Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

Effective Planning with More Expressive Languages

Guillem Frances
Universitat Pompeu Fabra
Barcelona, Spain
guillem.frances @upf.edu

Abstract

Most of the key computational ideas in classical
planning assume a simple planning language where
action preconditions and goals are conjunctions of
propositional atoms. This is to facilitate the defini-
tion and computation of heuristics for guiding the
search for plans. In this work, however, we show
that this modeling choice hides important struc-
tural information, resulting in poorer heuristics and
weaker planning performance. To address this, we
show how relaxed plan heuristics can be lifted to
a variable-free first-order planning language, Func-
tional STRIPS, where atomic formulas can involve
arbitrary terms. The key idea is to regard the set
of atoms that are reachable in a propositional layer
of the relaxed planning graph as encoding a set of
logical first-order interpretations. A precondition
or goal formula is then regarded as reachable in a
propositional layer, potentially adding new atoms
to the next layer, when the set of atoms in the layer
makes the formula satisfiable according to the rules
of first-order logic. While this satisfiability test and
the resulting heuristics turn out to be intractable,
we show how a meaningful polynomial approxi-
mation can be obtained by formulating the satisfi-
ability problem as a CSP and applying constraint
propagation techniques. Experiments illustrating
the computational value of planning with more ex-
pressive languages are also reported.

1 Introduction

Most heuristic search planners assume a propositional repre-
sentation of the problem with conjunctive goals and action
preconditions, from which heuristics can be derived effec-
tively to guide the search for plans. One of such heuristics is
based on the relaxed planning graph (RPG), where the propo-
sitional layer P; contains those atoms that can be reached
after 7 steps in the delete relaxation [Hoffmann and Nebel,
2001]. The first Py layer contains all atoms true in the seed
state, while layer P; ;1 contains all atoms from the previous
P; layer plus those that can be added by actions whose pre-
conditions are in P;. The index of the first layer that contains
all the goals captures the hmg, heuristic [Bonet and Geffner,

4155

Hector Geffner
ICREA & Universitat Pompeu Fabra
Barcelona, Spain
hector.geffner @upf.edu

2001], and the number of actions in a relaxed plan obtained
backwards from the goal defines the hgp heuristic.

In this work, we show how RPG heuristics can be lifted to
a variable-free first-order language like Functional STRIPS
[Geffner, 2000], where preconditions and goals can feature
arbitrary atoms. The key idea is very simple: the sets of
atoms reachable in a propositional layer of the RPG are re-
garded as encoding a set of logical first-order interpreta-
tions. A precondition or goal formula is then regarded as
reachable in a propositional layer, potentially triggering the
addition of new atoms to the next layer, when some inter-
pretation implicit in the layer makes the formula satisfiable
according to the rules of first-order logic. While this sat-
isfiability test and the resulting heuristics are worst-case in-
tractable, in practice they are not always so, while poly-
nomial approximations can be obtained by formulating the
problem as a CSP and applying constraint propagation tech-
niques. The value-accumulating semantics generalization of
RPG heuristics to first-order languages [Gregory et al., 2012;
Domshlak and Nazarenko, 2013] is also polynomial, but by
completely ignoring such constraints.

The derivation of heuristics from first-order languages is
relevant because important structural information becomes
hidden when propositional encodings are used, resulting in
poorer heuristics and overall planning performance. To illus-
trate this, consider a simple problem involving integer vari-
ables X1, ..., X,,, actions that increase or decrease the value
of any variable by one within the [0, n] interval, an initial sit-
uation where all variables equal 0, and a goal where the in-
equalities X; < X;;1 need to be achieved for 1 < i < n.
For such a problem, a single action suffices to achieve any
of the goals X; < Xj;4;; this means that once the problem
is encoded propositionally, the joint goal will be reachable
in one step of the RPG. In the new heuristics, however, the
joint goal will be reachable only after n — 1 steps, when
/\7;11 X, < X,4+1 becomes logically satisfiable by the in-
terpretation where X; =4 — 1, for¢ = 1..n.

In the rest of the paper, we review the Functional STRIPS
language and semantics, show how the RPG heuristics can be
lifted, discuss modeling issues and report empirical results.
Further details can be found in [Frances and Geffner, 2015].

