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Abstract

Because planning with a long horizon (i.e., looking
far into the future) is computationally expensive, it
is common in practice to save time by using reduced
horizons. This is usually understood to come at the
expense of computing suboptimal plans, which is
the case when the planning model is exact. However,
when the planning model is estimated from data, as
is frequently true in the real world, the policy found
using a shorter planning horizon can actually be
better than a policy learned with the true horizon.
In this paper we provide a precise explanation for
this phenomenon based on principles of learning
theory. We show formally that the planning horizon
is a complexity control parameter for the class of
policies available to the planning algorithm, having
an intuitive, monotonic relationship with a simple
measure of complexity. We prove a planning loss
bound predicting that shorter planning horizons can
reduce overfitting and improve test performance,
and we confirm these predictions empirically.

1 Introduction

When planning with Markov decision processes (MDPs), we
distinguish between two different horizons (or, equivalently,
discount factors). The evaluation horizon, specified by the
problem formulation, is part of the definition of the ultimate
measure of performance for a policy and cannot be changed.
The planning horizon, on the other hand, is a parameter sup-
plied to the planning algorithm; it affects the resulting policy
but need not match the evaluation horizon. Generally, the
deeper or longer the planning horizon, the greater the compu-
tational expense of computing a policy [Kearns ef al., 2002;
Kocsis and Szepesvari, 20061, while in principle the shallower
or shorter the planning horizon (relative to the evaluation hori-
zon), the more suboptimal the resulting policy is likely to
be [Kearns et al., 2002]. Thus, there is a tradeoff between
computation and optimality that is relatively well-understood
in cases where the model used for planning is accurate.

*This paper is a condensed version of Jiang et al. [2015] and
appears in IJCAI 2016 Sister Conference Best Paper Track.

In this paper, we argue that there is another important rea-
son to use shorter planning horizons in the more realistic case
where the model used for planning is estimated from data:
avoiding overfitting. Specifically, we show formally that the
planning horizon controls the complexity of the policy class:
shorter planning horizons define less complex policy classes.
As in supervised learning, the optimal complexity (and there-
fore the optimal planning horizon) depends on the quantity of
data used to estimate the model.

2 Preliminaries: MDP planning

An MDP specifies the agent-environment interaction model
as a 5-tuple M = (S, A, T, R, Yeval), Where S is the state
space, A is the action space, T : S x A x S — [0,1] is the
transition probability function, R : S x A — R s the expected
reward function, and ey, is the evaluation discount factor. We
assume rewards are bounded in the interval [0, Ry,ax]- The
agent’s goal is to act so as to maximize expected utility, the
expected sum of future rewards discounted by ~eya. A policy
m : 8 — A is a mapping from states to actions. A policy
that maximizes expected utility in M is an optimal policy; we
denote such a policy as 7w, . to make explicitits dependence
ON Yeval. We denote the value function of policy 7 evaluated
in MDP M using arbitrary discount factor y as Vi, | € RISI,

Certainty-equivalence control. We are 1nterested in the
case where the model is estimated from data collected in
the real world; scarcity of data then implies that our model
will only be approximate. Under the principle of certainty-
equivalence control we act according to the policy that is opti-
mal for the inaccurate planning model. In particular, we will be
concerned with the performance of the certainty-equivalence

policy derived from an estimated model M using a guidance
discount factor ~y (which might not be equal to Yeya). (If
M = M and v = 7eval, the certainty-equivalence policy is op-
timal.) We assume M/ is the maximum-likelihood model; that
is, the estimated transition probability 7'(s, a, s') is the num-
ber of times we observe the transition (s,a) — s’ in the data
divided by the number of times we observe (s, a). (We assume
that the reward function R is known in advance; see the longer
version of this paper for the unknown-rewards setting [Jiang er
al., 2015].) Note that our use of the certainty-equivalent pol-
icy allows us to abstract away all details of specific planning
algorithms and focus solely on the influence of the guidance
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discount factor v and its interaction with the quality of the

model M.
Evaluation. We emphasize that the certainty-equivalence

policy computed using v in model M will nonetheless be
evaluated in M using 7.y,. We capture this explicitly in our
definition of the planning loss as the largest (over states) ab-
solute difference in the values of the optimal policy 73, .
and the CE-control policy 7r;;7 N when each is evaluated in the

true environment M with the evaluation discount factor Yeya;.
Formally, we have

. T M eval TN
Planning loss : HVM’%V“ -V

Y]

oo

M, Yeval

where ||-|| . denotes the L., norm of a vector, i.e., the largest
absolute value of any entry.

