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Abstract

We present an original approach to compute effi-
cient mid-term fleet configurations at the request
of a Queensland-based long-haul trucking carrier.
Our approach considers one year’s worth of de-
mand data, and employs a constraint programming
(CP) model and an adaptive large neighbourhood
search (LNS) scheme to solve the underlying multi-
day multi-commodity split delivery capacitated ve-
hicle routing problem’.

1 Introduction

Long-haul transportation is a fundamental component of ev-
ery country’s economy, supporting both the movement of raw
materials between production facilities and the delivery of
final products to their ultimate destinations [Crainic, 2003].
Transportation also represents a significant fraction of the fi-
nal price of goods, and making an efficient use of the avail-
able transportation infrastructure and resources is essential to
reduce costs and remain profitable in the open market.

At the core of most logistics applications lies the vehi-
cle routing problem (VRP) [Dantzig and Ramser, 1959] (see
[Toth and Vigo, 2002] for a survey), which consists in dis-
patching a fleet of vehicles to satisfy the demand of a set
of customers. Because of its industrial relevance, the VRP
has been often extended to integrate real-world constraints,
e.g., compartments, time windows, etc., originating a class of
problems denominated “rich” vehicle routing problems. One
of such variants, the split delivery vehicle routing problem
(SDVRP), is a generalisation of the VRP in which the de-
mand of one customer can be cumulatively satisfied by mul-
tiple vehicles. It has been shown [Dror and Trudeau, 1989]
that SDVRP can yield considerable savings with respect to
the classic VRP, in addition to being, in some circumstances,
the only available option. However, while the VRP is itself
NP-complete, the SDVRP, as many other rich VRP variants,
is NP-hard [Dror and Trudeau, 1990]. Both VRP and SDVRP
assume a given fleet of vehicles. The problem of how to de-
sign such a fleet is called the fleet size and mix vehicle routing
problem (FSMVRP), and is often studied as a generalisation

'This paper is an adaptation of the Best Application Paper at
CP’15, published in the Constraints journal [Kilby and Urli, 2015].

of the VRP where the fleet is not specified in advance, but has
to be constructed by the solver from a collection of available
vehicle types. Such formulation is appropriate for applica-
tions in which the same routing plan is repeated every day,
e.g., mail delivery and collection, however it is insufficient to
address fleet design for carriers dealing with a variable daily
demand. To the best of our knowledge the problem of de-
signing the best fleet for a long planning horizon has not been
addressed yet for the general case.

In this paper, we take an optimisation perspective on the
design of a robust and efficient fleet to support the customer
demand over a mid-term, e.g., few months to one year, plan-
ning horizon. Our study is carried out at the request of a long-
haul carrier operating in the Queensland area in Australia.

2 Related work

A brief review of the relevant literature follows. In [Crainic,
2003], the author surveys long-haul transportation as a whole,
highlighting the decisions at the strategic (long-term) level,
tactical (mid-term) level, and operational (short-term) level.
An important insight in this regard, is that decisions at each
level constrain the decisions at the following level, and in-
form the decisions at the previous level. Dell’ Amico et al.
[Dell’ Amico et al., 2007] present a heuristic solution to the
fleet size and mix for the single-day single-commodity vehi-
cle routing problem with time windows, based on a previous
linear programming formulation of the same problem. Vidal
et al. [Vidal et al., 2014] propose a component-based frame-
work to solve a variety real-world VRP variants, including
fleet size and mix vehicle routing. Neither approach han-
dles split deliveries or multiple commodities. In [Archetti
and Speranza, 2008] a survey of split delivery vehicle rout-
ing is provided, along with a classic linear programming for-
mulation and a thorough discussion of complexity aspects
and lower bounds. [Belfiore and Yoshizaki, 2013] describe
a scatter search approach to solve the fleet mix problem for
the daily split delivery vehicle routing problem. [Briysy er
al., 2008] introduce a multi-phase local search approach for
the FSMVRP, also considering acquisition costs. None of the
above works consider fleet mix aspects, or consider them only
in single-day and single-commodity scenarios.

