
Online Bellman Residual and Temporal Difference
Algorithms with Predictive Error Guarantees

Wen Sun and J. Andrew Bagnell
Robotics Institute, Carnegie Mellon University, Pittsburgh, USA

{wensun, dbagnell}@cs.cmu.edu

Abstract
We establish connections from optimizing Bellman
Residual and Temporal Difference Loss to worst-
case long-term predictive error. In the online learn-
ing framework, learning takes place over a se-
quence of trials with the goal of predicting a fu-
ture discounted sum of rewards. Our first analy-
sis shows that, together with a stability assump-
tion, any no-regret online learning algorithm that
minimizes Bellman error ensures small prediction
error. Our second analysis shows that applying
the family of online mirror descent algorithms on
temporal difference loss also ensures small predic-
tion error. No statistical assumptions are made on
the sequence of observations, which could be non-
Markovian or even adversarial. Our approach thus
establishes a broad new family of provably sound
algorithms and provides a generalization of pre-
vious worst-case results for minimizing predictive
error. We investigate the potential advantages of
some of this family both theoretically and empiri-
cally on benchmark problems.

1 Introduction
Reinforcement learning (RL) is an online paradigm for opti-
mal sequential decision making where a agent interacts with
environments, takes actions, receives reward and tries to max-
imize its long-term reward, a discounted sum of all the re-
wards that will be received from now on. An important
part of RL is policy evaluation, the problem of evaluating
the expected long-term rewards of a fixed policy. Temporal
Difference (TD) learning [Sutton, 1988] is perhaps the best
known family of algorithms for policy evaluation. It has been
observed that when combined with function approximation,
TD may diverge and lead to poor prediction. The Residual
Gradient (RG) was proposed [Baird, 1995] to address these
concerns. RG attempts to minimize the Bellman Error (BE)
(see definition in Sec. 2), typically with linear function ap-
proximation, using stochastic gradient descent. Comparison
between the family of TD algorithms and RG has received
tremendous attention, although most of the analyses heav-
ily rely on certain stochastic assumptions of the environment
such as that the sequence of observations are Markovian or

from a static Markov Decision Process (MDP). For instance
[Schoknecht and Merke, 2003] showed that TD converges
provably faster than RG if the value functions are presented
by tabular form. [Scherrer, 2010] shows that Bellman Resid-
ual minimization enjoys a guaranteed performance while TD
does not in general when states are sampled from arbitrary
distributions (off-policy) that may not correspond to trajecto-
ries taken by the system.

[Schapire and Warmuth, 1996] and [Li, 2008] provided
worst-case analysis of long-term predictive error for vari-
ants of the linear TD and RG under a non-probabilistic online
learning setting. Their results rely on the spectral analysis of
a matrix that is related to specific update rules of the TD and
RG algorithms under linear function approximation. Unfor-
tunately, this approach makes it more difficult to extend their
worst-case (assumption free) analysis to broader families of
algorithms and representations that target Bellman and Tem-
poral Difference errors.

Following [Schapire and Warmuth, 1996] and [Li, 2008]’s
online learning framework, we present two simple, general
connections between long-term predictive error and no-regret
online learning that attempts to minimize BE and TD. The
central idea is that methods such as TD and RG should be
fundamentally understood as online algorithms as opposed
to standard gradient methods, and that one cannot simulta-
neously make consistent predictions in the sense of TD and
BE while doing a poor job in terms of long-run predictions.
Similar to [Schapire and Warmuth, 1996] and [Li, 2008], our
analysis does not rely on any statistical assumptions about the
underlying system. This allows us to analyze difficult scenar-
ios such as MDP with transition probabilities changing over
time or even with each transition chosen entirely adversarial.

The main contribution of the paper is the analysis of the
connections between online long-term reward prediction and
no-regret online learning. Particularly, the first analysis on
BE shows that any no-regret and stable [Ross and Bagnell,
2011] online learning algorithms, when targeting optimizing
BE, ensure small prediction error. The second analysis fo-
cuses on TD and shows that when applying the family of On-
line Mirror Descent (OMD) on TD, we can also achieve small
prediction error. We additionally show that Implicit Online
Learning is another proper algorithm that can be used for op-
timizing TD to achieve small prediction error. These two anal-
ysis consequently suggests a broad new family of algorithms.
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Particularly, our analysis on BE generalizes the RG algorithm
from [Baird, 1995] in a sense that RG is a specific example of
our family of algorithms that runs Online Gradient Descent
(OGD) [Zinkevich, 2003] on a sequence of BE loss functions.
For TD, our analysis generalizes TD⇤(0) from [Schapire and
Warmuth, 1996] by showing that running OGD—a special
form of OMD, reveals the update rule of TD⇤(0).