Discount factors and planning horizon. When comput-
ing a policy with guidance discount factor +, there is an im-
plicit notion of planning horizon. The larger v, the longer
the planning horizon, because rewards further into the future
have an effect on the choice of optimal action in the cur-
rent state. Indeed, in tree-search based planning algorithms
such as UCT [Browne et al., 2012; Kocsis and Szepesvari,
20061, ~ is explicitly translated into a planning horizon (usu-
ally 1/(1 — ~)). Hereafter, we use guidance discount factor
and planning horizon interchangeably with the understand-
ing that the actual use depends on the nature of the planning
algorithm.

Optimal guidance discount factor. The decoupling of
Yeval and 7y is fundamental to our work. The former is specified
by the MDP, while the latter is a parameter of the planning
algorithm. If M = M, the only reason for v < vy would
be to obtain computational savings (at the expense of acting
suboptimally). Our aim is to show that when M £ M there is
another important reason to pick v < Yeyal-

Given M and M, an optimal guidance discount factor can
be defined as follows:

Uy LS
* : M, Yeval __ M,y
7= arg min VM;'Yeval M, ~Yeval

0<y<Yeval

@)

o0

This is the discount factor that the certainty-equivalence plan-
ner should use to minimize planning loss.

3 Planning horizon and a complexity measure

Equation 2 above suggests that v* < ~eyal could be optimal—
and indeed this is often observed in practice—but we do not
yet have clear intuitions about when or why that would be true.
We offer the following explanation: v is a complexity control
parameter for certainty-equivalent planning.

3.1 A counting complexity measure

Specifically, we will show in this section that v monotonically
controls the number of policies that can be optimal for a fixed
state space, action space, and reward function. When M is
estimated from a limited data set, we can therefore avoid
overfitting in policy selection by restricting the number of
available policies through the use of a smaller ~.
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In the traditional empirical risk minimization setting for
supervised learning, training data are used to evaluate the
models in a given model class, and the model with the lowest
training error is selected [Vapnik, 1992]. Overfitting occurs
when the model class is too complex compared to the effective
size of the dataset, and one way to avoid overfitting is to limit
the complexity of the model class.

We draw analogies to four elements in this scenario: (1) the
size of the dataset, (2) the complexity of the model class, (3)
empirical risk minimization as a method for selecting a model
from the class of models, and (4) some way to control model
complexity. In our planning setting, the size of the dataset

corresponds to the number of samples used to estimate M.
We assume that for every state-action pair (s, a) we observe
n samples of the successor state drawn from the true transi-
tion function. (For now, we assume that the rewards R are
known exactly.) The model class in our setting is the set of

policies that are optimal for at least one possible M ; we refer
to this as the policy class. The complexity of the model class
corresponds to the size of the policy class, i.e., the number
of policies that are potentially optimal. Empirical risk mini-
mization corresponds to selecting the optimal policy for M,
as achieved by certainty-equivalence planning. These three
correspondences are evident. It remains to show that reducing
the guidance discount factor v corresponds to reducing the
size of the policy class searched during planning. Theorem 1
shows that this is indeed the case.

Theorem 1. For any fixed state space S, action space A, and
reward function R, define the policy class

Op,={m:3T st misoptimalin (S, A, T,R,v)}. (3)

Then the following claims hold:

1 |Tge| =1
if, forall s € S, argmax, 4 R(s, a) is unique.

2. gy Clpy V9,7 :0<y<y' <1

3 Iy < 1,|Hg,| > |A|IS1-2
if3s,8 €S, maxsea R(s,a) > maxyeca R(s',a).

The condition for claim 1 ensures that there are no ties in
the maximal reward for each state, and the condition for claim
3 requires that one cannot obtain the maximal reward at every
state.

Taken together, the three claims of Theorem 1 show that
monotonically adjusts the size of the policy class from 1 to
at least | A|I%1=2, which is “almost all” of the | A|®! possible
policies. Thus the choice of guidance discount factor tightly
controls complexity. Figure 1 illustrates this by showing that,
as -y varies from 0 to Yey,, We recover the traditional learn-
ing curves from supervised learning. Training loss decreases
monotonically as 7y increases, while test loss is U-shaped, in-
dicating that an overly large  causes overfitting. (See the
caption for details on how these empirical results were pro-
duced and how training and testing loss are defined.) We can
also see in Figure 1 that the location of the minimum of the
test loss curve—that is, the optimal y—shifts to the right as
we receive more data.
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Figure 1: Learning curves as a function of v, the guid-
ance discount factor. Given a single fixed MDP M sampled
from the RANDOM-MDP distribution specified in Section 4,

we estimate a model M by sampling each state-action pair
n € {2,5,10,20} times. The reward function is assumed
known, and vevy = 0.99. The training loss is the negative
value of the certainty-equivalence policy on the estimated

M- 1 "M, .
model M: —r57> e Vﬁﬁ;l(s), and the test loss is the

negative value of that same policy on the actual MDP M:

s
—ﬁ > ees Vi, (8). The figures show the average training
and test loss over 1,000 random draws of the datasets for each
value of n, with error bars.

