QUESTIONS AND ANSWERS:
REASONING AND QUERYING IN
DESCRIPTION LOGIC

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
IN THE FACULTY OF SCIENCE AND ENGINEERING

April 2001

By
Sergio Tessaris
Department of Computer Science

Contents

Abstract
Declaration
Copyright
Acknowledgements

1 Introduction
1.1 Background
111 Logic based knowledgerepresentation
1.1.2 Descriptionlogics
1.2 ReasoningwithDL knowledgebases.
1.3 Thesisoutline

2 Preliminaries
21 DescriptionLogiCs
211 Syntaxand Semantics
212 DLbasedsystems
22 ReasoningwithDLS
221 Teminologicalreasoning.
222 Hybridreasoning
23 Roleaxioms
24 ThedescriptionlogicSHf

3 Model characterisation of SHf
3.1 Quas transitiveshrub interpretations
3.1.1 Canonical interpretations
3.2 Transforming interpretationsintoq.t.shrubs

2

7

3.2.2 Propertiesof unravelled interpretations 50
3.3 Completeness of g.t. shrubinterpretations 59
3.4 Applicationtoterminological reasoning 61
35 Remarks 62
KB satisfiability algorithms 64
4.1 Alternative Abox reasoningtechniques. 64
411 Directtableaux 64
412 Encoding 65
4.1.3 Resolutionbasedmethods 66
42 Precompletion. 67
421 KB sdtisfiability algorithm 68
4.2.2 Correctness and completeness of theagorithm 71
4.2.3 Prosand consof precompletion 74
Precompletion algorithm for SHf 77
51 Precompletionsof knowledgebases 77
5.2 Sdtisfiability of precompletions 83
521 Interpretationofroles., 87
522 Interpretationof concepts 95
5.2.3 Satisfiability of aprecompletedKB 98
5.3 Knowledgebase satisfiability 100
Querying Aboxes 101
6.1 Introduction 101
6.2 ConjunctiveQueriesinDL 103
6.2.1 Querieswithmultipleterms 104
6.2.2 Querieswithvariables 106
6.2.3 Extendingtheframework 110
6.3 Relationwithotherworks. 111
Answering conjunctive queriesin SHf 113
7.1 Querylanguage 113
711 Syntax ... 113
712 SemanticsS. 114
7.2 Completeness of quasi transitive shrub interpretations 115

3

7.3 Answeringbooleanqueries Lo

731 Queynormaform
7.3.2 Conjunctivequeries.
7.3.3 Digunction of conjunctivequeries
7.4 Answering queriesinnormal form Lo
741 Query transformationrules L.
7.4.2 Notesontransformationrules
7.4.3 Limitation of thetechnique.
744 Exampleof queryanswering
745 Temination.
746 Correctnessandcompleteness
75 Speedinguptheanswer,

Implementation and testing

8.1 Descriptionofthesystem
8.2 Optimisingtheagorithm
821 Evauationstrategy
8.2.2 Axiomabsorptionand lazy expansion
823 Lexica normalisation.
824 Backjumping
825 Aboxpartitioning.
8.2.6 Usingtheterminologicalreasoner
827 Othertechniques,
83 EXperiments.
83.1 DL benchmarksuite
832 Measurements
833 Notesonresults.

9 Conclusions

9.1 Thesiscontributions.
911 KBsatidfiability,
912 Queryanswering i e e e

9.2 Futurework e

Bibliography

Abstract

Description Logics (DLs) are a family of formal languages for describing complex
structured classes. These languages contain boolean operators and quantification over
class attributes, as well as the specification of elements of the classes and their proper-
ties. DL knowledge bases (KBs) consist of a terminological part which describes the
general organisation of the classes, and an assertional part for describing the properties
of individuals. In spite of itsinherent intractability, practical algorithms have been re-
cently developed for purely terminological reasoning; when individuals are introduced
thereis still alack of results.

This thesis constitutes an advance in the direction of the development of DL sys-
tems providing efficient and powerful reasoning in presence of individuals. We choose
an expressive DL (SHf), which has been previously studied from the terminol ogical
perspective (i.e. without individual s), and we investigate the problem of reasoning with
individuals.

SHT extends the standard DL ALC with transitive roles, role hierarchy, and at-
tributes. This extension enables the representation of general inclusion axioms using
a technique called internalisation. This thesis investigates two automated reasoning
problems. KB satisfiability and query answering.

