve the performance of the best expert. This
is implemented in steps 7 and 15 of the algorithm.

We call the final resulting algorithm AdaBoost.OL,3 and
summarize it in Algorithm 2. Note that as promised, Ad-
aBoost.OL is an adaptive online boosting algorithm and does
not require knowing � in advance. In fact, in the analysis
we do not even have to assume that the weak learners sat-
isfy the bound (1). Instead, define the quantities �i , w

i·zi

2kwik1

for each weak learner WLi. This can be interpreted as the
(weighted) edge over random guessing that WLi obtains.
Note that �i may even be negative, which means flipping the
sign of WLi’s predictions performs better than random guess-
ing. Nevertheless, the algorithm can still make accurate pre-
dictions even with negative �i since it will end up choosing
negative weights ↵i

t in that case. The performance of Ad-
aBoost.OL is provided below.
Theorem 2. For any T and N , with high probability, the
number of mistakes made by AdaBoost.OL is bounded by

2TP
i �

2

i

+

˜O

✓
N2

P
i �

2

i

◆
.

3O stands for online and L stands for logistic loss.

Moreover, if the weak learners satisfy (1), then the number of
mistakes is bounded by

8T

�2N
+

˜O

✓
N

�2

+

S

�

◆
.

Thus, in order to achieve error rate ✏, it suffices to use N �
8

✏�2 weak learners, giving an excess loss ˜O(

S
� +

1

✏�4 ).

5 Experiments
While the focus of this paper is a theoretical investigation of
online boosting, we also performed an experimental evalua-
tion. We extended the Vowpal Wabbit open source machine
learning system 4 to include the algorithms studied in this pa-
per. Since VW can handle importance weights, we imple-
mented versions of our boosting algorithms (Online BBM.W
and AdaBoost.OL.W) that use the probabilities pit as impor-
tance weights, as well as OSBoost (using uniform weighting
on the weak learners) and OSBoost.OCP from [Chen et al.,
2012]. To compare importance weighting versus sampling,
we also implemented AdaBoost.OL from Algorithm 2, which
samples examples sent to VW with the pit probabilities.

All experiments were done on a diverse collection of 13
publicly available datasets. For each dataset, we performed a
random split with 80% of the data used for single-pass train-
ing and the remaining 20% for testing. We tuned the learning
rate, the number of weak learners, and the edge parameter �
(for all but the two versions of AdaBoost.OL) using progres-
sive validation 0-1 loss on the training set. Progressive vali-
dation is a standard online validation technique, where each
training example is used for testing before it is used for up-
dating the model [Blum et al., 1999]. Reported in Table 1 is
the 0-1 loss on the test set.

It should be noted that the VW baseline is already a strong
learner. For most datasets, Online BBM.W had the best
performance. The average improvement of Online BBM.W
over the baseline was 5.14%. For AdaBoost.OL.W, it was
2.57%. Using sampling in AdaBoost.OL boosts the average
to 2.67%. The average improvement for OSBoost.OCP was
1.98%, followed by OSBoost with 1.13%.

4https://github.com/JohnLangford/vowpal wabbit/wiki
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