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Abstract

We present a new domain model acquisition algo-
rithm, LOP, that induces static predicates by us-
ing a combination of the generalised output from
LOCM?2 and a set of optimal plans as input to the
learning system. We observe that static predicates
can be seen as restrictions on the valid ground-
ings of actions. Without the static predicates re-
stricting possible groundings, the domains induced
by LOCM?2 produce plans that are typically shorter
than the true optimal solutions. LOP works by find-
ing a set of minimal static predicates for each oper-
ator that preserves the length of the optimal plan.

1 Introduction

Modelling is well known as a bottleneck in the development
of solutions to difficult combinatorial problems. The research
field of automated modelling focuses on the task of construct-
ing formal descriptions of problems automatically, often us-
ing solution data as input. Automated model acquisition is
an active research area in constraint programming, general
game playing and computer security (e.g. [O’Sullivan, 2010;
Bessiere et al., 2014; Bjornsson, 2012; Aarts et al., 2013]).

Domain model acquisition is automated modelling in a
planning context: it is the problem of learning planning do-
main models from example data. The LOCM family of
domain model acquisition systems [Cresswell et al., 2009;
Cresswell and Gregory, 2011; Cresswell et al., 2013] learn
planning domain models from collections of plans. For exam-
ple, given the following two plans, a planning domain model
acquisition system should learn operator schema of the type
shown in Figure 1:

truck2 driverl loc3 locl)
load-truck truck2 locl pkgl)
drive-truck truck2 driverl locl loc3)
unload-truck truck2 locl pkgl)

drive-truck

(
(
(
(

(load-truck
(drive-truck
(drive—-truck

truck2 loc6 pkg3)
truck2 driver2 loc6 loc2)
truckl driverl loc6 loc4d)

The LOCM family of algorithms only learn the dynamic
aspects of the domain (i.e. state changes that occur due to
action application). This is problematic since many domains
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raction drive-truck-benchmark
:parameters (?t - truck ?d - driver ?11 - loc ?12 - loc
:precondition (and

(at 2t 211)

(conn 211 ?212)

(driving ?d ?t))

reffect (and

(not (at 2t 211)) (at 2t 212)))
(traction drive-truck-locmii
:parameters (?t - truck ?d - driver 2?11 - loc ?12 - loc
:precondition (and

(at 2t 211)

(driving 2d 2t ?11))

reffect (and
(not (at 2t 211)) (at 2t ?12)
(not (driving 2d 2t 211))
(driving 2d 2t 212)))

Figure 1: The Driverlog drive action as encoded in the bench-
mark domain (top) and by the LOCM?2 system (bottom).

use static relations to restrict the possible actions. Consider
the Driverlog domain, where the road map is encoded as a
binary static predicate. Figure 1 shows both the benchmark
and LOCM? versions of the drive action. The conn predicate
encodes the road map in the hand coded benchmark. This is
not modelled in the induced drive action. Some of these static
relations could be inferred given extra information about in-
termediate states. However, it is more desirable to be able to
infer these static relations using only the minimal informa-
tion available to the LOCM system, since intermediate state
information may not always be available. In this paper, we
extend the LOCM?2 system in order to detect static relations.
The key assumption in our approach is that the input is drawn
from optimal goal-directed plans. Assuming that LOCM?2 has
detected the dynamics of the problem correctly, then if the
induced plan is shorter, then this is a good clue to the fact
that some static relation has gone undetected. Static condi-
tions supporting the length of the input plans can then be hy-
pothesised. We call our system LOP [Gregory and Cresswell,
2015] (standing for LOCM with Optimised Plans).

Related Work

Within the planning literature, there are many domain model
acquisition systems. These systems each have varying levels
of detail in their input observations. LOCM-derived systems
use a minimal amount of input (only plan traces) whereas
most other systems use predicates, initial and goal states
and possibly intermediate states. The compromise is that



Algorithm 1 The Preserve Optimality testing algorithm.