2 Preliminaries
We consider the sequential online learning model presented
in [Schapire and Warmuth, 1996; Li, 2008] where no statisti-
cal assumptions about the sequence of observations are made.
The sequence of the observations can either be Markovian as
typically assumed in RL problem settings or even adversar-
ial. We define the observation at time step t as xt 2 Rn,
which usually represents the features of the environment at
t. Throughout the paper, we assume that feature vector x is
bounded as kxk2  X . The corresponding reward at step t
is defined as rt 2 R, where we assume that reward is always
bounded |r|  R 2 R+. Given a sequence of observations
{xt} and a sequence of rewards {rt}, the long-term reward
at t is defined as yt =

P1
k=t �

k�trk, where � 2 [0, 1) is
a discounted factor. Given a function space F the learner
chooses a predictor f at each time step from F for predicting
long-term rewards. Throughout this paper, we assume that
any prediction made by a predictor f at a state x is upper
bounded as |f(x)|  P 2 R+, for any f 2 F and x.

At time step t = 0, the learner receives x0, initializes a
predictor f0 2 F and makes prediction ŷ0 of y0 as f0(x0).
Rounds of learning then proceeds as follows: the learner
makes a prediction ŷt of yt at step t as ft(xt); the learner
then observes a reward rt and the next state xt+1; the learner
updates its predictor to ft+1. This interaction repeats and is
terminated after T steps. Throughout this paper, we call this
problem setting as online prediction of long-term reward.

We first define the signed Bellman Error at step t for pre-
dictor ft as bt = ft(xt) � rt � �ft(xt+1), which measures
effectively how self consistent ft is in its predictions between
time step t and t + 1. We define the corresponding Bellman
Loss at time step t with respect to predictor f as:

`bt(f) := (f(xt)� rt � �f(xt+1))
2. (1)

We also define signed Temporal Difference Error (signed
TD error) at step t for predictor ft as dt = ft(xt) � rt �
�ft+1(xt+1). We define TD⇤ Loss at step t as:

`dt (f) := (f(xt)� rt � �ft+1(xt+1))
2. (2)

The Signed Prediction Error of long-term reward at t for
ft is defined as et = ft(xt) � yt and e⇤t = f⇤(xt) � yt for
f⇤ accordingly. We will typically be interested in bounding
the Prediction Error (PE) e2t of a given algorithm in terms
of the best possible PE. To lighten notation in the following
sections, all sums over time indices implicitly run from 0 to
T � 1 unless explicitly noted otherwise.

3 Online Learning for Long-Term Reward
Prediction

In this section, we first propose a new perspective of RG al-
gorithm and TD⇤ algorithm: we show that RG and TD⇤ both

could be understood as running Online Gradient Descent on
Bellman loss `bt and TD⇤ loss `dt , respectively.

At every time step t, after receiving the Bellman loss `bt(f),
let us apply OGD on `bt(f):

ft+1 = ft � µtbt(rfft(xt)� �rfft(xt+1)), (3)

where we denote rff(x) as the functional gradient of the
evaluation functional f(x) at function f .1

Now for linear function approximation where f(x) is rep-
resented as wT

x, the update step in Eq. 3 exactly reveals the
RG algorithm proposed by [Baird, 1995].

Now, let us apply OGD to the TD⇤ loss `dt (f), we get the
following update step:

ft+1 = ft � µtdtrfft(xt). (4)

Note that the above update rule is implicit in a sense that the
Right Hand Side (RHS) and the Left Hand Side (LHS) both
have ft+1 (dt has ft+1). To get the explicit update rule for
ft+1, one needs to solve ft+1 from Eq. 4. If we substitute
the linear function approximation f(x) = w

T
x into Eq. 4

and solve for wt+1, one can exactly reveal the TD⇤(0) update
rule proposed in [Schapire and Warmuth, 1996].2

Online Gradient Descent is one of the popular no-regret
online learning algorithms. The above perspective suggests
that RG and TD could be understood as applying a special
no-regret online algorithm—OGD, to Bellman loss and TD⇤

loss. A natural question that one would like to know is that
whether any other no-regret online algorithms, such as On-
line Newton step [Hazan et al., 2006], Online Frank Wolf
[Hazan and Kale, 2012] and implicit online learning [Kulis et
al., 2010], can be applied to Bellman loss `bt and TD⇤ loss `dt ,
and achieve similar guarantees on PE.

