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Abstract

Operator-counting is a recently developed frame-
work for analysing and integrating many state-of-
the-art heuristics for planning using Linear Pro-
gramming. In cost-optimal planning only the ob-
jective value of these heuristics is traditionally used
to guide the search. However the primal solution,
i.e. the operator counts, contains useful informa-
tion. We exploit this information using a SAT-
based approach which given an operator-count, ei-
ther finds a valid plan; or generates a generalized
landmark constraint violated by that count. We
show that these generalized landmarks can be used
to encode the perfect heuristic, h*, as a Mixed In-
teger Program. Our most interesting experimental
result is that finding or refuting a sequence for an
operator-count is most often empirically efficient,
enabling a novel and promising approach to plan-
ning based on Logic-Based Benders Decomposi-
tion (LBBD). This paper originally appeared at
ICAPS 2015 and is reproduced with the permis-
sion of the Association for Artificial Intelligence
([Davies et al., 2015] Copyright 2016 AAAL, all
rights reserved.)

1 Introduction

We investigate the problem of sequencing operator counts ob-
tained from an operator counting heuristic. The algorithm
will find a feasible sequence, if it exists, or obtain an explana-
tion why there is no plan that uses only the operators counted.
We refer to these explanations as generalised disjunctive ac-
tion landmarks.

Disjunctive action landmarks are a core feature of many
admissible heuristics [Helmert and Domshlak, 2009; Bonet
and Helmert, 2010; Haslum et al., 2012; Imai and Fuku-
naga, 2014]. Admissible heuristics based on these landmarks
count the occurrence of any operator at most once. Most are
dominated by the optimal delete relaxation h™ [Helmert and
Domshlak, 2009].

We generalize this notion of disjunctive action landmarks
to count operators multiple times, and show that admissible
heuristics using generalized landmarks are capable of defin-
ing the perfect heuristic h*. As disjunctive action landmarks

4140

Nir Lipovetzky
Computing & Information Systems
The University of Melbourne
Melbourne, Australia
nir.lipovetzky @unimelb.edu.au

are the only kind of landmark we consider in this paper, we
will refer to them simply as “landmarks”.

We present a complete, incremental algorithm for generat-
ing generalized landmarks, prove that generalized landmarks
can encode h*, and experimentally verify that this algorithm
computes h*. Our approach can be used both as an incremen-
tal lower bound function and as an optimal planner, much like
h*+ [Haslum, 2012], as our approach does not terminate un-
til it finds a proof that it has computed h*, i.e. finds a plan
with optimal cost.

We explain this approach to planning in terms of Logic-
Based Benders Decomposition (LBBD). LBBD partitions an
optimization problem in terms of a Mixed Integer Program-
ming master problem, and one or more combinatorial sub-
problems used to explain flaws in the master problem.

This approach to planning is particularly promising for two
reasons. Firstly, it introduces a principled interaction between
operator-counting heuristics and SAT. This interaction can be
applied to any explanation-based combinatorial search ap-
proach including SAT Modulo Theories (SMT) [Nieuwen-
huis et al., 2006] and constraint programming using Lazy
Clause Generation (LCG) [Ohrimenko et al., 2009]. Con-
straints or theories capable of generating clausal explanations
can be added to the SAT model we present, potentially allow-
ing direct integration of cost-optimal planning with SMT and
state-of-the-art scheduling approaches based on LCG. Plan-
ning Modulo Theories problems [Gregory et al., 2012] could
therefore potentially be tackled using the extensive range of
existing theories and constraints already implemented by the
SMT and constraint programming communities.

Secondly, this approach decomposes the planning problem
into problems for which there exist well-suited optimisation
technologies: Mixed Integer Programming handling the lin-
ear counting constraints; and Conflict-Directed Clause Learn-
ing for the problem of operator sequencing given operator
counts. This allows planning to take advantage of the ever
improving performance of both of these widespread and in-
dustrially applied technologies.

2 Background

SAST planning A SAST planning task is a tuple
(V,0, 50, s«, c) where V is a set of finite domain state vari-
ables, O is a set of operators, s is a full assignment of each
variable to one of its values representing the initial state, and



S« 1s a partial assignment of some subset of V' representing
the goal states. Finally c is a function O — Na' that assigns a
non-negative cost to each operator.