Require: M : an output domain model from LOCM?2
Require: 7 : aset of LOCM2 generated problems
Require: P : a subset of the parameters for each operator
function preserveOptimality
fort € 7 do
optP < optimal input plan for ¢
dom <— M plus statics defined by P
prob < ¢ plus ground statics defined by optP
optT < optimal solution to dom, prob
if length(optT) < length(optP) then
return false
end if
end for
return true
end function

the target language in LOCM is simpler than many other
systems. The Opmaker2 system [McCluskey et al., 2009;
Richardson, 2008] learns models in the target language of
OCL [McCluskey and Porteous, 1997] and requires a par-
tial domain model, along with example plans as input. The
ARMS system [Wu et al., 2007], can learn STRIPS domain
models with partial or no observation of intermediate states in
the plans, but does at least require predicates to be declared.

The LAMP system [Zhuo et al., 2010] can target PDDL
representations with quantifiers and logical implications.
Systems that learn planning models in the presence of noisy
and incomplete data [Mourao et al., 2012] have also been
studied. Other types of learning include [Mehta et al., 2011]
considering the task of learning a single state space with no
input plans, but with a system by which an oracle can validate
plan hypotheses. A form of transfer learning has been consid-
ered [Zhuo et al., 2011] where action schema are constructed
via a combination of analysing exisiting domains and using
web queries to match operator names. The closest system to
LOP, specifically designed to detect static information is the
recent ASCOL system [Jilani er al., 2015].

2 Static Relations in Planning

Static relations are often thought of by their semantic inter-
pretations: road maps in Driverlog, successor relations in
Zenotravel and Freecell, for example. This is seen in Fig-
ure 1 for the Driverlog domain. We now present an alterna-
tive purely syntactic interpretation of static relations that is
critical to our work.

Defining Static Relations
Static relations can be seen as restrictions on the groundings
of each operator. Instead of thinking of how the objects are
related, we now think of which combinations of ground op-
erator parameters are valid. The static relations in a domain
can be defined as, for each operator, a table of all the valid
groundings for that operator. The static relations for any do-
main can be encoded as a single relation per operator.

This observation allows us to construct our hypothesis
space of potential static relations. Each operator can be seen
to have a static relation associated with it, and we have to
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identify the minimal subset of parameters that permit exactly
the valid groundings of an operator. We can now present def-
inition of the minimal static relation identification problem:

Definition 1 (Minimal Static Relation Identification). Given
an operator template:

op(p1, - Pn)

We define a minimal static relation as the subset P,,, C
P1, ..., Pp such that all p,, € P, are members of static pre-
conditions of op.

Thus, this problem is simply to identify the parameters
which play a part in the static relation.

Universal Static Relations

Some statics are defined for specific instances and are differ-
ent in different instances depending on the problem objects.
These include the road maps in Driverlog and the locations of
the hoists in Depot, for example. In contrast to these types of
static relations, there are also those that hold in all instances.
For example, in Peg Solitaire, all instances use the same un-
derlying board. In Zeno Travel, the static relation that en-
codes the successor relation for the fuel levels is the same in
all problem instances. If a static relation holds between all
instances, we call that a universal static relation.

Issues in Detecting Statics

The key issue in detecting statics using plan traces as input
is that there are domains which look very similar, but which
vary in the static relations. For example, Blocksworld and
Freecell, in which the goal in both is to rearrange stacks of ob-
jects. In Blocksworld there are no static relations, in Freecell
there are static relationships between the ranks and colours of
the cards. In order to address this issue we use additional in-
formation about the plans, other than simply the plan traces.
Namely, we identify a set of optimal plans to be used in the
learning phase. In the following sections, we detail exactly
how we use optimal plans to discover static relations.

3 The LOP Algorithm

We now present the LOP algorithm that we use to detect static
relations. LOP has the assumption that LOCM?2 returns the
correct domain model dynamics. The algorithm is sketched
as follows:
1. Run LOCM?2 on both the optimal and suboptimal train-
ing data, constructing the LOCM?2 domain model.
2. Identify minimal subsets of each action’s parameters that
‘preserve’ the optimal length of all plans.
3. Split each relation into a minimal partition that preserve
optimal plan lengths.
4. Identify the universal static relations.
5. Return the valid ground relations and the problem-
specific templates.