2 The Functional STRIPS Language

Functional STRIPS (FSTRIPS, [Geffner, 2000]) is a classi-
cal planning modeling language based on the quantifier-free
fragment of first-order-logic involving constant, function and
relational or predicate symbols, but no variable symbols. For
the sake of succinctness, in what follows we treat predicate
symbols as function symbols of a special Boolean type.

Syntax. FSTRIPS makes a distinction between fluent sym-
bols, whose denotation may change as a result of the ac-
tions, and fixed symbols, whose denotation does not change.
Among the latter, there is usually a finite set of object names,
plus a number of built-in constant, function, and predicate
symbols such as ‘3’, ‘+’ and ‘=’, with the standard interpre-
tation. Terms, atoms, and formulas are defined from constant,
function, and predicate symbols in the standard way, except
that in order to obtain compact state representations, symbols,
and hence terms, are typed. A fype is given by a finite set of
fixed constant symbols. The terms f(¢) where f is a fluent
symbol and ¢ is a tuple of fixed constant symbols are called
state variables, and clearly there is a finite set of them.

An action a is described by its precondition and its set of
effects. The precondition Pre(a) is a formula, and the effects
are updates of the form f(t) := w, where f(¢) and w are
terms of the same type, f is a fluent symbol, and ¢ is a tuple of
terms. Updates express how fluent f changes when the action
is taken. Conditional effects C' — f(t) := w, where C is a
formula (possibly T), can be defined in a similar manner.

As an example, the action of moving a block b onto another
block b can be expressed by an action move(b,b’) with pre-
condition clear(b) = true A clear(b’) = true, and effects
loc(b) := b and clear(loc(b)) := true. In this case, b is a
constant symbol, and the terms clear(b) and loc(b) are state
variables. The term clear(loc(b)) is not a state variable, as
loc(b) is not a fixed constant symbol. A FSTRIPS planning
problem is a tuple (F,I,O,G), where I is a set of literals
defining the initial situation, G is the goal formula, O is a set
of actions, and F' describes the symbols and their types.

Semantics. The dynamic part of a state is fully determined
by the values of the state variables; a state represents a logical
interpretation over the FSTRIPS language. The denotation of
a symbol or term ¢ in state s is written as ¢°. The denotation
7% of fixed symbols r does not depend on the state and it is
written r*. The denotation of standard fixed symbols like ‘3’,
‘+’, ‘="1s assumed to be given by the underlying program-
ming language, while object names c are assumed to denote
themselves so that ¢* = c¢. The denotation of fixed (typed)
function and relational symbols can be provided extension-
ally, by enumeration in the initial situation, or intensionally,
by attaching actual functions to them [Dornhege e al., 2009].

From the fixed denotation r* of fixed symbols r, and the
changing denotation of fluent symbols f captured by the val-
ues [f(t)]° of the state variables f(¢) associated with f, the
denotation of arbitrary terms, atoms, and formulas follows in
the standard way. The denotation ¢° of any term not involving
functional fluents, expressed also as t*, is ¢* if ¢ is a constant
symbol or, recursively, g* (¢7) if ¢ is the compound term g(¢1)

4156

types: block, cell, direction
functions:

loc(b: block): cell

next (x: cell, d: direction): cell

action move (b: block, d: direction)
prec in-grid(next (loc(b), d))
eff loc(b) := next(loc(b), d)

goal:
loc(bl) # loc(b2) A loc(bl) # loc(b3) A
loc(b2) = loc (b3)

Figure 1: GROUPING domain: blocks must be moved until
they occupy the same cell iff they belong to the same group.

where t; is a tuple of terms. Similarly, the denotation of a
term f(¢1) where f is a fluent functional symbol is defined
recursively as the value [f(c)]® of the state variable f(c) in s
where c is the tuple of constant symbols that name the tuple
of objects ¢7; i.e., c* = t]. In the same way, the denotation
[p(t)]® of an atom p(¢) is true/false iff the result of apply-
ing the Boolean function p* to the tuple of objects t° yields
true/ false. The truth value B® of the formulas B made up of
such atoms in the state s follows then the usual rules.

