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Noise Power Spectral Density Estimation Based on
Optimal Smoothing and Minimum Statistics

Rainer Martin Senior Member, IEEE

Abstract—We describe a method to estimate the power spectral system. If the noise estimate is too low, unnatural residual noise
density of nonstationary noise when a noisy speech signal is given.yill be perceived. If the estimate is too high, speech sounds
The method can be combined with any speech enhancement algo+yj| he muffled and intelligibility will be lost. The traditional

rithm which requires a noise power spectral density estimate. In . . e
contrast to other methods, our approach does not use a voice ac-SNR based voice activity detectors (VAD) are difficult to

tivity detector. Instead it tracks spectral minima in each frequency tune and their application to low SNR speech results often
band without any distinction between speech activity and speech in clipped speech. Current research [4]-[6] aims therefore at
pause. By minimizing a conditional mean square estimation error jncorporating soft-decision schemes which are also capable of
criterion in each time step we derive the optimal smoothing param- updating the noise psd during speech activity.

eter for recursive smoothing of the power spectral density of the In thi t | noi timati lgorith
noisy speech signal. Based on the optimally smoothed power spec- N WS paper, we Present a novel NoISe estimation algorithim

tral density estimate and the analysis of the statistics of spectral Which is based on an optimal signal psd smoothing method and
minima an unbiased noise estimator is developed. The estimator is on minimum statistics. The psd smoothing algorithm utilizes a

well suited for real ime implementations. Furthermore, toimprove  first order recursive system with a time and frequency dependent
the performance in nonstationary noise we introduce a method to smoothing parameter. The smoothing parameter is optimized

speed up the tracking of the spectral minima. Finally, we evaluate for tracki tati . Is b Lo diti |
the proposed method in the context of speech enhancement and low Or tracking nonstationary signals by minimizing a conditiona

bit rate speech coding with various noise types. mean square error criterion. o o
Speech enhancement based on minimum statistics was pro-

posed in [7] and modified in [8]. In contrast to other methods the
minimum statistics algorithm does not use any explicit threshold
to distinguish between speech activity and speech pause and
. INTRODUCTION is therefore more closely related to soft-decision methods than

ITH the advent and wide dissemination of mobile coni© the traditional voice activity detection methods. Similar to
munications speech enhancement has found many neit-decision methods it can also update the estimated noise psd
applications. In turn the interest in practical and powerful speefH"Ng speech activity. It was recently confirmed [9] that the
enhancement algorithms has grown considerably, and signffiinimum statistics algorithm [7] performs well in nonstationary
cant progress has been made [1], [2]. Yet, speech procesdiRépe-
under adverse conditions is still a challenge. When the signal tol N& minimum statistics method rests on two observations
noise ratio is low or the disturbing noise is nonstationary the ré@mely that the speech and the disturbing noise are usually sta-
sults are plagued by speech distortions and unnatural soundigijcally independentand that the power of a noisy speech signal
or fluctuating residual background noises. frequently decays to the power level of the disturbing noise. It
Frequency domain speech enhancement systems typiciiijherefore possible to derive an accurate noise psd estimate by
consist of a spectral analysis/synthesis system, a spectral gE#king the minimum of the noisy signal psd. Since the min-
computation method, and a background noise power spectfa¢m IS smaller than (or in trivial cases equal to) the average
density (psd) estimation algorithm. While the former two aréalue the minimum tracking method requires a bias compen-
well understood [1]-[3] and easily implemented the noiszation. As we will show in the paper, the bias is a function of
estimator has frequently received less attention. The nof&§ variance of the smoothed signal psd and as such depends
estimator is, however, a very important component of tH¥ the smoothing parameter of the psd estimator. In contrast to
overall system, especially if the algorithm should be capable @®rlier work on minimum tracking [7] which utilizes a constant
handling nonstationary noise. In fact the noise estimator ha§®0othing parameter and a constant minimum bias correction,
major impact on the overall quality of the speech enhancemdfg time and frequency dependent psd smoothing now also re-
quires a time and frequency dependent bias compensation. We
therefore analyze the underlying statistics and develop an ap-
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spectral density estimates. An algorithm for the compensatispectral density estimate of the noisy signal frequently decays
of the bias which is associated with minimum power spectrad values which are representative of the noise power level. The
density estimates is developed in Section V. Section IV presentsthod rests on the fundamental assumption that during speech
the algorithm for searching spectral minima. Special emphagiause or within brief periods in between words and syllables the
is placed on a novel extension which significantly improves thepeech energy is close or identical to zero. Thus, by tracking the
tracking of nonstationary noise. Finally, in Section VIl we summinimum power within a finite window large enough to bridge
marize experimental results in terms of measurements and hggh power speech segments the noise floor can be estimated.
tening tests. To highlight some of the obstacles which are encountered

when implementing such an approach we consider a recursively

Il. PRINCIPLES OFMINIMUM STATISTICS NOISE ESTIMATION smoothed periodogram

A. Spectral Analysis POLE) = aPO\—1,k) + (1 — a)[Y(\ k)2 ©)
In what follows we consider a bandlimited, sampled noisy N . . . )
speech signal(i) which is the sum of a clean speech signaqnd a simplified minimum tracking algorithm. Fig. 1 plots the