3.1 Preserving Optimality

All stages of the LOP algorithm rely on testing whether or not
optimality is preserved for a set of input plans. We now define
exactly what we mean by preserving optimality. Consider the
following optimal input plan:



Algorithm 2 Minimal static relation hypothesis algorithm.

function MSR
for o : operators do
msr(o) + MSRo(o)
end for
return msr
end function
function MSRo(o : operator)
minS < parameters(o)
for p € minS do
minS’ < (minS \ {p})
if preserveOptimality (minS’) then
minS < minS’
end if
end for
return minS
end function

(drive truck locl loc2)
(drive truck loc2 loc3)

Now, consider the drive action and PDDL problem fragment
induced by LOCM2:

(
:parameters
:precondition
:effect (and

action drive

(?t — truck 2?11 2?12 - loc)
(at 2t 211)

(not (at 2t ?211))

(at 2t 212))

)

(

(

Note that the dynamics of the drive action are correct: the
truck moves from the start location to the destination location.

However, if we solve this output using an optimal planner we
find the following plan:

init
goal

(at truck locl))
(at truck loc3))

(drive truck locl loc3)

This plan is shorter than the input plan which we knew to be
optimal. Therefore, we say that the drive action does not pre-
serve optimality. In order to restore the optimality we add
static relations both in the action preconditions and the corre-
sponding ground predicates in the initial state. For example,
the set of all parameters yields the following action and prob-
lem fragment:

(

action drive

:parameters (?t — truck ?11 2?12 - loc)
:precondition (and (at 2t ?11)
(drive_static ?t 2?11 ?12)
ceffect (and (not(at 2t ?211))
(at 2t 212))
)
(:init (at truck locl)

(drive_static truckl locl loc2)
(drive_static truckl loc2 loc3)

)

(:goal (at truck loc3))

Algorithm 1 presents the algorithm for testing if optimality
is preserved for a particular parameter set of the operators. In
essence, it checks that each input plan preserves optimality
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Algorithm 3 Minimal static relation splitting algorithm. In
this algorithm rank refers to the rank of the partition (the size
of the largest block minus the total number of blocks).

function MSR_Split(P : a partition of the MSR)
if preserveOptimality (P) = false then
return L
end if
min < P
for P’ € refinement(P) do
minP’ <~ MSR_Split(P)
if evaluate(minP’) < evaluate(min) then
min < minP’
end if
end for
return min
end function
function evaluate(P : a partition of the MSR)
if P = | then
return oo
else
return rank(P)
end if
end function

for that parameter set. The algorithm for discovering min-
imal static relations (or MSRs) is presented in Algorithm 2
which attempts to remove each parameter in turn from a can-
didate relation, adding it back in if it leads to shorter opti-
mal solutions. Depending on the current MSR hypotheses for
each operator, Algorithm 2 may return different results. For
this reason, the algorithm is run repeatedly until a fix-point
is reached, when the MSRs do not change following an itera-
tion.

3.2 Splitting The Static Relation

Once a minimal static relation is found for each operator,
we test if it can be divided into multiple smaller static re-
lations. As an example, the Freecell domain has the oper-
ator: move(?card, 7cols, 7ncols, ?cells, ?ncells) where there
is a static relation between cols and ncols and between cells
and ncells. The minimal static relation will be across all four
of these parameters, where it would clearly be beneficial to
identify two separate relations. In order to split the relation,
we need to check the possible partitions of the parameters in
the minimal static relation. Checking every partition is com-
putationally prohibitive for actions with a large number of
parameters. For this reason, we propose a pruning technique
based on dominated partition refinements. A description of
the algorithm is given in Algorithm 3.

3.3 Testing for Universality

As a final step, we test the static relations for universality. If
a static relation is universal, then all instances share the same
groundings for that relation. Intuitively, we collect all of the
instances of the static relations found in the earlier stages of
LOP and combine the groundings across instances. When
we combine these ground instances, if the combined relation
preserves optimality then we accept the relation as universal.



