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Abstract
We analyze the observability of 3-D position and
orientation from the fusion of visual and inertial
sensors. The model contains unknown parameters,
such as sensor biases, and so the problem is usu-
ally cast as a mixed filtering/identification problem,
with the resulting observability analysis providing
necessary conditions for convergence to a unique
point estimate. Most models treat sensor bias rates
as “noise,” independent of other states, including
biases themselves, an assumption that is violated
in practice. We show that, when this assumption
is lifted, the resulting model is not observable, and
therefore existing analyses cannot be used to con-
clude that the set of states that are indistinguishable
from the measurements is a singleton. We re-cast
the analysis as one of sensitivity: Rather than at-
tempting to prove that the set of indistinguishable
trajectories is a singleton, we derive bounds on its
volume, as a function of characteristics of the sen-
sor and other sufficient excitation conditions. This
provides an explicit characterization of the indis-
tinguishable set that can be used for analysis and
validation purposes.

1 Introduction
We present a novel approach to the analysis of observ-
ability/identifiability of three-dimensional (3-D) position and
orientation (termed pose) in visually-assisted navigation,
whereby inertial sensors (accelerometers and gyrometers,
jointly referred to as an Inertial Measurement Unit, or IMU)
are used in conjunction with optical sensors (vision) to yield
an estimate of the 3-D pose of the sensor platform. It
is customary to frame this as a filtering problem, where
the time-series of positions and orientations of the sensor
platform is modeled as the state trajectory of a dynami-
cal system, that produces sensor measurements as outputs,
up to some uncertainty. Observability/identifiability analy-
sis refers to the characterization of the set of possible state
trajectories that produce the same measurements, and there-
fore are indistinguishable given the outputs [Soatto, 1994;
Kelly and Sukhatme, 2009; Mourikis and Roumeliotis, 2007;
Jones et al., 2007; Martinelli and others, 2014].

The parameters in the model are either treated as unknown
constants (e.g., calibration parameters) or as random pro-
cesses (e.g., accelerometer and gyro biases) and included in
the state of the model, which is then driven by some kind
of uninformative (“noise”) input. Because noise does not af-
fect the observability of a model, for the purpose of analysis
it is usually set to zero. However, the input to the model of
accelerometer and gyro bias is typically small but not inde-
pendent of the state. Thus, it should be treated as an unknown
input, which is known to be “small” in some sense, rather
than “noise.”

Our first contribution is to show that while (a prototypical
model of) assisted navigation is observable in the absence of
unknown inputs, it is not observable when unknown inputs
are taken into account. Our second contribution is to reframe
observability as a sensitivity analysis, and to show that while
the set of indistinguishable trajectories is not a singleton (as
it would be if the model was observable), it is nevertheless
bounded. We explicitly characterize this set and bound its vol-
ume as a function of the characteristics of the inputs, which
include sensor characteristics (bias rates) and the motion un-
dergone by the platform (sufficient excitation).

Related work
In addition to the above-referenced work on visual-inertial
observability, our work relates to general unknown-input
observability of linear time-invariant systems addressed in
[Basile and Marro, 1969; Hamano and Basile, 1983], for
affine systems [Hammouri and Tmar, 2010], and non-linear
systems in [Dimassi et al., 2010; Tanwani, 2011; Bezzaoucha
et al., 2011]. The literature on robust filtering and robust
identification is relevant, if the unknown input is treated as
a disturbance. However, the form of the models involved in
vision-aided navigation does not fit in the classes treated in
the literature above, which motivates our analysis. The model
we employ includes alignment parameters for the (unknown)
pose of the inertial sensor relative to the camera.

1.1 Notation
We adopt the notation of [Murray et al., 1994], where
a reference frame is represented by an orthogonal 3 ⇥ 3
positive-determinant (rotation) matrix R 2 SO(3)

.
= {R 2

R3⇥3 | RT R = RRT = I, det(R) = +1} (the special or-
thogonal group) and a translation vector T 2 R3. They are
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collectively indicated by g = (R, T ) 2 SE(3) (the special
Euclidean group). When g represents the change of coordi-
nates from a reference frame “a” to another (“b”), it is indi-
cated by gba. Then the columns of Rba are the coordinate
axes of a relative to the reference frame b, and Tba is the ori-
gin of a in the reference frame b. If pa is a point relative
to the reference frame a, then its representation relative to b
is pb = gbapa. If Xa are the coordinates of pa, then Xb =
RbaXa +Tba are the coordinates of pb. A time-varying trans-
formation (or pose) is indicated with g(t) = (R(t), T (t))

We indicate with b! a skew-symmetric matrix b! 2 so(3)
.
=

{S 2 R3⇥3 | ST = �S} corresponding to the cross product
with the vector ! 2 R3, so that b!v = ! ⇥ v for any vector
v 2 R3. In homogeneous coordinates, we write X̄b = gbaX̄a

where X̄T = [XT 1] and X̄T
b = [(RbaXa + Tba)T 1].

