
Abstract
There exist solutions for tracking of objects in 3D
space involving hi-tech cameras and powerful
computer systems capable of tracking many objects
in large dynamic space simultaneously in real time.
On the other hand, there are situations where such
functionality is not necessary and the conditions
may be specified in more detail, which makes the
task significantly easier. This paper shows the
possibility to track a single object using low-cost
cameras on an ordinary laptop in a small-scale and
mostly static environment. This solution is useful
for standalone tracking in mobile robotics and
particularly in the debugging phases, where the
user needs to judge the robot movement system
independently on what the robot claims.

1 Introduction1
The cost of robotic hardware is going down and inexpensive
robotic platforms are now accessible to many researchers.
This increases the number of teams doing research in the
area of mobile robotics, which raises the needs also for
inexpensive supporting tools. For example, research in
mobile robotics requires some system for tracking objects in
3D space to have a “ground truth” to which robot navigation
and localization systems can be compared.

There exist very precise commercial systems for 3D
object tracking. The most notable two are the Hawk-Eye
[Hawkins, 2016] and the Vicon [2016] systems. However,
due to their price tag they are not accessible to everyone. On
the low-cost side, several projects such as the Microsoft
Kinect [2016] and LeapMotion [2016] sensors can provide
depth information, but for acquiring tracked object location,
further processing would be necessary. Also, both these
sensors use active infrared projection or illumination, which
is very problematic in applications where ambient light may
contain this part of spectrum. For example, scenes with
direct sunshine are very hard or even impossible to be
observed by these two systems.

Research is supported by the Czech Science Foundation under the
project P103-15-19877S.

 In this paper we describe a low-cost system called Dove-
Eye for tracking an object in 3D space. The primary task
was to design a passive system that observes the scene using
low-cost cameras such as web cameras, uses an ordinary
(Linux) laptop for data processing and visualization, and
that is easy-to-use without complicated setting. We focus on
tracking of a single object that is easy to recognize (such as
a green ball in an environment with little or none green
color) and that is moving slowly in a given scene observed
by static cameras. The ambition is showing how existing
computer vision techniques can be integrated to solve the
above task – to get a system applicable in real-life
environment without the hassle of complicated setting and
calibration. From the theoretical point of view, most of the
algorithms used are already well known. We present a
practical way of assembling all the pieces to create a system
working in real world and usable out of the box.

2 System Usage and Setting
The presented system Dove-Eye [Koutný, 2016] works as
follows. Let us use a set of fixed inexpensive cameras
observing the scene from different points. The smallest
setup consists of two cameras (to get stereovision)
connected to USB ports; more than four or five cameras is
not recommended due to requiring more computational
power without bringing significantly improved results. The
cameras are calibrated fully automatically by capturing a
known pattern that is used to deduce relative location and
distances between the cameras (Figure 1). After the
calibration, a specific object to be tracked is manually
selected in the video frame of each camera – the object is
supposed to be easy to recognize by existing computer
vision techniques, for example by using a specific color that
does not appear elsewhere in the scene. The lines pointing
towards the object from each camera give the location of the
selected object in 3D (in theory, in the intersection of these
lines; in practice the lines may not intersect so the point
nearest to these lines is used instead). The calculated
position is added to the so far constructed object location
set. Consecutively, as the object moves, the trajectory is
drawn in the viewer using this set, forming a virtual 3D path
of the tracked object (Figure 2).

Practical 3D Tracking Using Low-Cost Cameras

Roman Barták, Michal Koutný, David Obdržálek
Charles University in Prague, Czech Republic

bartak@ktiml.mff.cuni.cz (corresponding)

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

4236

3 Realization and Implementation
The application uses the OpenCV computer vision library
[Itseez, 2016] and connects everything together, bringing
the user-friendly solution for setting up the system, tracking,
and logging the object movement. At the application start,
the user selects the cameras, which are to be used as image
input sources for the tracking. From now on, the main
window will show individual images (streams) from all
selected cameras plus a 3D viewer of the scene where the
3D tracking output will be shown (Figures 1 and 2).

3.1 Calibration
The application firstly calibrates the setup by calibrating
individually all cameras one by one and then calibrating
relative positions of each possible pair of cameras. For the
pattern, we have selected the chessboard pattern. During the
calibration, this pattern is looked for on the image using
findChessboardCorners and if a match is found, the position
of this pattern is passed to the calibrateCamera and
stereoCalibrate functions. Single camera calibration gives
for each camera its matrix of intrinsic parameters, radial
distortion, and tangential distortion. The user simply puts
the printed pattern in the field of vision of every camera and
the system automatically calibrates individual cameras and
notifies the user about the progress in the application status
line (Figure 1). Stereo calibration calculates the relative
position of each pair of cameras (i.e. the transformation
between their coordinate systems as rotation and translation
matrices) and the fundamental matrix depicting the relation
between corresponding points in the two camera outputs.
The calibration pattern must be positioned in the scene so
that it is well visible on a specific pair of cameras.
Analogous to the single camera calibration, the system
performs the calibration automatically and notifies the user
in the application status line.

3.2 Tracking
For the tracking, the user has to select the object to be
tracked. This is done by marking a rectangular area on each
of the camera outputs (Figure 2). Color-based tracker which
uses color histogram of the originally marked object and
backprojection on the consecutive video frames proved to
work reliably provided that objects featuring similar colors
were not present in the scene background. Kalman filter is
used for movement estimation. For the base movement
prediction, linear approximation was used as a first fast
stand-by. When the object is tracked on individual camera
images, 3D localization is performed. This is done by
exploiting the triangulatePoints OpenCV function for each
pair of cameras. For more cameras, a simple centroid of
individually calculated positions is used.

4 Summary
The presented project brings an easy-to-use tool for visual
tracking of a selected object in 3D space. The tool can be
exploited without complicated setting in any environment
and it is particuarly dedicated to mobile robotics researchers
to provide independent tracking of robot’s movement.

References
[Hawkins, 2016] Paul Hawkins, Hawk-Eye Innovations

(Sony group), Hawk-Eye vision processing system,
http://www.hawkeyeinnovations.co.uk

[Itseez, 2016] Itseez. OpenCV Open Source Computer
Vision Library, http://www.opencv.org

[Kinect, 2016] Microsoft Kinect Sensor SDK,
https://dev.windows.com/en-us/kinect

[Koutný, 2016] Michal Koutný, Dove-Eye system,
http://koutny.org/dove-eye/

 [Leapmotion, 2016] Leap Motion, Inc., Leap Motion
Controller, https://www.leapmotion.com

 [Vicon, 2016] Vicon Motion Systems Ltd., Vicon Motion
Capture System, http://www.vicon.com

	

Figure 1: Calibration of cameras and their pairs

Figure 2: Tracking: The user drags the object on the floor.

4237