An action a is applicable in a state s if [Pre(a)]® = true.
The state s, that results from applying a in s satisfies the
equation f*®e(¢*) = w* for all the updates f(t) := w that the
action a triggers in s, and is otherwise equal to s. This means
that the update changes the value of the state variable f(c) to
w?® iff the action triggers an update f(¢) := w in the state s
for which ¢* = t°. For example, if X = 2 is true in s, then
the update X := X + 1 increases the value of X to 3 without
affecting other state variables. Similarly, if loc(b) = ¥’ is true
in s, the update clear(loc(b)) := true in s is equivalent to
the update clear(b') := true.

A plan for a problem (F, I, O, G) is a sequence of applica-
ble actions from O that maps the unique initial state where /
is true into one of the states where G is true.

The problem described in the introduction, COUNTERS,
can be directly encoded in FSTRIPS with a fluent function
symbol val such that val(i) denotes the value of X;. Thus,
val(1), ..., val(n) are the only state variables of the problem,
and actions increment (i) and decrement (i) update their val-
ues. The goal is the conjunction /\;Zol val(i) < wval(i + 1).
The encoding of the GROUPING domain, where blocks are
split into groups and must be placed in the same cell iff they
are in the same group, is shown in Figure 1.

3 Functional STRIPS Heuristics

In the standard propositional relaxed planning graph, the first
propositional layer P, contains the atoms that are true in the
seed state, and layer P;; contains all those atoms in P; plus
those atoms p for which all preconditions of some action that
adds p are in P;. The goal is deemed reachable in a layer
if each goal atom is in the layer. The key difference in our
first-order account of the RPG is how action preconditions
and goal formulas are evaluated.

A layer Py in the lifted RPG contains one domain X* for
each state variable X in the problem. The set of all domains
X* associated with layer Py is taken to represent a set V* of
possible logical interpretations over the language; namely,
the set of interpretations v that result from selecting for each
state variable X one of the values x € X*. An interpreta-
tion v assigns a truth value to any formula in the language,
and a formula is considered to be satisfiable or reachable in
layer Py iff the formula is satisfied by some interpretation v
in V. For example, if X;, X5 and X3 represent the three
state variables of a problem and their domains in layer Py are
X l’“ = {1, 2,3}, then there will be 9 interpretations in V*, but
just one that satisfies the formula (X; < X3) A (X2 < X3).

Finally, if the goal formula is not satisfiable in layer P,
a value ¢’ is added to the domain X**1 of state variable X
in next layer P41 if X = f(c), c and ¢’ are fixed constant
symbols, and there is an action a with effect C — f(t1) := to
and an interpretation v in V¥ such that that v satisfies the
formula Pre(a) A\C Aty =cAty =

The heuristics resulting from such a lifted RPG that are
analogous to the hmax and hpp heuristics are called A, and
hip. The two pairs of heuristics are very different. For ex-
ample, in the COUNTERS problem involving n variables, the
values of the former heuristics for the propositional prob-
lem encoding are 1 and n — 1, while the values of the latter
are n — 1 and n % (n — 1)/2, which is actually the optimal
heuristic value. The satisfiability tests make the lifted heuris-
tics intractable in general. Yet under the standard restriction
that action preconditions, conditions, and goals are conjunc-
tions of atoms, the satisfiability tests can be easily mapped
into a constraint satisfaction problem (CSP) [Dechter, 2003;
Rossi ef al., 2006]. While solving these CSPs is hard in
general (NP-complete), on average this is not so. In addi-
tion, general constraint propagation methods such as arc-
consistency [Mackworth, 1977] and specialized methods aris-
ing from the use of global constraints [Rossi et al., 2006;
Van Hoeve and Katriel, 2006] can be used to approximate
these satisfiability tests in polynomial time [Frances and
Geffner, 2015]. The resulting polynomial heuristics that ap-
proximate i, and hip are called by, and hgp respectively.

When all condition, precondition, and goal formulas are
conjunctions of atoms where no state variable appears more
than once and where there are no nested fluents, the Ay,
and hf heuristics, and their approximations hS,. and hfg,
become equivalent to the hy.x and hgg heuristics according
to the value-accumulating semantics [Ivankovic and Haslum,
2015]. Otherwise, the former capture non-unary constraints
on state variables that are missed by the latter.