. 5 .
s(4) and a disturbing noise(s), (i) = (i) + n(3). i denotes PeriodogramY’ (A, k)", the smoothed periodograff(, k) as

the sampling time index. We further assume thaj andn(s) zi\r; est|mate_0f the signal psd, and the estimated noise power
are statistically independent and zero mean. The noisy sigﬁal()‘_’ k) which has n<_)t yet been comp_ensated for bias asa
y(i) is transformed into the frequency domain by applying nctugn of the frame index and for a single frequency bin
window h(7) to a frame ofL consecutive samples gfi) and k.: 25. The noise inthe noisy speech S|gnaI.|s nonstationary ve-
by computing the FFT of siz& on the windowed data. Beforeh'_CU|ar noise Wlth an overall SNR of approxmately 10dB. The
the next FFT computation the window is shifted Bysamples. window size isL = 2R = 256. The periodograms are recur-

This sliding window FFT analysis results in a set of frequen jvely smoothed with an equivalent (rectangular) window length
domain signals which can be written as f Isn = 0.2 seconds which represents a good compromise be-

tween smoothing the noise and tracking the speech signal. By

L-1 PR assuming independent periodograms and equating the variance
Y(\ k) =" yAR+ p)h(p)e /! (1) of P(\,k) to the variance of a moving average estimator with
n=0 window lengthZs)y the smoothing parameter in (3) can be

computed asx = (Tsmfs/R— 1) /(Tsmfs/R+ 1) = 0.85.

where) is the subsampled time index,c 7, andk is the fre- . . . i o ;
quency binindexk € {0,1,...,L — 1}, which is related to the The noise psd estimaie, (), k) is obtained by picking the min-

normalized center frequen€y by Q, — 2 k/L. Furthermore imum value within a sliding window of 96 consecutive values
to facilitate our notation and to avoid unnecessary normalizati%P()" k), regardless whether speech is present or not.

factors we assumgjﬁ:é R2(1) = 1. Typically, we use a sam- The minimum tracking provides a rough estimate of the noise

pling rate of f, = 3000 Hz andL, = 2R — 256. power. However, we note that to improve the method we have
We note that for all practical purposes and fog {0, L/2} to address the foIIQW|ng_|ssues_. _

the real and imaginary part of a Fourier transform coefficient * The smoothing with a fixed smoothing parameter

Y (), k) can be considered to be independent and can be mod- Widens the peaks of speech activity of the smoothed

eled as zero mean Gaussian random variablest[LBider this psd estimate P(A, k). This will lead to inaccurate
assumption each periodogram Hif{ A, k)|2 is an exponentially noise estimates as the sliding window for the minimum
distributed random variable [10] with probability density func- ~ S€arch might slip into broad peaks. Thus, we cannot use
tion (pdf) smoothing parameters close to one and, as a consequence,
the noise estimate will have a relatively large variance.
fivouii (@) ¢ The noise estimate as shown in Fig. 1 is biased toward
Ulz N lower values.
S 200k i 2},2()\ ") /(TR ARHIEAR) () « In case of increasing noise power, the minimum tracking
A S lags behind.
where o%2(\ k) = E{SO\K)?} and o% (N k) = The main themes of this paper are therefore to find a time

E{|N(\, k)|?} are the power spectral densities of the speeearying smoothing parametes \, k) such that the tracking ca-
and the noise signals, respectivdli(z) denotes the unit step pabilities of the smoothed periodograni), k) and its variance
function, i.e.,U(z) = 1 for x > 0 andl/(x) = 0 otherwise. are better balanced, to develop an algorithm for bias compensa-
Obviously, during speech pausel(\, k) = 0, the mean and tion, and to speed up the noise tracking in general.

the variance ofY (A, k)|? are equal tar3, (A, k) ando% (A, k),

respectively. Ill. OPTIMAL TIME VARYING SMOOTHING

The smoothed signal psd estima®A, k) from which the
o o _ ) ) noise psd estimat#?, (), k) is derived has to satisfy conflicting
observation that even during speech activity a short term POVRIssible requiring the smoothing parameten (3) to be close
1Strictly speaking, this assumption holds only whgh) is stationary with a to one. Or_‘ the other _hand’ th? SmOOth?d de estimate has to
relatively small span of correlation and for a large frame gize oc. track possibly nonstationary noise and, since we do not employ

B. Minimum Statistics Noise Estimation
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Fig. 1. Periodogram|Y (A, k)|?, smoothed periodogran?(X, k) ((3),
a = 0.85), and noise estimai&?, (\, k) for a noisy speech signal and a single
frequency bink = 25.