We sketch proofs for the three claims in turn. Claim 1 is
straightforward; the optimal policy does not depend on 7" when
~ = 0, thus the policy that picks the action with the highest
immediate reward is optimal. The assumption guarantees that
this policy is unique.

Proof sketch of Theorem 1, claim 2. We will prove that for
v < v,m € g, = m € lIg,. Let T be a tran-
sition function for which 7 is optimal in (S, A, T, R,~).
We will construct 7’ such that 7 is optimal in the MDP

M' = (S,A,T",R,~'). The construction is as follows:
let 7'(s,a,s8') = (1 — a)T(s,a,s") + al(s = s’) where
a= %, and I(-) is the indicator function; that is, 7" is a

transition function where, with probability 1 — «, transitions
behave according to 7', but with probability «, a state sim-
ply transitions to itself. Given any policy 7’ : S — A, itis
straightforward to show that

1—’)/ -

VJ@/7,YI == 177’7, M, - (4)

Consequently, 7 is also optimal in M’ and so 7w € IIg . O

Proof sketch of Theorem 1, claim 3. The proof is by construc-
tion. Let (s*, a*) be a state-action pair that achieves the high-
est reward among all state-action pairs. Let s’ be a state
whose maximal reward action a’ gives reward strictly less than
R(s*,a*). Such a state always exists under the assumption for
this claim in the theorem. Consider an arbitrary policy 7, with
the only constraints that w(s*) = a* and 7(s’) = a’. Then
the following transition function makes 7 optimal for large
enough v:

1, ifa=mn(s),s#s
1, otherwise

VsesS T(s,a,-):{ (5)

where 1.y denotes the delta distribution. Since we constrained
7 in only two states, the number of such policies is | A|%=2.

3.2 Planning loss bound

Completing the connection to model class complexity in su-
pervised learning, we show that the loss of the certainty-

equivalence policy for M is bounded, with high probability,
in terms of the policy class complexity |IIz ~|. This is analo-
gous to a standard generalization bound [Kearns and Vazirani,
1994], and implies that an intermediate value of v will gener-
ally be optimal; moreover, as the amount of data (n) increases,
so does the optimal ~.

Theorem 2. Let M be an MDP with non-negative rewards

and evaluation discount factor v,,q. Let M be an MDP com-
prising the true reward function of M and a transition func-
tion estimated from n samples for each state-action pair. Then
certainty-equivalence planning with M using guidance dis-
count factor v < ey has planning loss

m*u,ymﬂ B ﬂ'jﬁ,-y < Yeval — 7Y R+
M Neval M Yeval o - (1 _ 'Veval)(]- _ ,7) max
2 x 1 2|S|| A||IT
VBma 1o 2SIAIM R, | ©)

(1—72Van 5
with probability at least 1 — §.

The proof of the theorem can be found in the longer version
of this paper [Jiang ef al., 2015]. The upper bound in Theo-
rem 2 has two terms. The first is a bound on the planning loss
incurred by using the guidance discount factor y instead of the
evaluation discount factor ey, in the true M. This term goes
to zero as -y increases and approaches 7ey,. The second term

isolates the planning loss due to the use of M instead of M,
but does not depend on 7.y,. In contrast to the first term, this
term increases with -, since greater policy class complexity

allows performance on M and M to diverge more dramati-
cally. The dependence on the policy complexity |H R,’v| is the
novelty of our bound, compared to related work bounding loss
by model errors or Bellman residuals [Kearns and Singh, 2002;
Strehl et al., 2009; Farahmand et al., 2010].

The two terms in the bound of Theorem 2 depend in op-
posite ways on +, therefore the bound will, in general, be
optimized at some intermediate value. As the amount of data
n increases, the second term shrinks and the bound prefers
larger values of v. We will demonstrate this behavior empiri-
cally in the next section.
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Figure 2: (a) Planning loss as a function of +y for a single MDP
drawn from RANDOM-MDP. From top to bottom, the curves
correspond to increasing dataset sizes and are labeled by the
number of trajectories in the dataset. Planning loss decreases
as the dataset size increases, and the optimal guidance discount
factor v* (the value that achieves the minimum for each curve)
increases with dataset size. (b) Histogram of the correlation
between dataset size and v* over 1,000 randomly generated
MDPs from RANDOM-MDP. For almost all MDPs, there is a
positive correlation between dataset size and ~*.