4 A Functional STRIPS Planner

The FS planner accepts any problem represented in Func-
tional STRIPS, with the sole restriction that preconditions
and goal formulas are conjunctions of literals. Conditional
effects are not yet supported. FS can use any of the four
lifted RPG heuristics, hn.., hfp, Roax, and hgg, to drive a
plain greedy best first search. The construction of the RPG
and computation of the heuristics is mapped into a number of

CSPs which are handled by the standard Gecode CP solver

4157

[Gecode Team, 2006], except in simple cases where they are
solved by a hand-coded procedure to avoid the overhead of in-
teracting with Gecode. The integration with a CP solver fur-
ther yields the possibility of using any of the large catalog of
global constraints available in Gecode as externally-defined
fixed predicate or function symbols. This helps representa-
tionally and computationally, as the computation of the lifted
RPG benefits from efficient ad-hoc propagators. The goal of
stacking all blocks in a single tower in BLOCKSWORLD, for
instance, can be compactly encoded with the single goal atom
alldiff (loc(by), . . . ,loc(by)). The encodings below use the
standard alldiff and sum constraints.

5 Experimental Results

We test the F'S planner on some FSTRIPS domains using the
hgp heuristic and compare it to standard planners on equiva-
lent PDDL models. To compare the hgr and hfp heuristics, we
run FF [Hoffmann and Nebel, 2001] and Met ric—FF [Hoff-
mann, 2003], the latter on encodings with numeric fluents if
suitable, using the same greedy best-first search strategy (i.e.
f(n) = h(n) and EHC disabled). We also run the state-of-
the-art Fast-Downward planner (LAMA-2011 configura-
tion), that uses different search algorithms and exploits ad-
ditional heuristic information from helpful actions and land-
marks [Helmert, 2006; Richter and Westphal, 2010]. All
planners run a maximum of 30 min. on a cluster with AMD
Opteron 6300@2.4Ghz nodes, and are allowed up to 8GB of
memory. FS’s source code and all problem encodings are
available on gfrances.github.io/pubs.

Domains. We consider four families of simple domains that
illustrate the modeling and performance advantages of us-
ing Functional STRIPS with the FS planner. The GROUP-
ING and COUNTERS domains, already introduced, show
how the hgp heuristic, although more expensive, pays off
due to its increased accuracy. We test instances with in-
creasing number of variables of three COUNTERS variations,
labeled COUNTERS-0, COUNTERS-RND and COUNTERS-
INV, where variables are initially set to 0, to random val-
ues, and to decreasing values, respectively. In GROUPING
(Fig. 1), we test random instances with increasing grid sizes
and numbers of blocks and groups. The type of goals in
COUNTERS and GROUPING can be modeled in PDDL with
existential variables, but the way standard planners compile
these away produces an exponential blowup during prepro-
cessing. We thus use alternative propositional PDDL encod-
ings requiring additional actions and conditional effects.
SIMPLE-SOKOBAN is the classical Sokoban without ob-
stacles. In this type of domain, delete-free heuristics pro-
duce relaxed plans that push all stones to the closer goal cell,
even if several stones end up on the same cell. FSTRIPS, in
contrast, allows us to express the (implicit) fact that stones
must be placed in different cells with an extra goal atom
alldiff (loc(s1), . . ., loc(sy)). Other heuristic planners might
also be able to model such a constraint indirectly, but not
to use it to improve the heuristic as F'S. We test a variation
where all stones concentrate near a single goal cell (SIMPLE-
SOKOBAN) plus another variation with random initial posi-

Domain N Coverage Plan length Node expansions Time (s.)
FF FS FFE FS R FF FS R FFE FS R

COUNT-0 13 13 11 770.09 270.09 2.51 770.09 270.09 251 3398 31842 0.13
COUNT-I 13 8 9 946.14 204.43 4.99 946.14 20443 499 34.16 272.11 0.65
COUNT-R 39 17 28 499.00 8735 4.10 499.00 88.76 4.04 154.50 25.68 3.39
GROUP. 72 48 55 42424 43.86 9.61 681.24 104.79 12.28 35445 8312 41.57
GARD. 51 20 33 366.85 86.55 4.10 2635.95 456.45 14.28 205.89 7.84 39.68
SOK. 17 5 8 6540 3420 1.43 404.60 64.80 3.18 0.07 398 0.01
SOK-R 81 53 34 121.29 5938 1.67 2964.88 624.82 7.23 3.38 21433 0.03