3.1 Optimizing Bellman Loss
In this section, we establish a connection between optimiz-
ing Bellman loss and worst case long-term predictive error.
Particularly, we show that optimizing Bellman loss with any
stable and no-regret online algorithms ensures small predic-
tion error for long-term reward prediction.

We first define the stability condition:
Definition 3.1 Online Stability: For the generated sequence
of predictors ft, we say the algorithm is online stable if:

lim
T!1

1

T

X
(ft(xt+1)� ft+1(xt+1))

2 = 0. (5)

Intuitively, the online stability means that on average the dif-
ference between successive predictors is eventually small.
That is, the difference between ft(xt+1) and ft+1(xt+1) is
small on average. Online stability is a general condition and
does not severely limit the scope of the online learning al-
gorithms. For instance, when f is linear, the definition of
stability of online learning in [Saha et al., 2012] (see Eq. 3

1We assume the function rff(x) belongs to F . This is true for
function classes such as Reproducing Kernel Hilbert Space (RKHS).

2This is why we call `dt (f) TD⇤ loss, since with OGD, it reveals
the TD⇤(0) algorithm, not the TD algorithm. However, nearly iden-
tical results can be established for TD loss which replaces ft+1 by
ft in `dt , and classic TD can be recovered by OGD on TD loss.
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in [Saha et al., 2012]) and [Ross and Bagnell, 2011] implies
our form of online stability. In fact, we can show that many
popular no-regret online learning algorithms including OGD,
ONS, OWF, implicit online learning, and FTRL satisfy our
online stability condition. We refer reader to [Sun and Bag-
nell, 2015] for the detailed study of the online stability con-
dition for the above mentioned no-regret online algorithms.

Define ✏t = ft(xt+1)� ft+1(xt+1), with the online stabil-
ity condition, we now ready to state the main theorem:
Theorem 3.2 Assume a sequence of predictors {ft} is gen-
erated by running some online algorithm on the sequence of
Bellman loss {`bt}. For any predictor f⇤ 2 F , the sum of
prediction errors

P
e2t can be upper bounded as:

(1� �)2
X

e2t 2
X

(b2t � b⇤2t ) + 2�2
X

✏2t

+ 2(1 + �)2
X

e⇤2t +M, (6)

where

M = 2(� + �2)(e⇤20 � e⇤2T )� (�2 � �)(e2T � e20).

By running a no-regret and online stable algorithm, as T !
1, the average prediction error is then asymptotically upper
bounded by a constant factor of the best possible prediction
error in the function class:

lim
T!1

P
e2t

T
 2(1 + �)2

(1� �)2

P
e⇤2t
T

. (7)

The proof of the theorem only consists of easy application of
telescoping tricks and Cauchy-Schwart inequalities. We refer
readers to [Sun and Bagnell, 2015] for the detailed proof of
the above theorem. We emphasize that the above analysis is
independent of the particular form of function approximation.

When e⇤t = 0, 8t, from Theorem. 3.2, it is easy to see that
no-regret rate of (1/T )

P
(b2t � b⇤2t ) and the online stability

rate of (1/T )
P

✏2t together determine the rate of the conver-
gence of (1/T )

P
e2t . When T ! 1 and � ! 1 (specifi-

cally when � � (1/
p
2)), our upper bound analysis in Eq. 7

is asymptotically tighter than the upper bound in [Li, 2008]
(Eq. 12) provided for RG. Since a large number of popular no-
regret online algorithms satisfy the online stability condition,
our theorem essentially expends the family of algorithms that
can be used to learn predictors of long-term rewards.

We emphasize here that stability of online algorithms is
essential for our results– the no-regret property can be shown
by counter-example to be insufficient to achieve low predic-
tive error [Sun and Bagnell, 2015].

