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Abstract
Designing industrial robot systems for welding,
painting, and assembly, is challenging because they
must perform with high precision, speed, and en-
durance. ABB Robotics has specialized in build-
ing highly reliable and safe robotized paint systems
using an integrated process control system. How-
ever, current validation practices are mainly limited
to manual test scenarios, which makes it difficult to
exercise important aspects of a paint robot system,
such as the need to coordinate the timing of paint
activation with the robot motion control.
To address these challenges, we have developed
and deployed a cost-effective, automated test gen-
eration technique aimed at validating the timing be-
havior of the process control system. The approach
is based on a constraint optimization model written
in Prolog. This model has been integrated into an
automated continuous integration environment, al-
lowing the model to be solved on demand prior to
test execution, which allows us to obtain the most
optimal and diverse set of test scenarios for the cur-
rent system configuration.

1 Introduction
Developing reliable software for complex industrial robots is
a complex and error-prone task because typical robots are
comprised of numerous components with complex interac-
tion patterns. As the complexity of robot control systems
continues to grow, developing and validating software for in-
dustrial robots are becoming increasingly difficult. For robots
that perform painting, gluing, or sealing, the problem is even
more difficult, since their dedicated process control systems
must be synchronized with the robot motion control system.
As such, a key feature of robotized painting is the ability to
perform precise activation of the process equipment along a
robot’s programmed path.

With respect to software validation, it is well-known that
correcting software defects late in the development process
is substantially more costly than correcting them early, and
even more costly are defects that remain undetected until the
system has been deployed. Therefore, in an effort to uncover

software defects early, the software industry is increasingly
adopting continuous integration (CI), a software engineering
practice to automatically build and test the software in a near
realistic scenario [Fowler and Foemmel, 2006].

This paper summarizes our previous work [Mossige et al.,
2014] on using constraint programming (CP) to generate au-
tomatically timed-event sequences (i.e., test scenarios) for
ABB’s integrated process control system (IPS) and to exe-
cute them as part of a CI process. To this end, we developed
a constraint optimization model in SICStus Prolog [Carlsson
et al., 1997] to test the IPS under operational conditions.

Due to the online configurability of the IPS, test scenarios
must be reproduced daily, meaning that indispensable trade-
offs between optimality and efficiency must be found, to in-
crease the capabilities of the CI process to reveal software
defects as early as possible. While CP has been used to gener-
ate model-based test scenarios before [Di Alesio et al., 2013;
Balck et al., 2014], we are the first to incorporate a CP model
and its solving process in a CI environment for testing com-
plex distributed systems.

2 Robotized Painting
This section introduces robotized painting, and highlights
some of the challenges involved in testing such systems.

A robot system dedicated to painting typically consists:
(i) the robot controller, responsible for moving the mechani-
cal arm, and (ii) the IPS, responsible for controlling the paint
process through the activation and deactivation of physical
processes such as paint pumps, air pressure, and air flows and
to synchronize these with the motion of the robot arm. These
physical processes may have varying response times, e.g., a
pump may have a response time in the range 40–50 ms, while
the airflow have the range 100–150 ms.

To produce the desired paint output using these physical
processes, we need to model their response times. For this,
we define a spray pattern as the tuning of the physical pro-
cesses that gives a desired paint output. The IPS can adjust
these processes using sophisticated algorithms that have been
analyzed and tuned over the years to serve different needs.

2.1 Example of Robotized Painting
We now give a concrete example of how a robot controller
communicates with the IPS in order to generate a spray pat-
tern along the robot’s path. A schematic overview of the ex-
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Figure 1: Logical overview of a robot controller and the IPS.

ample is shown in Figure 1, where the node marked robot
controller is the CPU interpreting a user program and con-
trolling the servo motors of the robot in order to move it. The
example is realistic, but has been simplified.

Figure 1 shows an example user program. The instruction
MoveL p1 moves the robot to the Cartesian point p1. The two
SetBrush instructions tells the robot to apply spray pattern 1
when the robot reaches 200 on the x-plane, and to apply spray
pattern 2 when it reaches 300. Both SetBrush instructions tell
the IPS to apply a specific behavior when the robot arm is
at a given position. The last instruction (PaintL) starts the
movement of the robot from the current position p1 to p2 and
activates the painting process. The speed is given by the v800
argument, meaning 800 mm/s.