With respect to the reviewed literature, our approach intro-
duces the following novelties. First and foremost, we con-
sider the fleet mix problem in a mid-term perspective, i.e.,
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we seek to find a single fleet design to support the demand
across a planning horizon spanning months to years. Second,
we consider a multi-commodity split delivery vehicle routing
problem, which is very common in real-world industrial con-
texts. Finally, we propose a Pareto-based technique to extract
guaranteed representative subsets of days from the historical
data, and to make the problem more tractable.

3 The problem

Our client serves a set of customers ¢ € C with locations
l. € L, and faces a daily multi-commodity, split delivery,
long-haul vehicle routing problem, to be addressed using a
heterogeneous fleet of trucks. On a daily basis, each cus-
tomer ¢ € C may issue an order for a quantity q. ; € Z* of
some commodity £ € K. We will use the sets C and L in-
terchangeably. The available vehicle types ¢t € T to carry out
the deliveries differ in i) their total capacity, denoted by by,
ii) the commodities that can be transported, specified through
a Boolean compatibility relation comp, j, and iii) the oper-
ation cost per kilometre, denoted by w;. Table 1 reports the
described parameters for the considered vehicle types. Fol-
lowing our client’s requirements, goods must be picked up
from a central depot, denoted by dep, where the vehicles
must return at the end of the day. We are given the dis-
tance in kilometres, dist;, ;,, between each pair of locations
li,1; € LU{lgep}. Our client handles the delivery of refriger-
ated (or chilled) and non-refrigerated (or ambient) products,
but only some of the vehicle types are refrigerated. Ambient
goods can be transported in all vehicles. The above problem

# | Model | w¢ | by | Refrigerated
0 | B-Double 2.59 | 34 no
1 | A-Double 2.67 | 40 no
2 | B-Triple 2.86 | 48 no
3 | B-Double Reefer | 2.99 | 34 yes
4 | A-Double Reefer | 3.04 | 40 yes

Table 1: Vehicle data.

can be seen in two perspectives. At the operational (day to
day) level, we want to load and route a given fleet of vehi-
cles so that the daily demand of all the customers is met, the
vehicle capacities and compatibilities are respected, and the
total operation cost is minimised. At the factical level, given
an unlimited availability of each type of vehicle, we want to
design a fleet with enough capacity to support the operations
over the mid-term based on one year of historic demand data.

4 Proposed approach

Following the principle, expressed in [Crainic, 2003], that de-
cisions at the tactical level must be informed by the decisions
at the operational level, we propose to solve the fleet mix
problem by lifting the daily loading and routing problem to
a multi-day perspective, and by relaxing the fixed fleet con-
straint?. This allows our method to find the most suitable fleet

By “relaxing” we mean that the fleet is not given a priori, but
chosen by the solver and then used for the whole horizon.
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design across the multi-day horizon, instead of producing a
different fleet for each day.

The multi-day extension of the problem over a horizon
D = {0,...,D — 1} of D days, is obtained by augmenting
the demand q. ; with an additional index d indicating which
day it belongs to (qq,c,x). Moreover, we assume a bound V on
the maximum number of vehicles in the fleet, and we denote
the set of all possible vehicles indices as V = {0,...,V —1}.
Finally, for model compactness, on each day d € D we only
consider the customers C4 C C for which qg.c 5 > 0.

4.1 Model

We solve the above problem by means of an adaptive large
neighbourhood search (LNS) procedure built on top of a
constraint programming (CP) model. Our model is in-
spired by the multi-day vehicle routing approach described
in [Di Gaspero and Urli, 2014], but follows a step-based for-
mulation in which each route is encoded as a fixed-length
sequence of “visits”, rather than the classic vehicle routing
formulation in which, for each customer, a “successor” vari-
able points to the next customer. The step-based formulation,
similar to the one proposed in [Di Gaspero et al., 2015], is
extremely suitable for handling split delivery problems, un-
like successor-based formulations where, in order to allow
multiple visits to the same customer, one has to use n — 1
“virtual” customers, where n is the maximum number of
visits. Moreover, unlike both [Di Gaspero and Urli, 2014;
Di Gaspero et al., 2015], our model can handle multiple com-
modities and a flexible (albeit bounded) fleet. For space rea-
sons, we are unable to provide a complete discussion of the
constraints (see [Kilby and Urli, 2015] for the full model),
however these can be derived from the description of the
problem and of the modelling variables.