Each variable X € V has a domain D(X), we sometimes
abuse notation and write X =z € V which should be read
X € V. Az € D(X). Each operator o has a set of pre-
conditions pre(o) which is a partial assignment representing
the preconditions of that operator, and a set of postconditions
post(o) which is a partial assignment representing the effects
of the operator. Producers, prod(X =z) = {o | X=2a' €
pre(o) A X=x € post(o) Az’ # x} are the operators which
cause X =x to become true. Note that for simplicity, we do
not distinguish between preconditions and prevail conditions
in this paper.

A state s in the search space is a full assignment of ev-
ery variable to a value. State s is said to satisfy a par-
tial assignment F' if all assignments in F’ are also in s, i.e.
X=x € = X=x € s. A state is said to be a goal state if it
satisfies the partial assignment s,.

An operator o € O is applicable in s if s satisfies the partial
assignment pre(o). If o is applicable in state s, applying o
yields a new state s’ which is the same as s except that all
assignments X=x € post(o) replace any assignment to X .

A plan 7 is a sequence of operators oy, - - - o, such that
01 is applicable in sq, each subsequent operator is applicable
in the state resulting from applying the previous operators in
sequence, and the final state satisfies s.. An optimal plan
has the minimum sum of operator costs of all plans, a SAS™
planning task may have many optimal plans.

Mixed Integer Programming A Mixed Integer Program
(MIP) is a representation of a combinatorial optimisation
problem in terms of linear constraints over some finite set
of integer and continuous variables. Finding a solution to a
MIP is an NP-complete problem, however its linear relax-
ation, (which replaces all integer variables with continuous
ones) can be optimised in polynomial time.

In recent years many admissible planning heuristics have
been proposed that use linear programs [van den Briel ef al.,
2007; Coles et al., 2008; Bonet, 2013; Pommerening et al.,
2014; Bonet and van den Briel, 2014].

Of particular interest is the family of operator-counting
heuristics. Operator-counting uses a linear programming
framework with a common set of variables Y,, representing
the count of occurrences of each operator o in some relaxed
representation of a plan. One or more component heuristics
can be encoded as linear constraints on these variables such
that the combined operator-counting heuristic dominates each
of the component heuristics, often strictly [Pommerening et
al.,2014].

Operator Counts The solution to an operator-counting
heuristic assigns a count to each operator o whenever the MIP
is optimized. To distinguish the count assigned to each op-
erator by a solution to an operator-counting heuristic from
the variable Y,, we refer to a solution to the heuristic as an
operator-count C.

grip-i-1 drop-i-r
50O

drop-i-1 grip-i-r

grip-*-*

drop-*-*

Figure 1: Domain Transition Graphs in gripper. The vari-
able R represents the location of the robot (in the left or right
room) ; B; represents the location of ball ¢, (in the left or right
room, or in the gripper); G represents the state of the gripper
(empty or non-empty). For each automaton, the initial state is
marked by an incoming arrow, and the states consistent with
the goal s, are double circled.

An operator-count C is said to be a projection of a plan 7 if
for each distinct operator o, there exist exactly C(o) copies of
that operator in 7. We say an operator count is perfect if it is
the projection of an optimal plan.

Incremental lower bounding Incremental lower bound-
ing is a general technique for obtaining high-quality lower
bounds, which can be useful in proving the quality of an exist-
ing plan. Incremental lower bounding was most prominently
used in planning by Haslum (2012), however the technique
is used throughout the various optimisation communities, re-
ferred to as “dual” techniques, reflecting the dual (lower)
bound obtained from a linear program. Haslum (2012) de-
scribe a distinctive property of incremental lower bounding
techniques as “informed by flaws in the current [optimum]”.

3 Generalized Landmarks

To express some of the combinatorial aspects of planning
problems it is useful to separate variables representing the
number of times an operator o occurs, Y, from variables rep-
resenting if an operator occurs at least & times, [Y, > k]l,
which we refer to as bounds literals.

Definition 1. A generalized landmark constraint is a linear
inequality of the form:

STVe, > ki > 1

i€l
for some L C O.

We call these generalized landmarks because any tradi-
tional disjunctive action landmark can be encoded as a gener-
alized landmark by setting all k; = 1.

Consider an instance of the simplified gripper domain
shown in Figure 1 with 2 balls. The goal is to move both

'Tverson brackets denote binary variables of the form [P] that
take the value 1 iff the condition P holds.