KB satisfiability is the fundamental problem of deciding whether a given KB does
not contain any contradiction. This problem is not only important for delivering con-
sistent KBs, but most of the reasoning tasks for DL systems can be reduced to KB
satisfiability. We show how the technique of precompl etion, which has previously only
be used in less expressive DL s, can be used in our expressive DL.

A serious shortcoming of many Description Logic based knowledge representation
systemsis the inadequacy of their query languages. We present a novel technique that
can be used to provide an expressive query language for such systems. One of the
main advantages of this approach is that, being based on a reduction to knowledge
base satisfiability, it can easily be adapted to most existing (and future) Description
Logic implementations. We believe that providing Description Logic systems with
an expressive query language for interrogating the knowledge base will significantly
increase their utility.

Declar ation

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institu-
tion of learning.

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) either
in full, or of extracts, may be made only in accordance with instructions given by the
Author and lodged in the John Rylands University Library of Manchester. Details may
be obtained from the Librarian. This page must form part of any such copies made.
Further copies (by any process) of copies made in accordance with such instructions
may not be made without the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described in this
thesisis vested in the University of Manchester, subject to any prior agreement to the
contrary, and may not be made available for use by third parties without the written
permission of the University, which will prescribe the terms and conditions of any
such agreement.

Further information on the conditions under which disclosures and exploitation
may take place is available from the head of Department of Computer Science.

Acknowledgements

| would like to thank all the people who helped and inspired me during the period of
my PhD: my supervisors (in order of appearance) Carole Goble, Graham Gough, and
lan Horrocks, the present and past members of Information Management Group, and
several other people in the Department of Computer Science (the list would be too
long).

| am particularly grateful to lan Horrocks and Graham Gough for their support,
both scientific and human. Moreover, without their tireless proofreading this thesis
would have been hardly readable.

I would like to mention Enrico Franconi as the principal cause for my involvement
in the DL community, and to thank him for his advice.

This work has been supported by a grant from the Engineering and Physical Sci-
ences Research Council.

Chapter 1
| ntroduction

Description logics are knowledge representation systems evolved from early semantic
networks and frame systems. They have been developed as a logical reconstruction
of the KL-ONE-ike knowledge representation systems (see Woods and Schmolze
[1992]). They differ from their ancestors in that they place a strong emphasis on a
precise semantic characterisation of the modelling language. The need for a unequiv-
ocally defined semantics stems from the fact that having a clear semantics enables the
description and justification of the automated deduction processes.

Description logics have been proved effectivein severa applicationfieldsincluding
automated language understanding and generation, configuration and data modelling
(see Franconi [1994], Calvanese et al. [1998b]). In addition, their formal semantics
enables the exact characterisation of the expressiveness of a DL system against its
computational properties.

Although good results have recently been obtained in the devel opment of optimised
algorithmsfor DL knowledge bases without individuals, little progress has been made
with reasoning involving individuals. This research is an attempt to fill this gap, by
exploring the possibility of developing optimised algorithms.

A serious shortcoming of many Description Logic based knowledge representation
systems is the inadequacy of their query language. In this thesis we present a novel
technique that can be used to provide an expressive query language for such systems.

This chapter presents an overview of background of the thesis, together with the
overall description of the document.

1.1. BACKGROUND 10

1.1 Background

1.1.1 Logic based knowledge representation

Thisthesis concerns knowledge representation systemsthat represent the domain using
aformal language. In these systems, a precise semantics unambiguously defines the
meaning of a knowledge base written using the language. In addition, the knowledge
representation system provides a set of automated reasoning services to manipulate
and/or interrogate knowledge bases.

In particular it isassumed that the knowledge can be partitioned into terminol ogical
and assertional parts. The terminological part (or ssimply terminology) describes the
structural properties of the terms of the domain, while the assertional part depicts a
particular configuration of the domain by introducing individuals and asserting their
properties using the definitions in the terminology.

Example 1.1
. Birds are Animals.
Terminology _ _
Penguins are Birdsand not Flyers.
. tweety is-a Birdand not Flyer and
Assertions o
has FRIEND which-is Flyer.