Assuming the path from p1 to p2 results in a movement
from x = 0 to x = 500. The robot controller interprets the
user program ahead of the actual physical movement of the
robot, and can therefore estimate when the robot will be at a
specific position. Assuming that the movement starts at time
t = 0, the robot can compute that the two SetBrush activa-
tions should be triggered at t1 = 250 ms and t2 = 375 ms.

The robot controller now sends the following messages to
the IPS master: (B1 = 1, t1 = 250), (B2 = 2, t2 = 375),
which means apply spray pattern 1 at 250 ms, and spray pat-
tern 2 at 375 ms. These messages simply convert position
into an absolute global activation time. The messages are
sent around 200 ms before the actual activation time. Thus,
the IPS may receive the second message before the first spray
pattern has been applied, which means that the IPS must han-
dle a queue of scheduled spray patterns.

On receiving a message from the robot controller, the IPS
determines the physical outputs associated with the spray pat-
tern number. Many different spray patterns can be generated
based on paint type or equipment in use. In the IPS each spray
pattern is translated into 3 to 6 different actuator outputs that
must be activated at appropriate times.

Figure 1 shows three such actuator outputs (C1, C2, C3).
The value of each actuator output for a given spray pattern is
resolved using a brush table, L. The IPS master passes these
values obtained from L to each actuator output along with its

desired activation time, which may be different from the orig-
inal time received from the robot controller. For additional
details, see [Mossige et al., 2014].

Activation of actuator outputs: Since painting involves
many slow physical processes, the actuator outputs must
compensate for this by computing adjusted activation times
t

o,j

, for each output j, to account for the time it takes the
physical process to apply the change. Please see [Mossige et
al., 2014] for details.

Physical layout of the IPS: Figure 1 shows the logical
connections in an example IPS configuration. In a real-world
configuration, each component (IPS master, C1, C2, C3)
may be located at different embedded controllers, intercon-
nected through an industrial-grade network. As such, the
placement of the different components of the robot depends
on the physical process it is responsible for.

3 Testing the IPS
Having a distributed control system such as the IPS mounted
on a physical robot makes its validation unnecessarily com-
plex, and past testing practices involved a considerable
amount of manual work to set up and collect observations.

Thus, to simplify the testing process, we have developed
an automated testing framework for the IPS as an integrated
part of ABB’s CI environment, where we use CP to generate
both the configuration for the IPS, the test sequence, the brush
table and the expected actuator outputs. Finally, we execute
the test as part of a CI cycle.

In [Fowler and Foemmel, 2006] it is emphasized that a cru-
cial success criteria for a CI deployment is to keep the overall
round-trip time as short as possible. That is, the time it takes
from a developer has submitted a code change to the source
control repository, until feedback on the build and test pro-
cess is returned. To this end, we have identified a few areas
that demand particular attention:

• Test complexity: In CI, a less accurate but faster test
will often be preferred, over a slow but accurate test. In
practice, a test must satisfy the so-called good enough
criterion, frequently used in industry [Stolberg, 2009].
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• Solving time: Constraint-based optimization is usually
a time-consuming task, especially if a global optimum is
sought [Marriott and Stuckey, 1998]. Thus, utilizing CP
in CI to solve for an optimal test sequence, implies that a
time-contracted optimization procedure should be used.
This allows precise control over the time needed find a
solution, possibly at the expense of solution quality.

• Execution time: The test execution time depends on the
length of the test sequence, i.e., the number of test sce-
narios. Thus, execution time and the time needed to gen-
erate the test sequence must be considered together.

In essence, balancing between the length of a test sequence
(its execution time) and the time needed to generate the test
sequence (its solving time) represents the appropriate tradeoff
for the integration of CP into a CI process.

4 CP Model of the IPS
We now present our CP model for the IPS. Models are usu-
ally not meant to reflect the full system behavior [Utting and
Legeard, 2007], and as such, we focus on modeling the tim-
ing aspects of the IPS in order to build an efficient CP model
for generating test scenarios.