1.2 Motion Model
There are several reference frames to be considered in a nav-
igation scenario. The spatial frame s is typically attached
to the Earth and oriented so that gravity � takes the form
�T = [0 0 1]T k�k where k�k can be read from tabulates
based on location and is typically around 9.8m/s2. The body
frame b is attached to the IMU. The camera frame c, relative
to which image measurements are captured, is also unknown,
although we will assume that intrinsic calibration has been
performed, so that measurements on the image plane are pro-
vided in metric units [Ma et al., 2003]. The motion of a sen-
sor platform is represented as the time-varying pose gsb of the
body relative to the spatial frame.

The equations of motion (known as mechanization equa-
tions) are usually described in terms of the body frame at time
t relative to the spatial frame gsb(t). Since the spatial frame
is arbitrary (other than for being aligned to gravity), it is often
chosen to be co-located with the body frame at time t = 0.
To simplify the notation, we indicate this time-varying frame
gsb(t) simply as g, and so for Rsb, Tsb, !sb, vsb, thus effec-
tively omitting the subscript sb wherever it appears. This
yields Ṫ = v, Ṙ = Rb!, v̇ = ↵, !̇ = w, ↵̇ = ⇠ where
w 2 R3 is the rotational acceleration, and ⇠ 2 R3 the trans-
lational jerk (derivative of acceleration). For further details,
see [Jones and Soatto, 2011].

1.3 Sensor Model
Although the acceleration ↵ defined above corresponds to
neither body nor spatial acceleration, it is conveniently re-
lated to accelerometer measurements ↵imu:

↵imu(t) = RT (t)(↵(t) � �) + ↵b(t) + n↵(t)| {z } (1)

where the measurement error in bracket includes a slowly-
varying mean (“bias”) ↵b(t) and a residual term n↵ that is
commonly modeled as a zero-mean (its mean is captured by
the bias), white, homoscedastic and Gaussian noise process.
In other words, it is assumed that n↵ is independent of ↵,
hence uninformative. Measurements from a gyro, !imu, can
be similarly modeled as

!imu(t) = !(t) + !b(t) + n!(t)| {z } (2)

where the measurement error in bracket includes a slowly-
varying bias !b(t) and a residual “noise” n! also assumed
zero-mean, white, homoscedastic and Gaussian, independent
of !.

Other than the fact that the biases ↵b, !b change slowly,
they can change arbitrarily. One can therefore consider them
an unknown input to the model, or a state in the model, in
which case one has to hypothesize a dynamical model for
them. For instance,

!̇b(t) = wb(t), ↵̇b(t) = ⇠b(t) (3)
for some unknown inputs wb, ⇠b that can be safely assumed
to be small, but not (white, zero-mean and, most importantly)
independent of the biases. Nevertheless, it is common to con-
sider them to be realizations of a Brownian motion that is
independent of !b, ↵b. This is done for convenience as one
can then consider all unknown inputs as “noise.” Unfortu-
nately, however, this has implications on the analysis of the
observability and identifiability of the resulting model.

1.4 Model Reduction
The equations above define a dynamical model having as out-
put the IMU measurements. In this standard model, data from
the IMU are considered as (output) measurements. However,
it is customary to treat them as (known) input to the system,
by writing ! in terms of !imu and ↵ in terms of ↵imu. Includ-
ing the initial conditions and biases, the resulting mechaniza-
tion model is8
>>>>><

>>>>>:

Ṫ = v T (0) = 0

Ṙ = R(b!imu � b!b) + nR R(0) = R0

v̇ = R(↵imu � ↵b) + � + nv

!̇b = wb

↵̇b = ⇠b

(4)

with nR = �n! and nv = �Rn↵, both typically considered
independant of the state.