3.2 Optimizing TD⇤ Loss
The analysis in Sec. 3.1 is general enough such that almost
any existing no-regret online learning algorithm can be used
for optimizing Bellman loss and ensures small prediction er-
ror on long-term rewards. Though we wish such a nice gener-
alization also exists for TD, we could not establish it. Instead
we show that a broad family of online learning algorithms—
Online Mirror Descent (OMD), when applied to TD⇤ loss, en-
sures small prediction error similar in form to [Schapire and
Warmuth, 1996]. We also show that implicit online gradient

descent, a special form of implicit online learning, can also
be used for optimizing TD⇤ loss. The proofs of the theorems
presented in this section are in the appendix.3

Online Mirror Descent for TD⇤ loss
Let us define R(f) as a regularization and assume that R(f)
is a both smooth and strongly convex function with respect
to f with norm k · k, defined by the inner product associated
with F as kfk2 = hf, fi. A function R(f) is ↵-smooth and
�-strongly convex if and only if:

�

2
kft � ft+1k2  R(ft)�R(ft+1)�

rR(ft+1)(ft � ft+1) 
↵

2
kft � ft+1k2. (8)

Without loss of generality, we assume that R(f) is 1-strongly
convex (otherwise simply scale it) and ↵-smooth function
with respect to f with norm k · k. For instance, when f is
linear, kwk2/2 is 1-strongly convex and 1-smooth. When ap-
plying OMD on TD⇤ loss, we have the following update rule,
which we denote as OMD-TD⇤:

ft = argmin
f

hf, ✓ti+
1

µ
R(f); (9)

✓t+1 = ✓t + (ŷt � rt � �ŷt+1)rfft(xt). (10)

Note that when we compute ft using Eq. 9, the RHS of Eq. 9
actually implicitly depends on ŷt, which is equal to ft(xt)
and hence depends on ft. Here, we assume that though ft
appears on both sides of Eq. 9, we can still solve for ft from
Eq. 9 as TD⇤(0) does. In practice, whether or not we can
solve ft from Eq. 9 could depend on the form of R(f). For
instance, when R(f) = kfk2/2 and f belongs to a Repro-
ducing Kernel Hilbert Space (RKHS) (e.g., linear function
f(x) = w

T
x), we can achieve closed-form update of ft. In

fact, when f(x) = w

T
x, R(w) = kwk2, it is easy to show

the update rule from Eq. 9 reveals the TD⇤(0) algorithm.
The following theorem shows optimizing TD⇤ loss with

OMD ensures small long-term prediction error:
Theorem 3.3 With µ = O( 1p

T
) and F being a RKHS,

OMD-TD⇤ (Eq. 9 and 10) has the following bound:
X

e2t  2 + 2�2

(1� �)2

X
e⇤2t +O(

p
T ). (11)

For the average prediction error
P

e2t/T , we have:

lim
T!1

P
e2t

T
 2 + 2�2

(1� �)2

P
e⇤2t
T

. (12)

Implicit Online Learning for TD⇤ Loss
The OMD framework generalizes quite a few popular online
algorithms such as Online Gradient Descent, Normalized Ex-
ponential Gradient (normalized EG), OGD with lazy projec-
tion and p-norm algorithm [Shalev-Shwartz, 2011]. However,
OMD is conceptually different from another family of online
algorithms—Implicit Online Learning [Kulis et al., 2010].
Implicit online learning algorithms usually are more stable
and robust compared to algorithms with explicit update rules.

3Available at http://www.cs.cmu.edu/⇠wensun

4215



The idea of implicit update has been applied to classic TD
[Tamar et al., 2014], where the authors show the algorithm
with implicit update is more stable than classic TD in a sense
that it is not sensitive to learning step size.

Briefly, given the sequence of loss `t(f), implicit online
learning updates f as ft+1 = argminf `t(f)+

1
µt
DR(f, ft),

where DR(f, ft) is the Bregman divergence generated from
regularization R. For special case where f is in RKHS,
TD⇤ loss `dt (f) is actually a quadratic loss with respect to
f . Hence, we propose to apply the implicit Online Gradient
Descent—one special form of implicit online learning, to TD⇤

loss. Set R(f) = kfk2/2, we have the following update rule:

ft+1 = argmin
f

`dt (f) +
1

µt
kft � fk2, (13)

Note that the above update rule is implicit since ŷt+1 (buried
in `dt ) depends ft+1. Depending on the form of f , we can
achieve closed-form solution for ft+1 from Eq. 13.