Fig. 2. Optimal smoothing parametet,; as a function of the smoothexl
posterioriSNR% (A, k).

a voice activity detector, also has to follow the highly nonstn the righthand side of (7) is recognized as a smoothed version

tionary excursions of the speech signal. Especially when tREthea posterioriSNR [11]

input signal has a high dynamic range these requirements are Y (A= 1,k)]2

impossible to satisfy with a constant smoothing parameter Y\ k) = W (8)
However, as we will see below, these problems can be circum- N

vented with a time-varying and possibly frequency dependeniy. 2 plots the optimal smoothing parameteg,, for 0 < 5 <

smoothing parameter(\, &). 10. Since the optimal smoothing parameigy; is between zero
o _ and one a stable and nonnegative noise power estiR(gtgk)
A. Derivation of the Smoothing Parameter is guaranteed.

To derive an optimal smoothing procedure we assumeHaving assumed speech pause in the above derivation does
speech paus@Z(), k) = 0) and consider again the first ordemot pose any principal problems. The optimal smoothing pro-
smoothing equation faP(\, k), now with a time and frequency cedure reacts to speech activity in the same way as to highly
dependent smoothing parameten\, k), nonstationary noise. In case of speech activity the smoothing

parameter is reduced to small values which enables the psd esti-

POE) = a(\ B)YPON — 1, k) + (1 — a(\ k)Y (N k)2 mateP(\, k) to closely follow the time varying psd of the noisy

(4) speech signal.

Since we wanf?(\, k) to be as close as possible to the true noigg Error Monitoring
psda?; (A, k) our objective is to minimize the conditional mean | a practical implementation of the optimal smoothing pa-

square error rameter (7) we replace the true noise psd A, k) by its latest
) 5 estimated valué3, (A — 1, %) and limit the smoothing param-
E{ (PN E) — o% (A F)) ‘ P(A - 17’“)} (5)  eter to a maximum valu€yasx, €.9.,max = 0.96, to avoid
) . o ~ dead lock fory( A\, k) = 1.
from one iteration step to the next. After substitutiig\, k) in | general, the time evolution of the estimated noise psd
(5) and usingE{|Y'(\, k)[*} = o (A k) andE{[Y (A, k)[*} = 52 (k) lags behind the time evolution of the true noise
20° (A, k) the mean square error is given by psd (tracking delay, see Section VI). As a consequence, the
y 2 estimated noise psd might be smaller or larger than the true
E{ (P()\, k) —ox(A, k)) ‘ P(A - 1,k)} noise psd and thus, the estimated smoothing parameter might
= a®(\ k) (P(A = 1,k) _O_JQV()\7I€))2 be too small or too large. Problems may arise when the
4 ) smoothing parameter is close to one since then the smoothed
T on (AR = alA, k) (6) psd estimateP(\, k) cannot react quickly to changes in the

true noise psd. Given this uncertainty in the noise psd estimate
the tracking error in the smoothed short term p¥d, k) must

Ny — 1 - be monitored. When tracking errors are detected the optimal

Aopt (A k) = _ 2 12 ™ smoothing parameter must be decreased to guarantee reliable
L+ (PA=1k) /o (A k)= 1) : :
operation under all circumstances.

and the second derivative, being nonnegative, reveals that this i¥racking errors in the short term estimal¥\, k) can be
indeed a minimum. The ter®(A — 1,k) /o3 (A, k) = (A, k) monitored by comparing’(), k) to a reference quantity, for in-

Setting the first derivative with respectad A, k) to zero yields
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stance the frequency averaged periodogram. Our monitoring alThe bias can be computed analytically only if successive

gorithm therefore compares the average short-term psd estimatieles of P(A\, k), A € {A1,..., A1 —¢,..., Ay — D + 1} are

of the previous framd /L Zf;ol P(Xx — 1,k) to the average independent, identically distributed (i.i.d.) random variables.

periodogrami /L Zf;& |Y' (), k)|? and thus detects deviationsUnless the sequence of successi¥e\, k) values is subsam-

of the short term psd estimate from the actual averaged pgiied this is clearly not given. We therefore move directly to

odogram. The result of this comparison can be used to modifye case of correlated short term psd estimates and develop

the smoothing parameter in case of large deviations. an approximate solution. To simplify notations, we restrict
The comparison between the average smoothed psd estintatkselves to the case of speech pause. All results carry over to

and the average actual periodogram is implemented by meéns case of speech activity by replacing the noise variance by

of a “soft” 1/(1 + =?) characteristic the variance of the noisy speech signal.