The variables in our model can be classified in two sets.
The first set represents horizon-wide decisions, describing the
overall composition of the fleet. For each vehicle v € V
a variable v_type, with domain {0,...,|T|} represents the
type of the vehicle (the vehicle type with index | T| being as-
signed to all unused vehicles). A Boolean variable used,
models whether a given vehicle is part of the fleet or not.
Finally, an integer variable n_veh, with domain {1,...,V},
represents the number of vehicles which are part of the fleet.
The second set of variables represent daily decisions. For
each day d € D, and each vehicle v € V a Boolean variable,
used_ong,,, models whether vehicle v € V is used on day
d. Similarly, for each day d € D, the variable n_veh _ong
models the number of vehicles used on day d. Note that the
type and the general availability of each vehicle is decided at
the horizon level, but not all the vehicles need to be used ev-
ery day. Routes are constructed as sequences of steps (visits
to customers). We denote the set of steps in a day d € D
as Sg = {0,...,|Cq4| + 1}. The number of daily steps is
the number of customers |C,4| with non-zero demand on day
d plus two steps for the initial and final visits to the depot.
The arbitrary bound on the route length is motivated by the
fact that in long-haul contexts it is very unlikely that the same
customer be visited twice by the same vehicle. For each day
d € D, each vehicle v € V, and each step s € Sy, an integer
variable visg, 5, with domain {0, ..., , represents the




s-th visit of vehicle v on day d. The values O (or null) and 1
(or dep) in the domain of vis are reserved, respectively, for
unused steps and for visits to the depot. Note that null visits
can only appear at the end of a route, and allow for routes
shorter than |S,|. Regarding vehicle loading, for each day
d € D, for each vehicle v € V, for each step s € Sy, and for
each commodity k£ € K, an integer variable loadg, k,s rep-
resents the amount of & left on v after step s is performed on
day d. In order to define the cost measure, we also need a few
auxiliary variables. For each day d € D, each vehiclev € V,
and each step s € Sy, the total distance travelled up to step s
by vehicle v on day d is represented with an integer variable
tot_distg,, . Similarly, for each d € D, and each vehi-
cle v € 'V, the daily operation cost of vehicle v is modelled
with a floating point variable tot_costg,, with a domain go-
ing from zero to the maximum vehicle distance multiplied
by maxicTw,. Finally, a tot_cost variable aggregates the
daily vehicles costs through a sum constraint, providing the
overall cost measure for a given solution s. During an op-
timisation run, the value of tot_cost is dynamically upper-
bounded by the cost of the best solution § found so far, so as
to only produce improving solutions.

4.2 Search

Large neighbourhood search (LNS) [Shaw, 1998; Pisinger
and Ropke, 2010] is a local search meta-heuristic based on the
observation that exploring a large neighbourhood, i.e., mod-
ifying a large portion of an existing one, tends to yield solu-
tions of higher quality wrt. exploring a small neighbourhood.
To make this exploration efficient, LNS has often been cou-
pled with filtering techniques, such as constraint propagation,
that contain the size of the neighbourhood by culling low-
quality or unfeasible solutions. In our approach, we use the
presented CP model as a source of propagation, and we use
a branch & bound tree-search strategy to explore the neigh-
bourhood of the incumbent solution. Similar approaches
have been applied to tackle several vehicle routing problem
variants [Kilby and Shaw, 2006; Ropke and Pisinger, 2006;
Kytojoki et al., 2007].

We define two different search strategies, consisting of dif-
ferent variable and value selection heuristics. The first is used
to find the initial solution for LNS. The second is used during
the re-optimisation in the repair step of LNS.