4141



balls from the left room to the right, using a robot with a sin-
gle “gripper” which can hold only one ball at a time. The
robot starts in the left room, and can only pick up and drop
balls in the room it is currently occupying.
An operator count obtained by some admissible heuristic
on this domain counts the following.
C(o) =1 if o € {move-I,move-r, grip-1-1,
grip-2-1, drop-1-1, drop-2-1}
C(o) =0 otherwise

Note that there is only one occurrence of the move-r operator,
however all feasible plans must contain two of this operator.
We can add the constraint [Yy,per > 2] > 1 to explain this
requirement. With the addition of this constraint the MIP re-
turns the optimal operator count for this instance.

To enforce the correct behaviour of bounds literals we need
to add the following domain constraints® to our model:

Y, >k <[Y,>k—1] iftk>0 (1)
Yo > ¥, > ] )

=1
Yo < MY, > K] +k—1 3)

Where M is a sufficiently large number such that no feasible
plan could contain more than M of any individual operator.
In practice this number need only be as large as the longest
plan the solver could feasibly solve. Constraint 1 ensures that
a bound can’t hold unless the next smallest bound also holds;
2 ensures that if k£ bounds literals are set, then at least k op-
erators must occur; and finally 3 ensures that if & or more
operators occur, the bounds literal [Y, > k| must be set.

Theorem 1. For any solvable SAS™ planning problem having
strictly positive action costs, there exists a set of generalized
landmark constraints (with the domain constraints for all the
bounds literals involved) such that solving a MIP with these
constraints will compute h*(sg).

Proof Sketch. An optimal operator count C (which may ini-
tially be empty) can be obtained by solving the MIP. If C does
not represent the projection of a plan, then the generalized
landmark constraint:

Y Yo=Clo)+1]>1

0cO

can be added.

This constraint can be read “at least one operator must be
applied at least one more time”. This is clearly violated by
C, and can only possibly invalidate subsets of C. If any strict
subset of C were feasible, C would not be optimal. Conse-
quently this new constraint changes the optimum solution iff
C is not perfect.

O

2Domain constraints reflect the fact that Y, variables are finite
domain variables, and the bounds literals we use are closely related
to bounds literals used in lazy clause generation [Ohrimenko et al.,
20091, where the same term is used.
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If we were to omit bounds literals for some operators from
the landmark, it would invalidate many more operator counts.
This is similar to traditional landmarks which are stronger
when they contain a small subset of operators. To obtain
smaller, more focused landmarks we turn to the conflict anal-
ysis built into modern “Conflict-Directed Clause Learning”
SAT solvers.

4 SAT Encoding for Operator Sequencing

Assumptions are a feature of most SAT solvers’ incremen-
tal interfaces. These allow the user to temporarily assert unit
clauses. Importantly, if the resulting formula including these
unit clauses is not satisfiable, the final conflict in the unsat-
isfiability proof can always be re-written in terms of a subset
of the assumptions. This conflict clause represents a neces-
sary (though not in general sufficient) property required of
any model. In our SAT encoding assumptions will be used to
ensure that only the operators selected by the operator count-
ing heuristic are actually used.

Our SAT model (ommited for brevity), follows a standard
layer-based encoding with variables for each operator and
each fact in each layer. Our contribution adds a constraint for
each operator o, ensuring that the total number of occurances
of that operator do not exceed C(0), these constraints are as-
serted using assumptions on bounds literals [Y,, > C(0)]. The
goal is asserted in the final layer L, by assuming the literal
=[2C(0) > L + 1], which implies the goal must be achieved
by layer L.

The conflict clause will thus contain the goal assumption,
plus some subset of the assumed bounds literals. Specifically
it will be of the form:

[2C(0) > L+1]V[Ys, > Clo1)+1]V---V[Yy, > Clon)+1]

This clause must be a necessary condition on all plans of
length L or less. Since it is also satisfied by any operator
count having more than L actions in total, it is also a neces-
sary condition on all plans. This translates to a generalized
landmark cut by replacing V with + and appending > 1. The
only complication is the =[2C(0) > L + 1] literal, which we
tackle by adding an artificial operator 1" with zero cost (repre-
senting the total operator count) to the MIP, constrained such

that:
Yr=>Y_Y,
0€e0

Using this new operator, we can replace the total operator
count literal [XC(0) > L + 1] with the bounds literal for the
artificial operator 7"

XClo)>L+1]=[Yr > L+1]

It should be noted that the SAT formula we use only en-
sures that no more operators occur than were chosen in the
operator count. Thus it can sequence any subset of an oper-
ator count, allowing it to be used with approximate solutions
while guaranteeing that the same proof of admissibility as in
Theorem 1 applies.