Ge(\) = 1 A. Mean of the Minimum of Correlated PSD Estimates

1+ ( o PO -1, k)/ SEe Y (k)2 - 1)2 We consider the minimun®...,(A, k) of D successive short
) term psd estimate®(\, k), A € {A1,..., A\ — 4., A —
D+1}. For an infinite sequence of periodograf¥ig \, k)|? the
and the resulting correction factor is limited to values larger th&hort term psd estimat(, k) can be written asi(< o < 1)
0.7 and smoothed over time

@) = 0.7a.(\ — 1) + 0.3 max(G.(1),0.7).  (10) POK) =1 -a) ; Y= RIS (13)

The smoothing parameter in recursion (10) was chosen emior independent, exponentially and identically distributed pe-
ically. It does not appear to be a sensitive parameter. The mibdograms|Y (), k)|? the characteristic function of the pdf of
tiplication of the correction factor with the optimal smoothing?(A, ) is then given by [12, Ch. 18]

parameter then yields the final smoothing parameter

1
D = -, 14
Cmanre() S ro=lrmea—ae @
2 ( ) =0 N
1+ (POA=1,k) /63 (A=1,k) —1)
. ) . o Since the pdf ofP(\, k) is scaled byo3 (A, k) the minimum
The smoothing parametéi(), k) is suboptimal but deviations giasistics of the short term psd estimate is also scaled by
from the optlmc_';ll smooth_lng parameter, are s_mall_ on av- o2.(\, k) [13, Sec. 6.2]. Therefore, the med Puin(\, k)}
erage. qu stationary _nO|se the_ average deviation is _about g@* roportional tos2 (), k) and the variance is proportional to
an(()j for highly nonstationary noise, such as street noise, abgut, 1y without loss of generality, it is sufficient to compute
10”", . . ___the mean and the variance fo# (\,k) = 1. We introduce
To improve the performance of the noise estimator in highs notation B2 (AWK = E{Pum(\E)} o2 asye1 and

levels of nonstationary noise we found it advantageous . mind 7 o )
y 9 (ti%termme the mea® L of the minimum of correlated vari-
atesP(\, k) as a function of the inverse normalized variance

apply also a lower limitag,;,, with a maximum qa,,;, of min
%0?\r()\,k)/var{P()\,k)} = Qeq(A\ k) by generating large

&\ k) =

0.3, to éopt (A, k) and thus limit also the variance of the bia
cqrrechon factor (see Section V). Th'|s lower limit, howeve%tmounts of exponentially distributed data with variange= 1
might decrease the performance for high SNR speech.,As " - .

and by averaging minimum values for various value®of he

limits the rise and decay times df(\, k) the lower limit is inverse normalized variana@..(, k) is also called “equiva-

therefore set as a function of the overall signal-to-noise ra%)nt degrees of freedom” since nonrecursive (moving average)
(SNR) of the speech sample. To avoid the attenuation of weak g 9 g

consonants at the end of a word we require tH&h, k) can smoothing 0fR.q(A, k) independent squared Gaussian variates

: . X ould yield an estimate with the same variance.
decay from its peak values to the noise level in about 64 ms elnghe result of this evaluation is shown in Fia. 3. Fid. 3 depicts
four frames af. = 2R = 256). Then,a.,in Can be computed as 9.3 Hg. P

Bn_lil][1 and thus the factor by which the minimum is smaller than
the mean as a function of the lengthof the minimum search
window and as a function of the equivalent degrees of freedom
Qeq( N, k).

For software implementations it is practical to have a closed
form approximation of the inverse meéh,;,,, i.e., the bias cor-

The minimum tracking psd estimation approach determingsction factor. We note thaB,,;,, = D for Q., = 2 (see Ap-
the minimum of the short time psd estimate within a finitpendix A) andB,,,;, = 1 for D = 1. Using an asymptotic result
window of length.D. Since for nontrivial densities the min-in [14, Sec. 7.2], we approximate the inverse mean of the min-
imum value of a set of random variables is smaller than théimum by
mean the minimum noise estimate is necessarily biased. The
objective of this section is to derive the bias and the variancegf . N < )H(D)

. ) - . minl\ME)=14+(D—-1)—T 1+ ——

the minimum estimator and to develop an efficient algorithm Qeq(\ E) Qeq( A E)
for the compensation of the bias in nonstationary noise. (15)

(min = mMin (0.3, SNR~ sis7s ) . (12)