Strategy 1. First, the total number of vehicles and their types
are chosen, prioritising small fleets and large vehicles.
After the fleet has been chosen, we proceed day by day.
First we choose how many and which vehicles are dis-
patched (the fewer the better). Then we handle the load-
ing and routing aspects vehicle by vehicle, trying to
maximise their utility. To do this, we load as much as
possible at the depot and we unload as much as possible
at the customers. After a vehicle returns to the depot, we
move on to the next, until all the demand is satisfied.

Strategy 2. This strategy differs from the previous only with
respect to the value selection heuristic, which chooses
values uniformly at random within the variables do-
mains, except for the number of vehicles and the initial
loads which follow the same principles of Strategy 1.
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These strategies, combined with the constraints on the ca-
pacity of the fleet, allows us to detect unfeasible fleets early,
even in multi-day scenarios. Once the first solution is gen-
erated using Strategy 1, the search enters a refinement loop
which alternates two steps. First, a destroy (or relax) proce-
dure sets a subset of the decision variables to their original
domains, and propagates the model’s constraints until a fix
point is reached. After this step we are left with a smaller
problem, which is much easier to optimise. Second, a repair
procedure, consisting of a branch & bound tree-search based
on Strategy 2 re-optimises the newly freed variables yielding
a new solution. Since the cost of the next solution is dynam-
ically bounded, only improving solutions are generated. Our
destroy phase employs two different relaxation schemes, se-
lected with coin-toss probability and parametrised with a pa-
rameter 4, the destruction rate, representing the intensity of
the relaxation

Relax § days. all the decision variables (of all vehicles) con-
cerning § days chosen uniformly at random are relaxed,

Relax § vehicles. all the decision variables (across all days)
related to § vehicles, chosen uniformly at random be-
tween the ones currently used in the solution plus the
first unused vehicle, are relaxed.

The parameter J represents the adaptive part of our LNS pro-
cedure. It is initialised to 1, and increased by one every time
itermaq iterations (a parameter of the solver) have been spent
on a value of § without improvement. Once an improving
solution is found, § is re-set to 1. If no improving solution
are found, but & cannot be further increased, the search is
restarted from a new initial solution. In our setup, each repair
step is given a time budget of 7 f;.¢c - £, milliseconds, where
N free is the number of variables relaxed by the destroy step,
and t,,, is a parameter of the solver.

4.3 Pre-processing

Solving multi-day problems for long planning horizons, e.g.,
one year, is computationally hard. The particular nature
of our problem, allows us to do better. Using a Pareto
dominance-based approach, we identify representative sub-
sets of the historical data, and use those in place of the whole
horizon. To accomplish this, we represent each day d in the
horizon with the total amount of ambient and chilled demand,
i.e., (Qd,ambs 9d,chi), and consider these as objectives to be
maximised. The idea behind our approach is that, if the de-
mand on a day p dominates the demand on a day ¢, then the
optimal fleet for p is also guaranteed to be able to serve g. By
extending this reasoning to the multi-day perspective, we can
state that a fleet which can solve the multi-day problem based
on the Pareto front of the days is also guaranteed to be able to
solve all the other days.

We computed the Pareto front based on 364 days of his-
torical order data. The front is composed by only two days,
which greatly dominate the other ones. We identified the op-
timal fleet for such front (we call this the conservative fleet),
and then we tested it on each day of the horizon. These ex-
periments revealed that, while the identified fleet guarantees
a coverage of 100% of the days, almost half of the vehicles
were unused, on average, in a typical day. For this reason we



decided to adopt a layered Pareto approach, in which mul-
tiple Pareto fronts, with decreasing degrees of coverage (but
increasing levels of efficiency), are generated. The algorithm,
discussed extensively in [Kilby and Urli, 20151, proceeds by
identifying the Pareto front, removing the days belonging to it
from the horizon, and identifying the next one, until there are
no more days left. In particular, starting from the 364 days,
it identifies 46 fronts with decreasing instance coverage. In
Figure 1, we show the annual distribution of chilled and am-
bient goods demand, highlighting the first six fronts. These
contain less than 10 days each, and dominate 100% (front 0,
upper right) to 90% (front 5, lower left) of the days.
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Figure 1: The demand distribution and the first six fronts.