1.5 Imaging Model and Alignment
Initially we assume there is a collection of points Xi, i =
1, . . . , N , visible from time t = 0 to the current time t. If
⇡ : R3 ! R2; X 7! [X1/X3, X2/X3] is a canonical cen-
tral (perspective) projection, assuming that the camera is cal-
ibrated,1 aligned,2 and that the spatial frame coincides with
the body frame at time 0, we have

yi(t) =
RT

1:2(t)(X
i � T1:2(t))

RT
3 (t)(Xi � T3(t))

.
= ⇡(g�1(t)Xi)+ni(t) (5)

In practice, the measurements y(t) are known only up to a
transformation gcb mapping the body frame to the camera,
often referred to as “alignment”:

yi(t) = ⇡
�
gcbg

�1(t)Xi
s

�
+ ni(t) 2 R2 (6)

Which we can add, along with the points Xi
s, to the state with

trivial dynamics ġcb = 0:
⇢

Ẋi
s = 0, i = 1, . . . , N

ġcb = 0
(7)

1Intrinsic calibration parameters are known.
2The pose of the camera relative to the IMU is known.
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2 Analysis of the Model
The goal here is to exploit imaging and inertial measurements
to infer the sensor platform trajectory. For this problem to be
well-posed, a (sufficiently exciting) realization of !imu, ↵imu

and y should constrain the set of trajectories that satisfy (4)-
(7) to be unique. If there are different trajectories that satisfy
(4) with the same outputs and inputs, they are indistinguish-
able. If the set of indistinguishable trajectories is a single-
ton (contains only one element, presumably the “true” trajec-
tory), the model (4) is observable, and one may be able to
retrieve a unique point-estimate of the state using a filter, or
observer.

While it is commonly accepted that the model (specifically,
its equivalent reduced realization) (4), is observable, this is
the case only when biases are exactly constant. But if bi-
ases are allowed to change, however slowly, the observability
analysis conducted thus far cannot be used to conclude that
the indistinguishable set is a singleton. Indeed, we show that
this is the not the case, by computing the indistinguishable
set explicitly. The following claim is proven in [Hernandez et
al., 2013].
Claim 1 (Indistinguishable Trajectories) Let g(t) =
(R(t), T (t)) 2 SE(3) satisfy (4)-(7) for some known
constant � and functions ↵imu(t), !imu(t) and for some
unknown functions ↵b(t), !b(t) that are constrained to have
k↵̇b(t)k  ✏, k!̇b(t)k  ✏, and k!̈b(t)k  ✏ at all t, for some
✏ < 1.

Suppose g̃(t)
.
= �(gBg(t)gA) for some constant gA =

(RA, TA), gB = (RB , TB), � > 0, with bounds on the con-
figuration space such that3 kTAk  MA and 0 < m� 
|�|  M� . Then, under sufficient excitation conditions, g̃(t)
satisfies (4)-(7) if and only if

kI � RAk  2✏

m(!̇imu :R+)
(8)

|� � 1|  k1✏ + M�kI � RAk
m(↵̇imu :I1)

(9)

kTAk  ✏(k2 + (2M� + 1)MA)

m� m(!̈imu :I2)
(10)

k(1 � RT
B)�k  ✏(k3 + M�MA)

m� m(!imu � !b :I3)
+

+
(|� � 1| + ✏)M(!imu � !b :I3)k�k

m� m(!imu � !b :I3)
(11)

for Ii and ki determined by the sufficient excitation condi-
tions.

Here, sufficient excitation (m and M ) refers to the nature of
the motion, with more dynamic motion leading to larger val-
ues, as described in [Hernandez et al., 2013]. From these
bounds, we find that the set of indistinguishable trajectories
in the limit where ✏ ! 0 is parametrized by an arbitrary
TB 2 R3 and rotation ✓ 2 R about gravity, termed the Gauge
ambiguity, which can be explicitly fixed [Hernandez et al.,
2013]. This immediately implies the following

3Here �(g) is a scaled rigid motion: if g = (R, T ), then �(g) =
(R,�T ).

Claim 2 (unknown-input observability) The model (4)-(7)
is not observable, even after fixing the Gauge ambiguity, as
the indistinguishable set is not a singleton, unless biases are
constant (✏ = 0) or their derivative is known exactly.