IV. STATISTICS OFMINIMUM POWER ESTIMATES
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whereQeq(X, k) is a scaled version eq(A, ) as a result of a numerical evaluation of the variance of the
. Qeq( N, k) — 2M (D) minimum of correlated variates. The variance of a moving
Qeq(A, k) = 1= M(D) (16) average estimator which uses the same equivalent number of
successive periodogram data points as the minimum estimator
and M (D) and H(D) are functions ofD (see Appendix B). is given by 20%,(\, k)/(Qeq + 2D — 2). We find, that for
I'(-) denotes the complete Gamma function [15]. This approx? < 100 andQ.q > 16 the variance of the minimum estimator
mation has a mean square error over the range of values shéwiess than four times as large as the variance of the moving
in Fig. 3 of less thant - 10~* and a peak relative error of lessaverage estimator. The increased variance is essentially the price
than 4%. The largest errors are obtained for small valués.gf for completely avoiding the voice activity detection problem.
For valuesQ., > 8 the peak error is always below 2%. In aDespite thisincreased variance, the minimum statistics approach
real-time application with fixed window lengtP, M/ (D) and toO noise estimation appears to be feasible since the minimum of
H(D) will be precomputed and (15) and (16) will be evaluatethe psd is obtained during speech pauses and the smoothing

during runtime. parameter&(\, k) is then close to one, resulting in large
We note that the simplified approximation values of Q.. Furthermore, in our comparison of variances
we assumed that the reference moving average estimator is
Buin(\E) & 1+ (D — 1)— 2 (17) combined with an ideal VAD. U_nder rea_lis_tic circumstan_ges a
Qeq( N K) VAD based moving average estimator will introduce additional

] » ) errors which will shift the balance in favor of the minimum
works equally well since the additional term in (15) reduces th@+istics approach.

approximation error for small values Gk, only. Small values

occur predominantly when a significant amount of speech

power is present. During speech activity, however, it is highly V. UNBIASED NOISE ESTIMATOR BASED ON
unlikely thatP(A, k) attains a minimum. MINIMUM STATISTICS

As a result of the previous sections we see that an unbiased

estimator of the noise power spectral densify( ), k) is given
The error variance of the minimum statistics noise psd egy

timator is compared to the variance of a moving average esti-
mator. The evaluation and comparison of these two estimators

B. Variance of the Minimum Statistics Noise Estimator

is based on an equivalent amount of input raw data and also takes 530\ k) = Prin(A k)

the bias of the minimum statistics estimator into account. Again, E{Puin(A, B) Hoz, (0, k)=1

analytical results are only feasable for the less practical case of = Buin(D, Qcq(X, k) Pmin(A, k) (29)

mutually independent random variables. We turn directly to the

case of correlated short term estimates. where we now emphasize the dependency3gf, on D and

Fig. 4 plots the logarithmic variance ratio Qeq(\, k). The unbiased estimator requires the knowledge

of the normalized variancear{P(\,k)}/(20%(\ k) =

Ryar 1/Qeq(X, k) of the smoothed psd estima¥ A, k) at any given

" 2D -2 i i
— 101og, <qur— var{ Pon(, k) B, k)}) time and .frequency mdgx. _
208 (N E) To estimate the variance of the smoothed psd estimate

(18) P(A k) we use a first order smoothing recursion for the ap-
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proximation of the first moment{P(\, k)}, and the second operations per signal frame and frequency bin. The delay in re-

moment,E{P?(\, k)}, of P(\, k) sponse to arising noise power is now oflt-V . For a sampling
B B rate of 8 kHz and an FFT length éf = 2R = 256 samples we
P k) =B K)PA—1,k) typically useU = 8 andV = 12.
+ (1= B k)P E) (20) For less stationary noise the tracking can be improved by
PEOK) = B KPR — 1, k) looking in each subwindow for local minima with amplitudes

in the vicinity of the overall minimum. A minimum of a sub-
""_(1 =B, ]f))PQ()" k) (21) window is considered to be local if its value was not obtained
var{P(A, k)} = P2(A\, k) — P*(\. k). (22) in the first or the last signal frame of this subwindow. Since we
_ ) ) now explicitly consider the minima of the subwindows we also
Good results are obtained by choosing the smoothing paramefgie to compute a bias compensation for these shorter subwin-

BN k) = o?(A k) and by limiting 3(A, k) to values less or gows.
equal to 0.8. . _ The new algorithm is summarized in Fig. 5. All computa-
Finally, 1/Qcq(A, k)is estimated by tions in Fig. 5 are embedded into loops over all frequency in-
1 G@r{P(\ k) dicesk and all time indices\. Subwindow quantities are sub-
N ! (23) scripted bysub. In the description of the algorithm we make ref-
Qea(A k) 26x(A=1,k) erence to a subwindow countekbwc which counts the signal