This example shows a simple knowledge base written using a natural language—
like syntax. The terminological part defines the properties of Birds and Penguins,
while the assertional part states some properties of a particular individua (t weet y).
Thisindividual isdescribed as a bird which cannot fly, having at least one friend which
isaflyer.

Partitioning knowledge in this way is quite a common methodology in computer
science. For instance, in the database setting the distinction between schemata and an
actual database could be seen as the dichotomy between the terminology and the as-
sertional part. Generally speaking there are two main reasons to adopt the partitioning
technique; firstly, the same terminology could be used for several knowledge bases,
and secondly, different algorithms can be used on each part, exploiting the different
characteristics of the two components.

Two other important features of knowledge representation systems are the possi-
bility of adopting an open world semanticsfor the knowledge base (see Reiter [1977]),
aswell asthe ability to represent incomplete information.

1.1. BACKGROUND 11

The adoption of an open world semantics leaves a degree of uncertainty regarding
facts that are not explicitly asserted. For example, individuals not mentioned in the
knowledge base could be part of the domain and each individual mentioned could have
more properties than the asserted ones. Referring to Example 1.1, t weet y could
either be a penguin or not, and there could also be additional birds or animals in that
little world.

Incompleteinformation can appear in different forms. Firstly, the implied existence
of individualswithout explicitly mentioning them: the knowledge basein Example 1.1
implies the existence of at least one flyer which is friend of t weet y. Secondly, in
the form of digunctive information, for example it could be specified that t weet y’s
friend should be either an auk or a puffin.

Description logics knowledge representation systems take advantage of the above
properties. The next section gives an overview of the main features of this Description
Logic formalism, while amore formal description is provided in Chapter 2.

1.1.2 Description logics

There are several ways to give an intuition about what a description logic is. For a
knowledge representation audience, DLs could be viewed as alogical reconstruction
of frame systems and semantic networks. An object oriented database audience can
look at DLs as the static (declarative) part of a data definition language, while a lo-
gician could look at them as a syntactic variant of a multi-modal modal logic. Given
thisintuition, dipping into the literature reveals a strong emphasis on the formal logic
nature of DLs (see KRSS). In fact a DL consists of aformal language, described by a
clear set theoretical semantics, together with a calculus (see Chapter 2).

Language expressions of a DL describe classes (concepts) of individualsthat share
some properties. Properties can aso be specified by means of relations (roles) between
individuals. The language is compositional, i.e. the concept descriptions are built by
combining different subexpressions using constructors. For instance, if the concepts
STAFF and TECHNI ClI ANare defined, the notion of technical staff can be represented
by putting together the two conceptsin the expression STAFF M TECHNICIAN. Thekind
of expressions that can be built using aDL language are

Bi rd 1 —Fl yer 1 (3FRI END.FI yer)
Vehi cl e M (3PART- OF.Engi ne) M (> 2 PART- OF.Weel)

where elements in typewriter style are terms of the language (concepts in small letters

1.1. BACKGROUND 12

and rolesin capital |etters), while m, -, 3 are language constructors.*

The semanticsof thelanguageisgivenin aset theoretical way, over adomain which
isaset of elements. A concept expression corresponds to a subset of the domain, while
a role expression corresponds to a binary relation over the domain. As their shape
suggests, some of these constructors have a strong relationship with boolean operators
and logical quantifiers.

A DL knowledge base consists of a terminology, traditionally called the Tbox,
and an assertional part, called Abox. The Thox contains the definitions of the terms
(concept definitions), while the Abox contains a set of membership and role assertions.
Membership assertions relate an individual to a concept, stating that the individual
involved is an instance of the concept. Role assertions state that two individuals are
linked by a given role. Example 1.1 could be expressed by the DL knowledge base in
Example 1.2.

Example 1.2
. - .
Thox Bird | C A.nl mal
Penguin C Birdn-Flyer

Abox tweety:(Birdm—Flyer 1 (3FRI END.Fl yer))

Reasoning with DL knowledge basesis a deduction process which extracts not only
the facts explicitly asserted in a knowledge base, but also their logical consequences.
For instance, from the knowledge base of Example 1.2 can be derived the fact that
t weet y isan Ani mal . When only the terminology is involved in a deduction, the
reasoning is said to be terminological; otherwiseit is said to be hybrid.