Domain Operators Input Plans LOCM?2 LOP Optimal LOP Satisficing
#  #Static #Univ. #Opt #Sub Valid #St. #St. #Uni. #Er. #St. #Uni. #Er
AoP Freecell 8 3 3 60 60 v 1 2 2 0 2 2 0
Blocks 4 0 0 28 35 v 0 0 0 0 0 0 0
Depot 4 2 0 17 19 v 2 0 0 0 0 0 0
Driverlog 6 2 0 13 15 v 0 2 1 1 2 1 1
Freecell! 10 10 10 14 16 v 8 - - - 3 1 6
Grid 5 2 2 12 15 v 0 2 2 0 2 2 0
Gripper 3 0 0 7 20 v 0 0 0 0 0 0 0
Logistics 6 1 0 20 28 v 1 0 0 0 0 0 0
Miconic 4 4 2 141 92 v 0 2 0 2 2 0 2
Mystery? 3 3 0 16 19 vE 0 3 0 0 3 0 0
Parking 4 0 0 12 20 v 0 0 0 0 0 0 0
Peg Solitaire 3 2 2 16 20 v 0 2 2 0 2 2 0
Rovers 9 9 0 15 15 X - - - - - - -
Satellite 5 4 0 17 18 X - - - - - - -
Scanalyzer 4 4 4 15 13 X - - - - - - -
Sokoban 3 3 0 18 20 v 0 3 3 0 3 3 0
Storage 5 5 2 15 14 v 0 5 2 0 5 2 0
TPP 4 4 4 16 25 X - - - - - - -
Visitall 2 2 2 10 20 vE 0 2 2 0 2 2 0
Zenotravel? 5 3 3 12 13 v 0 3 3 0 3 3 0

Table 1: Table of results running LOP on a collection of benchmark domains. Headings refer to # (number of operators) #Static
(number of operators with static precondition) #Univ. (number of operators with universal preconditions) #Opt (number of
optimal training plans) #Sub (number of suboptimal training plans) Valid (did LOCM?2 output complete dynamics) a star means
the input had to be modified to meet the LOCM?2 assumptions #St. (number of operators for which statics are found) #Uni.
(number of operators for which universal statics were found) #Er. (the number of errors made in all stages of LOP).

4 Evaluation

Our experimental setup is as follows: we used the Fast Down-
ward [Helmert, 2006] planner, with the LMCut heuristic
[Helmert and Domshlak, 2009] with a fifteen minute cutoff
to find optimal plans to as many of the benchmark planning
problems as possible. These form the optimal training plans
needed for the static analysis. In our first experiment we have
a set of plans which we know to be optimal and we use these
plans for the LOP analysis. In our second experiment, we
treat goal-directed plans that are not proven to be optimal the
same way as we treat optimal plans in our previous analyses.
For this, we use the LAMA planner [Richter and Westphal,
2010], with a 120 second time cutoff.

Table 1 shows the results of both experiments. Generally
the results are very positive: of the domains that have static
relations and had valid dynamic output from LOCM2, nine
out of twelve had their static relations discovered error free.
LOP can be seen as a LOCM-like system in that it produces an
overly general result when incorrect. We now present a dis-
cussion of some of the more interesting results (more detail
on individual domains is presented in [Gregory and Cress-
well, 2015]). In the Driverlog domain, the structure of both
statics are detected correctly. These are the roads that the
trucks drive on and the path that the drivers can walk on. The
paths are incorrectly identified as universal statics. We are
unsure whether this happens because the path maps are com-
pletely consistent with the input data, or that the path maps
are very dense, leading to many alternative route.

Zeno Travel encodes the possible transitions of the fuel
level of the planes as universal static relations. These re-
strict the groundings of the fly, zoom and refuel operators.
LOP successfully induces these relations in their scope and
universality, and can be said in a way to improve on the
original domain. In the original domain, the zoom opera-
tor, (zoom plane locl loc2 3 {2 f1) encodes that the plane in
question uses two units of fuel. The preconditions encode this
as the two predicates (next 3 £2), (next 2 f1). The static re-
lation identified by LOP is between the two parameters 3
and f1 and ignores f2. This may initially be viewed as a mis-
take, but on closer inspection, the universal relation identified
encodes the n_plus_two relation. The parameter {2 is, in fact,
redundant. Summing up, our empirical analysis demonstrates
that the LOP algorithm is effective at discovering static rela-
tions for a wide range of problems. We have also demon-
strated domains in which LOCM? fails to discover the correct
domain dynamics, possibly suggesting new direction.

5 Conclusions

Domain model acquisition is useful whenever a knowledge
engineer has access to a controllable system that acts, but for
which the structure of those actions has not been formally
specified. We have presented a solution to the problem of
domain model acquisition under the presence of static rela-
tions. The LOP algorithm relies on the quality of the input
plans serving as a guide to refining an overly general model
generated by the LOCM2 system.
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