and this estimate is limited to a maximum of 0.5 correspondirfgtmes within a subwindow and to the running minimum esti-
t0 Qe = 2. Since an increasing noise power can be track&gpteactmin(A, k). At the startup of the program this counter
only with some delay the minimum statistics estimator hasi% initialized to subwe = V' and actmin(A, k) is initialized
tendency to underestimate highly nonstationary noise. Fiff-& Preset maximum value. The vecifi, (A, k) holds the
thermore, since the bias compensation (15) (or (16)) deperty§rall minimum of the lengtt) window. It is updated when-
on the estimated normalized variance the bias compensatfy§r subwe == V', when the current minimuractmin(\, k)
factor is a random variable with a variance depending on tRgcomes smaller thaf,,i, (A, k), or when a local minimum
variance of P(\, k). It is therefore advantageous to increas® detected. . o

the inverse biadB,,in (A, k) by a factorB.(A) proportional to The search rangeoise_slope_maz for local minima is

the normalized standard deviation of the short term estim#hin 0.8 to 9 dB of the current overall minimum. It depends
== on the average normalized varian@e! () of the short term

P\ K),B.(A) = 1+ a,/Q~1()\) with the average normal- _ , , -
. . 7T\ — Lyl sk q psd estimate. If the variance is small a local minimum very
ized varianceQ=(\) = (1/L)> g 1/Qeq(A k) @nd @y jivaly indicates the noise level. It can be therefore accepted
typically set toa, = 2.12. This b|a§ correction has an 'mPaCteven if it is several dB larger than the current overall min-
only when the short term psd estimate and thus the estimajggl, ' An increasing noise level can be therefore tracked on
variance has a large variance. W'th?m thehble;]s correction Y4@ <,pwindow level. If the variance is large fluctuations of
variations in Buin(D, Qeq(A. k)) would push the minimum |5 minima are not necessarily due to a rising noise floor.
to values which are too low. For stationary noise this factor ¥herefore only minima close to the overall minimum are
close to one. accepted. The functional dependence of the variance and the
search range for local minima was optimized by experiments.
VI. EFFICIENT IMPLEMENTATION OF THE MINIMUM SEARCH k-mod(k) and Imin_flag(\,k) are auxilliary vectors for

Our algorithm requires that we find the minimum Bfsub- keeping track of those frequency bins which might contain
sequent psd estimaté¥ ), k). The computational complexity local minima. If the minimum of a subwindow was determined

as well as the delay inherent in this procedure depends on hasthe first(subwe == 1) or the last(subw == V') value
often we update this minimum estimate. If we update the mif this subwindow it is not accepted as a local minimum
imum in every time step we haveD —1 compare operations for ({min_flag(A,k) = 0). If the minimum was obtained in

each time step and frequency bin. On the other hand, we mi¢pgtween the first or the last value of the subwindow it is
choose to update the minimum only af@rconsecutive sam- marked as a local minimuifimin_flag(A, k) = 1). If a local
ples of P(\, k) have been computed. In this case, we need orfjinimum is larger than the overall minimum but still within
one compare operation per signal frame and frequency bin Big search rangeoise_slope_max it replaces all previously
the worst case delay when responding to a rising noise powesgigred subwindow minima and thus leads to an increased noise
now 2D. Following the proposal in [7] we implemented a tre@sd estimate.
search to balance the complexity and the update rate in a flex-
ible manner. VII. PERFORMANCE EVALUATION

We divide the window ofD samples intol/' subwindows
of V sampleUV = D). This allows us to update the min-
imum everyV samples while keeping the computational com- The noise estimation algorithm was evaluated in the context
plexity low. Whenevel samples are read the minimum of theof speech enhancement with various noise types. We begin
current subwindow is determined and stored for later use. Ther presentation of experimental results with a second look at
overall minimum is obtained as the minimum of &l sub- the noisy speech file of Fig. 1. Fig. 6 plots the periodogram,
window minima. We therefore have+ (U — 1)/V compare smoothed periodogram, noise estimate, and time varying

A. Qualitative Results



510 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 9, NO. 5, JULY 2001

« compute smoothing parameter a(\, k), (11) - ‘ k= 25)

» compute smoothed power P(A k), (4) - Srir;gtl?ggapr)rériod_ogram (k = 25)

« compute bias correction B, (), k) and 0l | —
Bmin_sub(/\vk) (15) or (17) (16) (23)

noise estimate (k = 25)

o compute @1(A) = ¢ Zk 0 Q}\k 60r
o set komod(k) =0 for all &
o if P(X,k)Bumin (A, k)Be()) < actmin(), k) S50
— actmin(A, k) = P(A, k) Bpin (X, k)B.(X)
— actmin_sub(A, k) = P(\ k) Bmin_sub (A, k) B:(A) 40 .
— set komod(k) = 1; H : i : T
o if subwe == N E L P Bl i |,

Imin_flag(A\, k) =0

? 20 1 I I 1 0
— store actmin(A, k) 200 400 \ 600 800 1000
— find Piin_y, the minimum of the
last U stored values of actmin Fig. 6. Periodogram, smoothed periodogram, and noise estimate for a noisy
— if Q (/\) < 0.03, noise_slope_max = §; speech signal and a single frequency bin. The time varying smoothing parameter

_ elseif Q T(\) < 0.05, noise_slope_maz = 4; a(A, k) is shown in the lower inset graph.