Below, we demonstrate a closed-form update rule for linear
function f(x) = w

T
x with R(w) = kwk2. Replace f with

w in Eq. 13, take the derivative with respect to w, set it to
zero, and solve for wt+1, we will get:

wt+1 = wt �
µt

1 + µtkxtk22
(wT

t xt � rt � �ŷt+1)xt. (14)

Note that ŷt+1 implicitly depends on wt+1. To solve for
wt+1, we first dot product xt+1 on both sides of the above
equation (the LHS becomes ŷt+1), solve for ŷt+1 and then
substitute ŷt+1 back to the equation and solve for wt+1. This
gives us the following Implicit-TD⇤ update step:

wt+1 = wt �
µ

1 + µxT
t (xt � �xt+1)

btxt, (15)

where bt = (wT
t xt � rt � �wT

t xt+1). The corresponding
update rule for RKHS with kernel K(·, ·) is:

ft+1 = ft �
µ

1 + µK(xt,xt � �xt+1)
btK(xt, ·), (16)

where bt = (ft(xt)� rt � �ft(xt+1)).
Implicit-TD⇤ has the following upper bound on PE:

Theorem 3.4 With µ = O( 1p
T
) and F being a RKHS,

Implicit-TD⇤ (Eq. 15 and 16) has the following bound:
X

e2t  (1 + �)2(2 + 2�2)

(1� �)2

X
e⇤2t +O(

p
T ). (17)

For the average prediction error
P

e2t/T , we have:

lim
T!1

P
e2t

T
 (1 + �)2(2 + 2�2)

(1� �)2

P
e⇤2t
T

(18)

3.3 Discussion
The bound of OMD-TD⇤ is the tightest compared to Implicit-
TD⇤ and RG. Though our OMD-TD⇤ bound is not as tight as
the one from [Schapire and Warmuth, 1996], our analysis is
more general. Our bound of RG is asymptotically tighter than
the one from [Li, 2008] when � ! 1. Experimentally we
find that Implicit-TD⇤ performs really well, which indicates
that our worst-case bound for Implicit-TD⇤ may be not tight.
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Figure 1: Convergence of prediction error. We applied a set
of online algorithms on Bellman loss {`bt(w)} (dot line) and
TD⇤-loss functions {`dt (w)} (solid line) for Random walk
(left) and Puddle World (right).

4 Experiments
We applied several online learning algorithms to two simu-
lated policy evaluation problems: (1) Random Walk with a
ring chain, which is a variant of the Hall problem introduced
in [Baird, 1995], (2) PuddleWorld adopted from [Sutton and
Barto, 1998]. We tested several popular no-regret and stable
online learning algorithms, including implicit online gradient
descent (implicit OGD), online Newton step (ONS) [Hazan
et al., 2006], online Frank Wolf (OFW) [Hazan and Kale,
2012] and classic online gradient descent [Zinkevich, 2003],
on both TD⇤ loss and Bellman loss.

Fig. 1 shows the convergence of average prediction error
with respect to number of time steps. We note that ONS
and implicit OGD give good convergence speed in general.
Throughout the experiments, we found that implicit OGD
works well for both TD⇤ loss and Bellman loss. Our exper-
imental results also show that our approaches have the pos-
sibility to achieve smaller prediction error than TD(0) (e.g.,
Fig. 1b). Note that when optimizing TD⇤ loss, ONS and OFW
actually achieve good performance, though our analysis on
TD⇤ loss currently does not support ONS or OFW.

The experiment results for RKHS can be found at [Sun and
Bagnell, 2015], where we also demonstrated these algorithms
on a simulated helicopter hover domain [Coates et al., 2008].

5 Conclusion
We introduced a new perspective for RG and TD—they could
be understood as running special no-regret online algorithm
on Bellman loss and TD⇤ loss, respectively. This new per-
spective enables us to derive two generalizations, one for RG
and one for TD⇤ in the online setting, where no statistical as-
sumptions are placed on the observations. Particularly, we
show that any no-regret and stable online algorithms, when
applied to Bellman loss, ensures small prediction error. For
TD, we connect TD⇤ to two family of online algorithms—
Online Mirror Descent and Implicit Online Learning, and we
show that optimizing TD⇤ loss with OMD and implicit OGD
guarantees small prediction error. The remaining open prob-
lem is that whether there exists a more general connection
between TD⇤ loss and no-regret online algorithms: when op-
timizing TD⇤ loss, are the no-regret property and stability suf-
ficient to achieve low prediction error?
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