Table 1: Summary of results for FF and F'S using a greedy best-first search with heuristics hpp and Afp (FF’s EHC disabled).
N is number of instances; length, node expansion and time figures are averaged over instances solved by both planners; R (for
ratio) is the average of the per-instance FF / F'S ratios. LAMA and Met ric—FF results are discussed in the text.

tions (SIMPLE-SOKOBAN-RND). In GARDENING, an agent
needs to water some plants with water loaded from a tap and
poured into plants unit by unit. Standard delete-free heuris-
tics are misleading in this context [Coles ef al., 2008], since
in the delete relaxation one unit of water is enough to wa-
ter all plants. When using F'S, however, we can easily en-
force a flow constraint so that the total amount of water ob-
tained from the tap equals the total amount of water poured
into the plants; for this we only need an extra goal atom
poured(py) + -+ + poured(p,) = total that maps into a
sum global constraint. We test random instances with one
water tap and increasing grid sizes and number of plants.

Results. Table 1 shows an overview of the results of F'S and
FF. Metric—FF and LAMA results are discussed later. As
expected, hiy is more expensive than hrpp: node expansion
in FS is an order of magnitude slower in COUNTERS, 20%
slower in GROUPING, and 1 to 3 orders of magnitude slower
in SIMPLE-SOKOBAN. In GARDENING, remarkably, FS ex-
pands nodes twice as fast, presumably because of the sum
global constraint propagator. At the same time, however, hip
is much more informed than hgp, as witnessed by the signif-
icantly smaller number of nodes expanded by F'S in all do-
mains. In GROUPING and GARDENING, particularly, FS ex-
pands on average an order of magnitude fewer nodes than FF.
In COUNTERS, for instance, FF expands a higher number of
nodes because, as predicted, each of the X; < X, inequal-
ities is conceived as independent, which guides the search
towards heuristic plateaus. In GROUPING, hfp is more in-
formed, as it understands the constraints between goal atoms
such as loc(by) = loc(bs) and loc(bg) # loc(bs).

Overall, does the increased accuracy of hfy compensate its
higher cost? In terms of quality, plan length is consistently
shorter for FS, showing that the heuristic is able to guide
the search towards better solutions. In GROUPING, for in-
stance, F'S plans require on average an order of magnitude
fewer block moves. More significantly, F'S coverage is higher
in 5 of the 7 domains, the exceptions being COUNTERS-0
and SIMPLE-SOKOBAN-RND, where plan length is however
still significantly better. In SIMPLE-SOKOBAN-RND, the ran-
dom distribution of stones makes it less likely that hgg pro-
duces the previously-identified misleading relaxed plans. In
SIMPLE-SOKOBAN, though, where stones are placed close to-

4158

gether, F'S is indeed able to heuristically exploit the alldiff
constraint and scale up better than FF, with larger coverage
and shorter plans. In three of the domains, the increased accu-
racy even results in a better total search time: in GARDENING,
for instance, search is on average almost 40 times faster.

A full discussion of LAMA and Metric-FF results is
omitted for space reasons, but they confirm the previous con-
clusions. In brief, Metric—FF does not scale up to large
problems, nor takes advantage in the heuristic of constraints
such as the GARDENING “flow constraint”. LAMA offers a
faster node expansion rate than FF, but plan length and total
node expansions are still consistently larger than F'S, result-
ing in a better coverage for F'S in 5 of the 7 domains.

6 Conclusions

We have shown how to lift relaxed plan heuristics to a more
expressive variable-free first-order planning language, Func-
tional STRIPS, by regarding the atoms in a RPG layer as suc-
cinctly encoding a set of first-order logical interpretations,
and then using the standard notion of satisfiability to deter-
mine when a formula is reachable in a layer. This lifted RPG
is able to capture certain constraints that become otherwise
lost, resulting in more informed heuristics when precondition
or goal formulas feature different atoms referring to the same
state variable. Although these heuristics are worst-case in-
tractable, we have shown that they can be cost-effective in
practice, and that polynomial approximations can be com-
puted by using constraint propagation techniques.