— elseif @—1()) < 0.06, noise_slope_mazx = 2;

— else noise_slope_maz = 1.2; %0 average periodogram
— if Imin_flag(A, k) & (actmin_sub(A, k) SOF| e periogogram 1
< notise_slope . mazPpin (A k)) ol | T average noise estimate |
& (actmin_sub(A, k) > Ppino (N k)
Prinw (A k) = actmin_sub(A k) 60}
replace all previously stored values
of actmin(X, k) by actmin_sub(A, k) 5 50T
— Imin_flag(A\, k) = 0; 401
— set subwe = 1, and actmin(A, k) and
actmin_sub(A, k) to their maximum values 30r
* else 20k .
— if subwe > 1 i
if komod(k) ==1 10p=
set Imin_flag(A k) =1 0 . ‘ ‘ . ‘
compute &12\[ (/\’ k-) 200 400 (i\OO 800 1000 1200
= min(actmin_sub(A, k), Prin_o (X, k))
set, Pmin-u(/\a k‘) = crN(/\ k‘) Fig. 7. Periodogram, smoothed periodogram, and noise estimate for a speech
— set subwe = subwe + 1 iisgg?rlae:ngaged over all frequency bins. The noise is switched on after about

Fig. 5. Minimum statistics noise estimation algorithm.

smoothing parametei(\, k) for the same noisy speech fileB: Quantitative Results
and the same frequency bin as in Fig. 1. We see that the tim&Ve measure the relative estimation error with respect to a ref-
varying smoothing parameter allows the estimated sigralence noise psd for computer generated white Gaussian noise,
power to closely follow the peaks of the speech signal whifer vehicular noise, and for street noise without and with speech.
during speech pause the noise is well smoothed. Also, théhile the white Gaussian noise is completely stationary, the ve-
bias compensation appears to work very well as the smoothHedular noise has some fluctuations and the street noise is highly
power and the estimated noise power follow each other closelgnstationary. Speech (six male and six female speakers, no
during speech pause. We also note that the noise psd estinpatieses) was added at an SNR of 15 dB. In all cases the estima-
is updated during speech activity. This is a major advantagetmi error was averaged over three minutes of audio material.
the minimum statistics approach. As the true noise psd is not known for vehicular noise and for
Fig. 7 gives another example of the noise tracking abilities efreet noise we used a first order recursive system as in (3) with
the algorithm. We now look at a speech sample which has high= 0.9 to compute the reference noise psd. The variance of
SNR speechdNR = 40 dB) at its beginnning. After about 780this estimator contributes to the variance which we observe for
clean speech frames computer generated white noise is aditednoise psd estimation error.
to the speech. The response of the noise estimator is shown iffable | summarizes the results for speech pauses. Three dif-
Fig. 7. The noise jump is tracked with a delay/@f- V' frames. ferent algorithms were tested: the minimum statistics approach
The small overshoot is a result of increasing the bias compengdrich was proposed in [7] and uses a fixed smoothing param-
tion factor by the variance dependent faciu(\) which isin etera = 0.6 and the new algorithms as described in Fig. 5
this situation at its upper limit. with the bias compensation according to (15) and (17). We also
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tested our algorithm without the error monitoring algorithm
(Section 111-B) and found that it diverges unless the noise i
completely stationary. All algorithms in Table | exhibit mean

TABLE
éVERAGE RELATIVE ESTIMATION ERROR IN PERCENT AND ERRORV ARIANCE
(IN PARENTHESEY FOR THREE NOISE TYPESDURING SPEECHPAUSE
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errors in the order of several percent except for street noise. algorithm

| white noise [ vehicular noise |

street noise

For highly nonstationary noise the algorithm underestimates 17] with a = 0.6

the noise floor on average. This is a result of the immediate

0.059 (0.11) | 0.062 (0.13) | -0.15 (0.21)
new (with (15)) | -0.007 (0.041) | -0.018 (0.041) | -0.28 (0.13)
new (with (17)) | -0.006 (0.041) | -0.016 (0.041) | -0.27 (0.13)

tracking for decreasing noise power and the tracking delay in

case of increasing noise power. Note, that the algorithm [7]

uses a gradient detection approach to track increasing noise TABLE Il

power. It therefore achieves a smaller bias for street noise th@lerace ReLATIVE ESTIMATION ERROR INPERCENT AND ERRORVARIANCE