We refer the reader to [Hernandez et al., 2013] for additional
details and proofs, which are articulated into several steps. In
practice, once the Gauge transformations are fixed, a prop-
erly designed filter can be designed to converge to a point
estimate, but there is no guarantee that such an estimate co-
incides with the true trajectory. Instead, the estimate can de-
viate from the true trajectory depending on the biases. The
analysis above quantifies how far from the true trajectory the
estimated one can be, provided that the estimation algorithm
uses bounds on the bias drift rates and the characteristics of
the motion. Often these bounds are not strictly enforced but
rather modeled through the driving noise covariance.

3 Empirical Validation
To validate the analysis, we run repeated trials to estimate
the state of the platform under different motion but identi-
cal alignment (the camera is rigidly connected to the IMU)
using our experimental platform [Tsotsos et al., 2015]. If
alignment parameters (Tcb translational and ⌦cb parametriz-
ing Rcb) were identifiable (or the augmented state observ-
able), we would expect convergence to the same parameters
across all trials. Instead, Fig. 1 shows that the estimates of
the parameters stabilize, but to different values at each run.
Nevertheless, the parameter values are in a set, whose vol-
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Figure 1: Convergence of alignment parameters to a set,
rather than a unique point estimate, due to the lack of
unknown-input observability in the presence of (realistic)
non-constant biases. The mean (solid) and twice the std. dev.
(dashed) of the change in estimated parameters relative to
their initial nominal values across multiple trials on real data,
show that different trials converge to different parameter val-
ues, but to within a bounded set.

ume can be bounded based on the analysis above and the
characteristics of the sensor. In particular, less stable biases,
and less exciting motions, result in a larger indistinguishable
set: Fig. 2 shows the same experiments with more gentle
(hence less exciting) motions. Fig. 3 shows the same where

4172



Er
r. 

[c
m

]
T

cb
Er

r. 
[ra

d]
⌦

cb

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

time[s]

C
ha

ng
e 

in
 T

bc
[m

]

0 50 100 150 200 250 300
−0.5

0

0.5

time[s]

C
ha

ng
e 

in
 W

cb

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

time[s]

C
ha

ng
e 

in
 T

bc
[m

]

0 50 100 150 200 250 300
−0.5

0

0.5

time[s]

C
ha

ng
e 

in
 W

cb

Figure 2: The indistinguishable set is bounded depending on
the characteristic of the motion. Gentler motion produces
multiple trials that converge to a set of larger volume com-
pared to Fig. 1.

the accel and gyro biases have been artificially inflated by
adding a slowly time-varying offset. Additionally, we con-
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Figure 3: The indistinguishable set also depends on the char-
acteristics of the sensor, and its volume is directly propor-
tional to the sensor bias rate. Here artificial bias drift is added,
resulting in a larger indistinguishable set compared to Fig. 1.

ducted Monte-Carlo experiments on the model in simulation
using stationary and time-varying biases while undergoing
sufficiently exciting motion. Figures 4 and 5 show the re-
sulting estimation errors of alignment states for 50 trials each
using a constant and white-noise driven bias respectively.

4 Discussion
This paper presents a overview of the analysis presented in
[Hernandez et al., 2015]. We have shown that when inertial
sensor biases are included as model parameters in the state of
a filter used for navigation estimates, with bias rates treated
as unknown inputs, the resulting model is not observable, that
is, the set of indistinguishable states is not a singleton.

Consequently, we have re-formulated the problem of an-
alyzing the convergence characteristics of (any) filters for
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Figure 4: Mean (solid line) and twice the standard deviation
(dashed lines) of estimation errors of alignment parameters
aggregated over 50 Monte-Carlo trials with a constant bias.
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Figure 5: Mean (solid line) and twice the standard deviation
(dashed lines) of estimation errors of alignment parameters
aggregated over 50 Monte-Carlo trials with a time-varying
bias.

vision-aided inertial navigation not as one of observability or
identifiability, but one of sensitivity, by bounding the set of
indistinguishable trajectories to a set whose volume depends
on motion characteristics.

The advantage of this approach, compared to the standard
observability analysis based on rank conditions, is that we
characterize the indistinguishable set explicitly. We quantify
the “degree of unobservability” as the sensitivity of the solu-
tion set to the input; provided that sufficient-excitation condi-
tions are satisfied, the unobservable set can be bounded and
effectively be treated as a singleton. More generally, however,
the analysis provides an estimate of the uncertainty surround-
ing the solution set, as well as a guideline on how to limit it
by enforcing certain gauge transformations.
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