DL systems provide automated reasoning services for interacting with the knowl-
edge base. Typical reasoning services provided are: verifying the non—contradiction of
assertionsin the knowledge base, checking that an individual satisfiesaconcept expres-
sion, retrieval of all the individuals satisfying a concept expressions and subsumption
checking, which verifies whether one expression is more general than another.? Nev-
ertheless, it has been proved that all services can be reduced in polynomial timeto the
problem of knowledge base satisfiability (see Schaerf [1994]), that is the checking for
the absence of contradicting assertionsin a given knowledge base.

1The meaning of the different elements of the language will be clarified in Chapter 2.
2An expression is more general than another if its corresponding set always includes that of the
second concept.

1.2. REASONING WITH DL KNOWLEDGE BASES 13

The term complexity of reasoning in this context refers to the complexity of the
knowledge base satisfiability problem, and it characterises the computational proper-
ties of a DL system. The complexity actually depends on the expressiveness of the
underlying DL language. Moreover, the language (and its expressiveness) is defined
by the kinds of constructorsit provides. Therefore the complexity is determined by the
constructors provided by the language.

One example of the influence of the constructors on the computational properties
is the interaction of the role conjunction constructor with the number restriction con-
structor. The role conjunction constructor builds a new role expression from the inter-
section of atomic roles; while number restriction constructor constrains the number of
individuals related by a given role. These two kinds of constructor do not cause any
problem separately, but when they are taken together (i.e. allowing role conjunction in
the role of the number restriction) they cause the undecidability of the KB satisfiability
problem (see Baader and Sattler [1996]).

Different applications need different language constructors, and the modularity of
the language facilitates the addition of new constructors. The result is that there is not
asingle DL language, but afamily of different languages. A big effort has been spent
in extending the expressiveness of DL languages, while maintaining the soundnessand
decidability of the reasoning services (see for example Buchheit et al. [1993]).

Nowadays the undecidability boundaries and the complexity of the reasoning are
well understood on the theoretical side (see Donini et al. [1997]). However thereisstill
alot work to do on the definition of “practical” algorithms, and the analysis of the in-
teraction between the different constructorsis still an activetopic inthe DL community
(see Franconi et al. [19984d]).

1.2 Reasoningwith DL knowledge bases

Description logics have proved to be effective in various applications, both those that
require an assertional part and those that do not. In fact, while DLs were initialy
developed to be the knowledge representation part of an Al system, recent work has
showed that their ability to reason in an abstract way about a domain® could be ex-
tremely useful for knowledge modelling tasks. For example, DLs could be used as
tools for checking the consistency of entity—relationship or object oriented schemata
(see Calvanese et a. [19980)).

3Without the necessity to populate the domain with individuals.

1.2. REASONING WITH DL KNOWLEDGE BASES 14

Recent years have seen significant advances in the design of sound and complete
reasoning algorithms for DL s with both expressive logical languages and unrestricted
Thboxes, i.e., those allowing arbitrary concept inclusion axioms (see Baader [1991],
Horrocks and Sattler [1999], De Giacomo and Massacci [1998]). Moreover, systems
using highly optimised implementations of (some of) these algorithms have also been
developed, and have been show to work well in realistic applications (see Horrocks
[1998], Patel-Schneider [1998]). While most of these have been restricted to termino-
logical reasoning (i.e., the Abox is assumed to be empty), attention is now turning to
the development of both algorithms and (optimised) implementations that also support
Abox reasoning (see Haarslev and Moller [1999], Tessaris and Gough [1999]).

This research starts with the premise that there are still several key applications
for a DL hybrid system. Generally speaking, applications that require the ability to
state incomplete knowledge about the individuals in the domain are good candidates
for the use of a hybrid DL; one example is natural language processing (see Franconi
[1994]). The optimisations recently applied to Thox algorithms (see Horrocks and
Patel-Schneider [1998a)]) give pointerstowards the improvement or redesign of current
Abox agorithmsin order to enhance performance in realistic applications.

In this thesis we discuss techniques and agorithms used to deal with two essential
reasoning tasks: knowledge base satisfiability and query answering. We focus on a
particular DL language, which is implemented in the terminological system* FaCT
(see Horrocks [1998]). This DL, called S#f,> possesses most of the relevant features
of an expressive DL language. In addition, experience with the FaCT system has shown
that SHT iswell suited for knowledge representation modelling.