the two other algorithms. (IN PARENTHESES FOR THREE NOISE TYPES DURING SPEECHACTIVITY
The second set of experiments was performed with (SNR = 15 dB, No Pauses)

noiset-speech at an SNR of 15 dB and no speech pauses. Jlgorithm

| white noise | vehicular noise | street noise

Three minutes of continuous speech is clearly an extreme T7]with a = 0.6 | 0.64 (0.77) 0.7 (1.04) 0.59 (1.9)
situation and a conventional VAD based algorithm is likely to  new (with (15)) [ -0.07 (0.14) | 0.04 (0.17) | -0.22 (0.27)
fail. Table Il summarizes the results for this case. We now find new (with (17)) | -0.04 (0.14) | 0.02 (0.17) | -0.20 (0.28)

that the algorithm [7] withhx = 0.6 delivers a heavily biased
estimate. For continuous speech a relative small smoothin
parameter ofy = 0.6 is still too large. The smoothed short ternL
psd estimateP(\, k) never fully decays from the peak powe
values to the noise floor. As a result the noise psd estim
becomes too large. For white Gaussian and vehicular noises
algorithms proposed in this paper deliver estimates which
accurate within a few percent.

Yrhese results were confirmed in formal quality and intelligi-

! ility tests with the enhanced and MELP coded speech. In a stan-
q%rdized diagnostic acceptability measure (DAM) [17] quality
%st (administered by Dynastat Inc.) with speech disturbed by
vehicular noise (SNR approximately 10 dB) the minimum sta-
qstics method scored about 1.4 DAM points better than the al-
ternative method. The standard error (s.e.) of the test was about
0.9 DAM points. A DRT (Diagnostic Rhyme Test [17]) test
showed a slightly improved intelligibility for vehicular noise

. . . . . . +0.8 DRT points, s.e.= 0.7) and a significantly improved

_ The noise estimator was tested in conjunction with & Mylyejigibility for highly nonstationary helicopter noiser-¢.3
tiplicatively modified minimum mean square error 10g SPEGyRT points, s.e= 0.4). This is a result of the minimum tracking

tral amplitude (MM-MMSE-LSA) estimator [2], [6] and the y,,ing speech activity which leads to an improved reproduction
2400 bps MELP [16] speech coder. The purpose of the listenig,, eak speech sounds and to less clipping.

tests was to evaluate the quality and the intelligibility of the
enhanced and coded speech. What listeners usually find most
objectionable when presented with enhanced or enhanced and
coded speech is structured residual noise (including “musical
tones”) and muffled or even clipped speech. The character ofeven though most speech enhancement algorithms use
the residual noise is mainly influenced by the accuracy of tlee modified noise psd (noise “overestimation” [18] or noise
noise estimator and the spectral gain function that is applighderestimation” [19]) we believe it is of utmost importance

to the noisy Fourier coefficients. We compared our approath first obtain an unbiased noise psd estimate and then to
to a state-of-the-art noise estimator which estimates the noisedify it based on statistical arguments or on listening tests.
psd by means of a VAD and by soft-decision updating durirgased on our previous work [7] and the results obtained by
speech activity [6]. Except for the noise psd estimator both althers [9] we have extended the minimum statistics noise esti-
gorithms were identical. Compared to the VAD and soft-decimation approach to improve its performance in nonstationary
sion based algorithm, which was also carefully optimized fawise. Key components of our approach are a power spectral
the speech material at hand, informal listening tests indicatdensity smoothing algorithm which employs a time varying

a quality improvement for the minimum statistics approach. $itmoothing parameter, an algorithm to track the variance of
turned out that the minimum statistics approach preserved weh& smoothed power spectral density in frequency bands, and
voiced sounds, especially voiced consonantslikg and/n/, a bias compensation algorithm for minimum power spectral
much better than the alternative algorithm. Since voiced sourdknsity estimates. Our experiments with various noise types
concentrate their energy in a small number of subbands (res&ow that the time varying smoothing significantly improves
tive to L) the computation of the smoothing parameter and ttlee minimum statistics approach. The algorithm turns out to be
tracking of the smoothed periodogram statistics individually fdairly generic. In experiments with different noise types we did
all frequency bing: is very helpful. We also found that the newnot observe a need for retuning the parameters of the algorithm.
algorithm gave quite dramatic improvements when the inputWe found that the new minimum statistics noise estimator
signal was a music signal. On the other hand, in highly nomhen combined with a speech enhancement system and com-
stationary noise the alternative algorithm resulted in smoothgared to more traditional approaches has a superior ability to
residual noise since the minimum statistics estimator tendspieserve weak speech sounds and therefore delivers a superior
consider small speech-like noise fluctuations as speech. intelligibility.

C. Listening Tests

VIIl. CONCLUSION
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