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Abstract

We will demonstrate a tabletop robotic agent that
learns new tasks through interactive natural lan-
guage instruction. The tasks to be demonstrated are
simple puzzles and games, such as Tower of Hanoi,
Eight Puzzle, Tic-Tac-Toe, Three Men’s Morris,
and the Frog and Toads puzzle. We will include
a live, interactive simulation of a mobile robot that
learns new tasks using the same system.

Humans are not limited to a fixed set of innate or prepro-
grammed tasks. We quickly learn novel tasks through instruc-
tion. We learn to play new games and puzzles in just a few
minutes and we can learn navigation and manipulation tasks
such as delivering or fetching a package. We are headed to a
future populated with autonomous systems that have the cog-
nitive and physical capabilities to perform a wide variety of
tasks; however, today we rely on either hand programming or
extensive training to teach these systems new tasks. Consider
a future where it is possible to directly instruct agents with
new tasks in real time using language. This would greatly in-
crease the ability of non-experts to extend and customize the
computational systems they interact with every day.

Our demonstration is centered on the Rosie system [Mohan
et al., 2012; Kirk and Laird, 2014] developed in Soar [Laird,
2012] that is embodied in both a tabletop robot and a mobile
robot. In the tabletop robot, Rosie learns simple puzzles and
games, as well as object manipulation tasks that mirror sim-
ple kitchen-like activities. In the mobile robot, it learns tasks
that involve simple navigation, manipulation, and communi-
cation. The agent can learn the tasks from scratch, including
termination/goal conditions, legal actions, and task-specific
concepts that are grounded in its perceptual and functional
primitives. It also transfers learned knowledge to other tasks,
such as the concept of three-in-a-row, which can be learned
for Tic-Tac-Toe and then used in Three Men’s Morris. If a
new concept is used, such as when the agent is taught an ac-
tion for Othello: ‘If the locations between a clear location

and a captured location are occupied then you can place a

piece on the clear location.’, it will request definitions of all
undefined words, such as ‘clear’, ‘captured’, and ‘occupied’.
The instructor can then provide a definition, such as ‘If a lo-

cation is below an enemy piece then the location is occupied.’

We have made the following extensions to Rosie:

1. Rosie has a new parser, implemented in Soar, that al-
lows the instructor to use a restricted form of natural
language. The parser supports simple grammatical con-
structions that are sufficient to support natural instruc-
tions for all the described tasks (see example below).
The parser is completely integrated in Rosie, and uses
syntactic, semantic, and pragmatic knowledge to gener-
ate a semantic description of linguistic input that is used
by the task learning system.

2. Rosie is now also embodied in a real-world mobile
robot. The original tabletop system had complete per-
ception of all objects. In the mobile domain, Rosie must
understand and reason about commands that refer to ob-
jects outside of its immediate perception, including un-
known objects, such as when it is requested to fetch an
object from another room.

3. Rosie can learn many more kinds of concepts and can
compose them to form complex hierarchical concepts.
These include concepts that require internal computa-
tion, such as counting.

4. Rosie can learn goal states through visual demonstra-
tions in addition to natural language descriptions. Rather
than explicitly describing the conditions of the goal,
which can be tedious, the instructor can demonstrate it:
‘This is the goal state.’ After Rosie constructs a hypoth-
esis, ‘I think the goal state is that...’, the instructor can
provide refinements through subsequent interactions.

5. Finally, revisions and extensions have made Rosie much
faster. This includes many optimizations, but most im-
portantly it includes the use of Soar’s chunking mecha-
nism to dynamically compile the learned task knowledge
into procedural rules, eliminating costly interpretation
of declarative structures. As a result, the efficiency of
Rosie’s task reasoning using learned knowledge (such
as when it is searching for a solution to a problem) is
comparable to hand-coded knowledge.

Many of the games and puzzles our agent can learn are ob-
vious isomorphisms of the traditional versions. These differ-
ent versions are often necessary because of limits in percep-
tual and motor system capabilities. For example, the arm is
not dexterous enough to manipulate disks and place them on
pegs. Therefore, for the Tower of Hanoi puzzle, we use three

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

4248



blocks of different sizes and three locations instead of pegs
and disks. Below are the instructions for an isomorphism of
the Tower of Hanoi puzzle.

• The name of the puzzle is tower-of-hanoi.

• You can move a clear block onto a clear

object that is larger than the block.

• The goal is that a large block is on a

blue location and a medium block is on

the large block and a small block is on

the medium block.

Following these instructions, Rosie builds the internal
structures necessary to interpret the described conditions,
learns procedural knowledge to efficiently compute the con-
ditions and test for the goal, and then internally searches for
a solution. Once the goal is found (in ⇠1 second), Rosie ex-
ecutes the plan using the robot arm.

Rosie also learns goal-oriented tasks for a mobile robot in a
large, multi-room environment. It drives around the environ-
ment, interacts with simple objects, and communicates with
people. It learns new tasks such as ‘Deliver the package to

the main office,’ ‘Tell Alice a message,’ and ‘Fetch a stapler.

To teach a task, the instructor describes the goal (‘The pack-

age is in the main office’), and if necessary, the actions that
the agent should execute to achieve the goal. Once the goal is
achieved, the agent performs a retrospective causal analysis
of its actions and learns a policy for achieving the goal.

1 Demonstration Details

We will demonstrate our tabletop robot, which consists of a
small robot arm and a Kinect sensor (see Figure 1). We will
give live demonstrations of Rosie learning and solving sim-
ple puzzles, such as Tower of Hanoi and the Frog and Toad
puzzle. We will also show Rosie learning simple games such
as Tic-Tac-Toe, that can then be played with spectators.

It would not be feasible for us to demonstrate task learning
for a real mobile robot, but we can teach the same kinds of
tasks with a simulated robot and environment. We will show
live demonstrations of teaching the agent tasks involving nav-
igation, manipulation, and communication, such as delivering
an object to a person, fetching an object, telling a person a
message, and guiding a person to a desired location.

2 Related Work

Although there has been a variety of research on task learn-
ing, they often depend on learning from many examples or on
off-line processing. For example, Kaiser [Kaiser, 2012] and
Barbu et al. [Barbu et al., 2010] describe systems that extract
the relevant goal-state predicates for games, by viewing many
iterations of game play. Most learning from demonstration
systems [Argall et al., 2009][Chao et al., 2011][Nicolescu
and Mataric, 2003] for robotic tasks teach action sequences
and not descriptions of goals or conditions. Closely related to
our work is the work of Hinrich et al. [Hinrichs and Forbus,
2014], where a computer agent learns to play Tic-Tac-Toe
from interactions and gestures with a human instructor.

Figure 1: The Tabletop Version of Rosie.
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