5 Experimental analysis

We report the major findings from the experimental evalua-
tion. The full discussion of the results, including a compar-
ison between branch & bound, LNS, and a MIP formulation
of the problem, can be found in [Kilby and Urli, 2015].

We implemented our CP model and LNS scheme in
GECODE 4.4.0 [Schulte et al., 2015] and then carried out
an experimental analysis to identify the best fleet for each of
the first six fronts. The problem instances considered in our
experimental analysis represent the same 364 days used to
identify the Pareto fronts. The instances have a median of 19
customers per day, with the total demand evenly distributed
between ambient and chilled goods. The tuning of the LNS
parameters is described in [Kilby and Urli, 2015]; the final
values identified by the tuning procedure are iter,,q,, = 20
and t,,, = 1 millisecond.

We solved the multi-day instances obtained aggregating
the days in the Pareto fronts identified in the pre-processing
phase. In these experiments we used a maximum number of
vehicles of V' = 25. All the experiments were run on a clus-
ter of 3.1 GHz AMD Opteron nodes with 64 GB of RAM

each and allotted 1 hour of time. The identified fleets differ
in size (see Table 2) but share the same composition: the only
used vehicles are the largest non-refrigerated and refrigerated

trucks, respectively B-Triples and A-Double Reefers.

F | V | Costy | Coverage | Costy, | Usage

0]22]51.71k | 100.00% | 8.60% | 52.92%
1|19 52.24k 99.73% | 9.88% | 62.37%
2 | 18 | 51.71k 98.90% | 8.69% | 64.74%
3|17 |51.79 97.80% | 8.78% | 68.55%
4|17 | 52.22k 97.25% | 9.86% | 69.70%
5 | 17 | 52.66k 96.98% | 10.92% | 70.50%

Table 2: Fleets obtained for the first six fronts.

We then validated each fleet independently on all the daily
instances by running the solver for 15 minutes. The results of
our analysis are summarised in Table 2 reporting, for every
identified fleet,i) the number of vehicles (V), ii) the average
daily operations cost (Costy), iii) the actual instance cover-
age, iv) the difference in daily cost between using the Pareto-
based fleet vs. the ideal fleet for each day (Costy; ), and v) the
average utilisation of vehicles on each day (Usage). Note that
the cost of the ideal fleet for each day is a measure of the
absolute best we can do, and represents an goal rather than
a viable alternative. From our results emerges that, by op-
timising the usage of resources, it is possible to maintain a
good instance coverage while reducing the fleet size. A met-
ric that provides insight on the quality of a fleet is the average
daily utilisation of vehicles. Good fleets tend to have a high
utilisation rate. For instance, with an average operation cost
of about 9% above the the ideal fleet, the fleet based on the
274 Pareto front achieves an instance coverage of almost 99%
using 4 vehicles less than the conservative fleet.

6 Conclusions

We proposed i) a constraint programming model for the
multi-day, multi-commodity, fleet mix and routing problem,
ii) a large neighbourhood scheme to produce daily plans and
efficient fleet designs using the proposed model as a propaga-
tion engine, and iii) a pre-processing phase that allows us to
use subsets of instances to predict the best fleet based on the
historical demand data. The main novelty of our approach
lies in how we use a solver for short-term operational deci-
sions (routing and loading) to inform the mid-term tactical
decisions (fleet design), and in our pre-processing technique.

Our approach has also a number of limitations. First, our
pre-processing phase relies on the fact that the instance cov-
erage of a fleet can be easily calculated by looking at the total
demand. This is not necessarily the case if side constraints,
e.g., time windows, are added to the model. While it is rela-
tively easy to add constraints to a CP model, the lack of an ef-
fective pre-processing phase can limit substantially our abil-
ity to to handle large horizons. Second, our approach does
not take into account the costs of modifying the fleet and hir-
ing on-demand vehicles. These aspects must be considered
to provide a holistic view to the client. These aspects are
presently under investigation.
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