Our CP model has C actuator outputs (C = 3 in Figure 1).
The decision variables in our model can be divided into three
groups: the variables of the input sequence I, the configura-
tion variables C, and the variables of the brush table L. In
principle, a solution of the CP model is formed by an instan-
tiation of these variables, in addition to the so-called test ora-
cle O, which is the expected output computed by the system
formed by each actuator output and its corresponding time.

We have identified several test scenarios, and three of them
are shown in Figure 2. Scenarios overlap and kill brush rep-
resent failure conditions, where the IPS is forced into an error
state. The objective of these scenarios is to test that the IPS
responds correctly, e.g. triggers a safe shutdown, or gives an
appropriate error message etc. On the other hand, the normal
scenario represents the expected IPS behavior. When solving
the CP model, a scenario is given as a test objective to the
solver, and the solving process seeks to find an assignment
of variables that can drive the execution of the IPS into the
desired scenario.

In [Mossige et al., 2014] we detail our approaches to avoid
trivial solutions and ensuring diversity in the test input se-
quence I, the configuration variables C, and the brush table L.
The objective of greater diversity is to produce test scenarios
with a higher chance of discovering errors in the IPS. More-
over, we ensure that our model mainly use realistic values, to
avoid that too many unrealistic scenarios are produced.

4.1 Searching for Optimal Solutions
The purpose of our CP model is to find solutions that has the
potential to uncover errors. To this end, finding optimal solu-
tions are the most interesting, because then the test scenarios
can be executed faster, and more tests can be executed in the
CI process in the same amount of time. As such, we seek to
find the input sequence I = ((B1, t1), . . . , (Bn

, t

n

)) which
has the shortest execution time, i.e., where t

n

is minimized.
Clearly, finding the minimum execution time t

n

is the most

desirable, however from a practical perspective, this needs to
be balanced against the time, t

s

, it takes the solver to find this
optimal input sequence. That is, the total time used to both
find a solution and run the tests is roughly t

s

+ t

n

.
In [Mossige et al., 2014] we evaluate several search heuris-

tics aimed at finding good enough solutions quickly.

5 Implementation and Exploitation
This section details our implementation of the CP model with
SICStus Prolog and its clpfd library [Carlsson et al., 1997],
and its exploitation in the CI process at ABB Robotics. How-
ever, we first explain the rationale behind our choice of CP
over other possible techniques.

5.1 Selection of CP and the CP solver
Our CP model could have been implemented with techniques,
such as SAT- or SMT-solving [Moura and Bjørner, 2008],
local search techniques for test data generation [McMinn,
2004], or Mixed Integer Programming (MIP) [IBM, 2006].
These were discarded for the following reasons1:

1. The technique must be able to accommodate the many
alternatives in the dynamic configuration of the IPS. CP
offers a higher degree of flexibility to handle disjunc-
tive constraint systems, enabling backtracking, reifica-
tion, and constructive disjunction [Rossi et al., 2006].

2. Time-constrained optimization was essential for our in-
dustrial use case, in order to satisfy the time require-
ments of the CI process. SAT- and SMT-solvers are ef-
ficient for boolean and theory-based satisfiability prob-
lems [Moura and Bjørner, 2008], but they are generally
not tuned for optimization problems, e.g., to minimize a
cost function in a given contract of time. On the contrary,
CP integrates time-aware optimization methods for dis-
crete combinatorial problems.

3. As the model is used to predict the expected outputs of
the IPS, using exact methods was mandatory. Despite
the efficiency of local search techniques for test data
generation [McMinn, 2004], the absence of guarantee
on the satisfiability of the constraints (e.g., no possible
detection of unsatisfiability or no guarantee on the de-
termination of satisfiability for complex constraint sets)
was sufficient to discard these techniques.

5.2 Model Implementation
The complete system contains about 2k lines of Prolog code,
300 lines of C code (a DLL interface between Python and
SICStus), and about 3k lines of Python code.