We have implemented these ideas in F'S, the first FSTRIPS
planner, which additionally allows to define fixed functions
and predicates through global constraints. The fact that the
performance of FS is improved by adding redundant con-
straints is like in CSP and SAT, where solver performance
can be improved by explicating implicit constraints. This dis-
tinguishes F'S from the existing heuristic search planners that
either make no room for explicit constraints or cannot use
them in the computation of the heuristic. Recently, we have
also extended FSTRIPS and F'S to handle existential quantifi-
cation in preconditions and goals without having to compile
them away [Frances and Geffner, 2016], by associating such
variables with CSP variables in the CSP model used for com-
puting the F'S heuristics. Furthermore, these heuristics can be
computed without having to fully ground the action schemas.

Acknowledgments

We thank Miquel Ramirez for useful feedback. This work
is partially funded by grants TIN2015-67959 and CSD2010-
00034 from MEC, Spain.

References

[Bonet and Geffner, 2001] B. Bonet and H. Geffner. Plan-
ning as heuristic search. Artificial Intelligence, 129(1-
2):5-33, 2001.

[Coles et al.,2008] A. Coles, M. Fox, D. Long, and
A. Smith. A hybrid relaxed planning graph-LP heuristic
for numeric planning domains. In Proc. 18th Int. Conf. on
Automated Planning and Scheduling, pages 52-59, 2008.

[Dechter, 2003] R. Dechter. Constraint Processing. Morgan
Kaufmann, 2003.

[Domshlak and Nazarenko, 2013] C. Domshlak and
A. Nazarenko. The complexity of optimal monotonic
planning: the bad, the good, and the causal graph. Journal
of Artificial Intelligence Research, pages 783-812, 2013.

[Dornhege er al., 2009] C. Dornhege, P. Eyerich, T. Keller,
S. Triig, M. Brenner, and B. Nebel. Semantic attachments
for domain-independent planning systems. In Proc. 19th

Int. Conf. on Automated Planning and Scheduling, pages
114-121, 2009.

[Frances and Geffner, 2015] G. Francés and H. Geffner.
Modeling and computation in planning: Better heuris-
tics from more expressive languages. In Proc. 25th Int.
Conf. on Automated Planning and Scheduling, pages 70—
78, 2015.

[Frances and Geffner, 2016] G. Franceés and H. Geffner. E-
STRIPS: Existential quantification in planning and con-
straint satisfaction. In Proc. 25th Int. Joint Conf. on Artifi-
cial Intelligence, 2016.

[Gecode Team, 2006] Gecode Team. Gecode: Generic con-
straint development environment, 2006. Available from
http://www.gecode.org.

[Geffner, 2000] H. Geffner. Functional STRIPS: A more
flexible language for planning and problem solving. In
J. Minker, editor, Logic-Based Artificial Intelligence,
pages 187-205. Kluwer, 2000.

[Gregory et al., 2012] P. Gregory, D. Long, M. Fox, and
C. Beck. Planning modulo theories: Extending the plan-
ning paradigm. In Proc. 22nd Int. Conf. on Automated
Planning and Scheduling, 2012.

[Helmert, 2006] M. Helmert. The Fast Downward plan-
ning system. Journal of Artificial Intelligence Research,
26:191-246, 2006.

[Hoffmann and Nebel, 2001] J. Hoffmann and B. Nebel. The
FF planning system: Fast plan generation through heuris-
tic search. Journal of Artificial Intelligence Research,
14:253-302, 2001.

[Hoffmann, 2003] J. Hoffmann. The metric-FF planning sys-
tem: Translating “ignoring delete lists” to numeric state
variables. Journal of Artificial Intelligence Research,
20:291-341, 2003.

4159

[Ivankovic and Haslum, 2015] F. Ivankovic and P. Haslum.
Optimal planning with axioms. In Proc. 24th Int. Joint
Conf. on Artificial Intelligence, pages 1580-1586, 2015.

[Mackworth, 1977] A.K. Mackworth. Consistency in net-
works of relations. Artificial intelligence, 8(1):99-118,
1977.

[Richter and Westphal, 2010] S. Richter and M. Westphal.
The LAMA planner: Guiding cost-based anytime plan-
ning with landmarks. Journal of Artificial Intelligence Re-
search, 39(1):127-177, 2010.

[Rossi et al., 2006] F. Rossi, P. Van Beek, and T. Walsh.
Handbook of constraint programming. Elsevier, 2006.

[Van Hoeve and Katriel, 2006] W. Van Hoeve and 1. Katriel.
Global constraints. Handbook of constraint programming,
pages 169-208, 2006.