Operator Counts

Operator Counting > Operator Sequencing
MIP Model SAT Model

Generalized Landmarks
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Figure 2: A Logic-Based Benders Decomposition Approach
to Optimal Planning

5 Planning using Logic-Based Benders

Logic-Based Benders Decomposition (LBBD) [Hooker and
Ottosson, 2003] is an approach to decomposing combinato-
rial search problems into a master MIP and one or more com-
binatorial subproblems. The master and subproblems share
some variables such that the subproblem becomes easier to
solve or prove infeasible once those variables it shares with
the master are fixed. Importantly, LBBD allows for mixing
of different optimisation technologies which may be better
suited to the master problem and subproblems.

The master problem represents a relaxation of the original
problem, and the subproblem checks for and explains flaws
in that relaxation. Explanations in this context are constraints
on the variables in the master problem. By incrementally
adding these explanations, the master problem incrementally
approaches the true solution.

First the master MIP is solved, and the optimal values of
the shared variables are taken from the master, and this opti-
mal assignment is assumed within the subproblem, which is
then solved. If the subproblem is satisfiable then the optimal
solution to the original problem has been found. 3

If the subproblem is not satisfiable, some violated neces-
sary condition on the shared variables is detected, and a con-
straint (the Benders cut) is added to the master problem. The
process is then iterated until the master problem’s relaxation
becomes satisfiable.

In our case, the master MIP is any operator-counting
heuristic, and the operator counts are shared variables.

Canonical planning (where each operator can be applied at
most once) is NP-complete [Vidal and Geffner, 2006], mean-
ingfully easier than the full planning problem. Many domains
in planning are canonically plannable, that is there exists a
plan containing only one instance of each operator. Our sub-
problem of sequencing the operators is pseudo-polynomially
reducible to a canonical planning problem, by replacing each
operator o with C(o) copies of itself, since C(0) is usually
small in optimal plans the subproblem is often much easier
than the full problem in practice.

6 Results

Figure 3 shows that 99% of all the sequence calls take less
than 1 second, although there is a significant long-tailed dis-
tribution: 0.01% of sequence calls took over 5 minutes.

In our full paper, we compare opseq with ipp and SymBA *-
2 as an incremental lower-bounding approach. Our results

3In general, where the subproblem requires optimisation this is
not true, but we omit this case for simplicity as it does not apply to
our decomposition. See Hooker and Ottosson (2003).

4143

100% e
90%
80% +
70% +
60% —+
50%
40% 4
30%
20%
10%

0% +
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (seconds)

Figure 3: Cumulative Frequency of Sequence Times

show that SymBA *-2 is extremely effective, beating both dual
techniques in all three metrics in all but 5 domains, although
in 4 of these 5 domains, OpSeq earns the best dual qual-
ity score, and in 3 domains even beats SymBA* in coverage.
OpSeq also beats the previous state-of-the-art in incremental
lower bounding in 9 of the 11 domains investigated.

7 Conclusions and Further Work

We have defined a simple generalization of landmarks which
allows the encoding of admissible heuristics upper-bounded
only by h*. We also introduce a SAT-based, complete al-
gorithm for generating a generalized landmark violated by a
given operator count which is usually very fast. We experi-
mentally confirmed that »* can be computed using only this
algorithm, and demonstrated that it outperforms the previous
state-of-the-art in incremental lower bounding: h++.

There are other more conventional applications for general-
ized landmarks as well, such as pre-processing to generate an
initial set of generalized landmarks which can then be used
in an analogue of Incremental LM-Cut [Pommerening and
Helmert, 2013]. We expect this to provide improved heuristic
guidance near the root of the search where it is most valuable.
While we use a complete algorithm to generate landmarks,
there is an obvious fast but incomplete algorithm obtained by
simply terminating early when long-tailed behaviour is ob-
served.

We believe this approach is interesting and promising be-
cause it allows a principled interaction between state-of-the-
art heuristics and explanation-based combinatorial search ap-
proaches including SAT, SMT and LCG. Any constraint ca-
pable of explaining its inferences can be added to the SAT
subproblem, potentially allowing direct integration of cost-
optimal planning with SMT and state-of-the-art schedul-
ing approaches based on constraint programming with lazy
clause generation. This means that, by extending the ap-
proach we present, we should be able to solve similar prob-
lems to Planning Modulo Theories [Gregory et al., 2012] by
taking advantage of the extensive range of existing theories
and constraints already implemented by the SMT and con-
straint programming communities.
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