The modeling part of the project began in early 2013, and
evolved to support testing the complete distributed system of
multiple embedded computers running the IPS. Today, the
model is used in ABB’s CI process and solved daily. It gener-
ates test sequences for 11 different IPS configurations. When
testing on complete system, we currently run the model on a
single physical setup, but we run 10 different configurations

1Note that no general claim is made, just specific claims to illu-
minate our choice of CP in the case of validating the IPS.
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Figure 2: Test scenarios considered as test objectives. Horizontal axis represent time and black dots correspond to output
activation. A specific spray pattern is a collection of output activations, and is visualized by a line connecting the black dots.

of this setup. In summary, the number of activations of phys-
ical actuator outputs shows that around 20.000 distinct test
scenarios are executed for each CI cycle. That is, each of
these test scenarios are executed at least once per day.

5.3 Execution of the Model
The steps below outline the test execution process.

1. Build: Building the IPS software is scheduled to run
every night, or a developer can trigger a build manually.

2. Upgrade: Upgrade the embedded controllers with the
newly built software. A failure aborts the CI cycle.

3. Configure: Configuration fetched from the source con-
trol repository is loaded onto the IPS. The configuration
describes the interconnections of embedded controllers
and the properties of this specific paint setup.

4. Query and Solve Model: Data retrieved from the IPS
is fed into the CP model. This enables us to keep the
generated test in sync with changes in the newly built
software or changes in the configuration.

5. Run Test: Finally, the actual test is executed by apply-
ing the generated test sequence, and comparing the ac-
tuator outputs with the model generated oracle, O.

6 Lessons Learned
We conclude the paper with some lessons learned from our
experience with adopting CP in ABB Robotics’ CI process.

6.1 CP for Validation Engineers
As mentioned previously, validating the software for paint
robots involves a fair amount of manual, labour-intensive
work, which is also error-prone. Therefore, automating parts
of this validation process is necessary, and is perceived by
validation engineers as a means to strengthen the process.

However, adopting CP also comes with some challenges:
(1) Integrating CP into the CI process, including automated
builds, software upgrades, test execution, and collecting re-
sults. This takes time and requires some maintenance, but
is otherwise a relatively simple task. (2) Establishing trust
among the validation engineers. This is the most critical is-
sue for adoption, because validation engineers (a) may not be
sufficiently trained in CP to change the model without assis-
tance, and (b) may be reluctant to trust a tool whose results
that are difficult verify manually. It is also recognized [de la
Banda et al., 2013; Francis et al., 2012] as a concern that
many optimization problems require expert knowledge.

In order to reduce the risks, we built a Python frontend
to our CP model, so as to reduce the complexity exposed to
the validation engineers. We also organized basic training
in CP with simple and understandable examples, in order to
facilitate adoption. We do not claim that these actions form
a recipe for adopting CP in general, but we observe that it
worked well in the context of ABB Robotics IPS validation.

6.2 Actual Defects Found with the CP Model
After the CP model was put into production at ABB Robotics,
we immediately found two new unknown defects related to
timing aspects in the IPS. However, these defects were classi-
fied as non-critical, as they represent very unlikely scenarios.
Upon further examination, we found that these defects had
been present in the IPS for several years without any signifi-
cant consequences, and that they were found by the CP model
due to diversity in the selection of test sequences. These
defects have been corrected and their corresponding test se-
quences have been added to our non-regression test suite.

For validating the CP model, we also reintroduced five old,
historical, defects into the source control repository. These
defects were known by the validation engineers to be ex-
tremely hard to find. After a round of experiments, the CP
model produced test sequences that spotted all five defects.
This was considered as a strong justification for the contin-
ued use of the CP model in production.

6.3 Return on Investment with the use of CP
Computing the return on investment for the use of CP for
ABB Robotics’ IPS validation is difficult. Possibly, one can
measure the number of defects found with and without the
CP model during the validation of a new IPS release. It is
also possible to compare the human effort required in both
cases. However, another important factor is the increased
confidence of the engineers to the validation process, which
is a factor that is very difficult to quantify. After the intro-
duction of the CP model in production, we observed a much
higher confidence among the engineers and their appetite to
perform necessary code re-factoring is now higher. They are
more willing to make critical, but needed, changes in the soft-
ware and they rely on the test framework to detect undesired
side-effects. If a side-effect is discovered, they can simply
roll back the change.

In the long term, we expect to see the benefits of using CP
being recognized as a way to increase the general quality of
the testing process, since necessary re-factoring will be per-
formed before the technical depth grows beyond control.
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