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Abstract

Demand Response (DR) allows utilities to curtail
electricity consumption during peak demand peri-
ods. Real time automated DR can offer utilities a
scalable solution for fine grained control of curtail-
ment over small intervals for the duration of the en-
tire DR event. In this work, we demonstrate a sys-
tem for a real time automated Dynamic DR (D?R).
Our system has already been integrated with the
electrical infrastructure of the University of South-
ern California, which offers a unique environment
to study the impact of automated DR in a com-
plex social and cultural environment including 170
buildings in a “city-within-a-city” scenario. Our
large scale information processing system coupled
with accurate forecasting models for sparse data
and fast polynomial time optimization algorithms
for curtailment maximization provide the ability to
adapt and respond to changing curtailment require-
ments in near real-time. Our D?R algorithms au-
tomatically and dynamically select customers for
load curtailment to guarantee the achievement of a
curtailment target over a given DR interval.

1 Introduction

The reliable operation of a power grid requires the constant
matching between fluctuating load and supply. Demand Re-
sponse (DR) is a technique whereby customers are asked to
curtail their demands, typically during peak demand periods
- when the grid exhibits very high demands potentially sur-
passing the generation capacity. Given the availability of bi-
directional smart meters, we have developed a system for per-
forming DR optimization in real time which we call Dynamic
Demand Response (D?R).

We have implemented D?R on our campus micro-grid to
demonstrate its large scale feasibility and identify and re-
solve the challenges associated with practical deployment.
Our D?R technique uses learning of occupant energy strat-
egy preferences (at fine grained scales ranging from buildings
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to floor levels within buildings) to make accurate electricity
consumption predictions and individual curtailment recom-
mendations using only a small subset of consumption data.

2 D’R Implementation

Buildings on our campus are instrumented with smart meter-
ing and control that can be used to implement a large num-
ber of advanced energy curtailment strategies such as reset-
ting temperature set points, reducing air flow, duty cycling.
A simplified control and data flow diagram of our DR im-
plementation is shown in Figure 1. The micro-grid utility
initiates a DR event using OpenADR messages and provides
a curtailment target -y to be achieved over a given DR interval
T, typically 4 hours. The Policy Engine (PE) module pro-
vides campus wide curtailment strategy policy recommenda-
tions based on the analysis of historical consumption data and
curtailment maximization customer (building) selection algo-
rithms. Smart meter data is aggregated over 15 minute inter-
vals into a consumption database. State-of-the-art data-driven
models are then used by the PE module to predict energy con-
sumption values over each 15 minute period comprising the
entire DR interval T for each building across campus. This
information is then provided to the optimization module in
the form of a discrete time varying curtailment matrix. The
outputs of the PE are sets of buildings-strategy pairs at 15
minute intervals that will achieve the required curtailment tar-
get v over 7.
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Figure 1: Control and Data Flow For D?R Implementation
Our Policy Engine (PE) is composed of an influence model

based demand prediction engine that feeds into a building-
strategy selection optimization module as shown in Figure 2.



Historical data from the energy consumption database before
the DR day is used in conjuction with time series forecasting
techniques such as ARIMA and Lasso-Granger (for learning
temporal dependencies among multiple timeseries) to learn
occupant energy strategy preferences and load profiles. A
significant challenge is to ensure accurate prediction in the
absence of high quality consumption data. To ensure qual-
ity data we have developed several techniques: interpolation
methods for estimating intermittent missing data and sophisti-
cated influence based learning models for estimating system-
atically unavailable data over larger periods. We have shown
that only a small subset (==7%) of the meters are required in
real-time to make predictions for buildings across the campus
micro-grid [Aman et al., 2015].
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The results of our adaptive customer prediction models are
fed into our optimization module which consists of fast ap-
proximation algorithms for ILP based fair energy curtailment
maximization [Kuppannagari et al., 2016]. Given a targeted
curtailment value + over DR interval 7', curtailment matrix
M, the optimization module selects sets of building-strategy
pairs for each 15 minute interval to achieve the curtailment
value v over T. Note that optimizing for v over interval
T without considering per-period curtailment values might
lead to aggressive curtailment in some periods and low cur-
tailment in others. This could be unsustainable to the util-
ity as demands in periods with low curtailment may exceed
the generation capacity. Therefore, we have defined and im-
plemented the notion of Sustainable DR (SDR) in which the
targeted curtailment value ~y is distributed proportionally (as
{7} across interval T [Kuppannagari et al., 2016]. Addi-
tionally, we have included the notion of fairness (via building
curtailment budgets) and strategy switching overhead as con-
straints in our optimization algorithm. We have shown that
this problem is NP-hard and have developed fast polynomial
time approximation schemes (PTAS) as well as bounded ran-
domized rounding heuristics with provable error bounds i.e.
deviation from the curtailment target v. We have shown that
our SDR algorithms achieve results with a very low absolute
error of 0.001-0.05 kWh range [Kuppannagari et al., 2016].

3 Implementation Challenges

Real time quality data availability is a key challenge that we
have addressed earlier (Section 2). Real world challenges
such as changing environmental conditions may affect our
prediction accuracy, buildings may have to be dropped out
of DR due to unresponsiveness or thermal comfort violation.
We address such cases by performing dynamic customer re-
selection to offset deviations in the curtailment target. An-
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other challenge is scalability while maintaining curtailment
accuracy which we have addressed by developing fast poly-
nomial time approximation algorithms with bounded errors.
Finally, extending our implementation to a large city environ-
ment will face human behavioral challenges. Determining the
right customer incentives to obtain a reasonable compliance
rate is an open challenge that needs to be addressed.

4 Innovations, Benefits and Importance

Traditionally, DR programs communicate the schedule to
customers much ahead of time and are very inefficient due
to inaccuracies over long prediction horizons. We have ad-
dressed these inefficiencies using our innovative real-time
D?R techniques which can be dynamically adjusted to man-
age supply/demand imbalances over short timescales (15
minutes). Using D2R, we have achieved curtailment values
as high as 1.2 MW in a single DR event in our campus micro-
grid.

A key innovation of our DR technique is the develop-
ment of influence based machine learning techniques to pre-
dict consumption even with partial or missing data. Another
key innovation is the development of fast polynomial time op-
timization algorithms for customer selection which provide
near optimal results.

By addressing the various challenges, we have imple-
mented a DR program with very low curtailment errors (due
to prediction inaccuracies and errors due to the approxima-
tion algorithms for SDR) which are < 10% as opposed to
30% in other techniques [Kwac and Rajagopal, 2014]. Hence,
our state-of-the-art implementation can be used as a model to
implement city scale efficient automated DR programs as is
being currently undertaken in our city.

5 Details of the Demo

We will demonstrate a delayed implementation of a live DR
event that occurred earlier. The consumption values until 12
noon of the DR day will be used by our prediction engine.
A simulated curtailment request with a timestamp of 12 noon
will be sent to the PE which is implemented as a webserver.
We will show the consumption predictions and strategies rec-
ommended by the PE over 15 minute intervals. Finally, we
will evaluate the success of our DR algorithm by measuring
the curtailment error.
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