4 Experimental results

We now show experimentally that the phenomena predicted
by the preceding theoretical discussion do, in fact, appear in
practice. In particular, we will see that the optimal choice
of guidance discount factor can be smaller than ~ey,, and as
we increase the amount of data used to estimate the model, a
larger v tends to be better.

For these experiments we randomly sampled 1,000 MDPs
with 10 states and 2 actions from a distribution we refer to
as RANDOM-MDP, defined as follows. For each state-action
pair (s,a), the distribution over the next state, 7'(s, a, -), is
determined by choosing 5 non-zero entries uniformly from
all 10 states without replacement, filling these 5 entries with
values uniformly drawn from [0, 1], and finally normalizing
T(s,a,-). The mean rewards are likewise sampled uniformly
and independently from [0, 1]; the actual reward signals ob-
served in the data have Gaussian noise added with standard
deviation 0.1. For all MDPs we fixed 7eva = 0.99.

For each generated MDP M, and for each value of n €
{5,10, 20,50}, we independently generated 1,000 data sets,
each consisting of n trajectories of length 10 starting at uni-
formly random initial states and choosing uniformly random
actions. While our theoretical results assume the data set com-
prises n samples for each state-action pair, for our experiments
we chose to generate trajectories since for most applications
they are a more realistic way to collect data. (We also per-
formed the same experiments using samples of state-action
pairs and the results were qualitatively similar.)

For each dataset D, we set M to contain the maximum-
likelihood estimates of both the transition and reward func-
tions. If some (s,a) has never been seen in a dataset, we
set R(s,a) = 0.5 and T'(s,a,s’) = 1/|S|. For each value
of v € {0,0.1,0.2,...,0.9,0.99}, we compute the empirical
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loss
1 oy T
5] (VAKQ’;: " (5) = Vs, (s )) ; ™)
SES

and pick the vy that minimizes the loss as an estimate of ~*
(see Equation 2), breaking ties randomly.

Figure 2a shows the empirical planning loss averaged over
datasets as a function of the guidance discount factor y for a
characteristic MDP. Each curve in the figure corresponds to a
particular number of trajectories as data. The error bars in this
figure and elsewhere show 95% confidence intervals. We can
see that the curves exhibit the U-shape predicted by the theory,
with minimum planning loss achieved at some v* less than
Yeval- As expected, increasing dataset size reduces planning
loss in general, and shifts v* to the right.

Figure 2b shows the distribution of the correlation between
dataset size and v* over 1,000 individual MDPs. This corre-
lation is positive with very high probability, implying that in
almost all cases (under RANDOM-MDP) the theoretical rela-
tionship between dataset size and v* is borne out in practice.

5 Related work

The loss induced by a finite planning horizon is known as trun-
cation loss (see related bounds given by [Kearns et al., 2002]).
Separately, it is also well-understood how planning loss relates
to model inaccuracy, which can come from estimation error
when the model is constructed from data [Mannor et al., 2007;
Farahmand er al., 2010], and/or approximation error when
approximations are employed in planning (e.g., state abstrac-
tions [Ravindran and Barto, 2004]). [Petrik and Scherrer,
2009] showed how a short horizon can reduce loss when the
model is inaccurate due to approximation errors. Our work
is the first to explore a similar phenomenon due to statistical
estimation errors, and our analysis exploits the structure of
these errors as well as established principles in supervised
learning to obtain stronger claims about v* and dataset size.

6 Conclusion

We demonstrated a connection between model complexity and
planning horizon by developing a theoretical and empirical
analogy to overfitting in supervised learning. We showed
that the planning horizon controls the complexity of the pol-
icy space, and proved a bound on the loss of the certainty-
equivalence policy using a monotonic counting complexity
measure. The bound sets up a tradeoff between a term in
which a larger planning horizon reduces the loss incurred by
certainty-equivalent planning in an accurate model and a term
in which a smaller planning horizon reduces the complexity
of the policy space and thereby controls overfitting. Empirical
results confirm that the optimal choice of guidance discount
factor is usually smaller than the discount factor defined by
the problem, and that the optimal guidance discount factor
increases with the amount of data.

In the longer version of this paper, we also provide an-
other loss bound based on a Rademacher complexity measure,
which sets up a similar tradeoff to the one presented here but
affords a more general analysis as it removes the assumption
in Theorem 2 that the reward function has to be known.
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