Several techniques have been proposed for the verification of the satisfiability of a
KB, and many of them have lead to the development of DL systems. However, some
of these techniques have been developed for DL s less expressive than isrequired for a
modern system. We investigate the extension of one of these techniques, the so called
precompl etion technique (see Hollunder [1996]), for reasoning with SHf.

Although modern DL systems provide sound and complete Abox reasoning for
very expressive logics, their utility is limited compared to earlier DL systems by their
very weak Abox query languages. Typically, these only support instantiation (is an

4DL system without the Abox.
SSHf has been previously called ALCfH +, but the new name follows a more compact naming
scheme recently introduced in Horrocks et al. [1999b].

1.3. THESISOUTLINE 15

individua 7 an instance of a concept ('), realisation (what are the most specific con-
cepts: isan instance of) and retrieval (which individualsareinstancesof C). Thisisin
contrast to a system such as Loom where afull first order query language is provided,
although based on incompl ete reasoning algorithms (see MacGregor and Brill [1992]).

We present a technique for answering conjunctive queries over DL KBs. This
work has been inspired by the use of Abox reasoning to decide conjunctive query
containment (see Horrocks et al. [1999a], Calvanese et al. [1998a]). However, the
characteristics of S#f forces the use of an algorithm which is much more complicated
of those presented in these previous works.

Our main contributions can be summarised in the following points.

e The extension of the already known precompletion technique for KB satisfia-
bility to the DL language SHf. Previously the technique was applied to DLs
without general inclusion axioms, transitive roles, or role hierarchies.

e A query answering algorithm for digunctions of conjunctive queries for SHf
KBs with Aboxes.

e A prototype software system performing KB satisfiability for SHf has been de-
veloped. The system has been used for verifying the practical feasibility of the
precompl etion technique, and the impact of different optimisations on the per-
formance of the system.

e A characterisation of the class of models of the logic SHf. Thiswas previously
done (implicitly) for the problem of KB satisfiability, but to our knowledge, itis
thefirst result for the query answering.

The next section gives an overview of the structure of thisthesis.

1.3 Thesisoutline

The thesis contains both introductory and technical chapters, in particular the reader
can get an overview of thework presented by reading the even numbered chaptersonly.

Chapter 2 gives a formal description of the Description Logics in general, and in
particular the DL S#Hf which isused in the following chapters.

1.3. THESISOUTLINE 16

Chapter 3 describes the class of interpretations which characterise the logic S#Hf.
The results from this chapter are used in the proofs presented in Chapter 5 and Chap-
ter 7. This model—theoretic characterisation of ST is not only essential for most of
the proofs, but it provides an insight on the expressiveness of S7Hf.

Chapter 4 and Chapter 5 investigate the problem of Knowledge Base satisfiability
for SHT. Thefirst givesan overview of the methodswhich have been used for tackling
the problem, and provides an introduction to the technique we investigated. Chapter 5
provides a formal description of the precompletion agorithm, and shows the proofs
for its correctness and compl eteness.

Chapter 6 and Chapter 7 introduce and provide a solution to the problem of answer-
ing conjunctive queries over SHf knowledge bases. The first chapter gives an intuitive
presentation of the problem and our solution; while Chapter 7 providesthe full details.

Chapter 8 describes the experiments we performed with an implementation of the
algorithm for KB satisfiability. Finally, Chapter 9 draws conclusions from this work
and presents further lines of research suggested by the results achieved so far.

Chapter 2
Preliminaries

In this chapter Description Logics (DLs) are formally introduced, together with the
description of what we intend by the term DL based system. In Section 2.1 we present
the syntax and semantics of the logics belonging to the class of DLs, followed by the
description of DL based systems. Section 2.2 introduces common reasoning problems
over DL knowledge bases (KBs), and the automation of the reasoning itself. Sec-
tion 2.3 describes an extension of DL KBs with the introduction of axioms on roles.
Finally, we describe the DL language we investigate, and which will be used towards
thisthesis.

2.1 Description Logics

The core of Description Logicsisthe concept language, aformal language designed to
describe classes and relationships between elements of the classes. DL based knowl-
edge bases are built using concept languages expressions, and they are usually divided
in two distinct parts: intensional and extensional. The intensional part describes the
general schema of the classes and relationships, while the extensional part constitutes
a (partial) instantiation of the schema, since it contains assertions about a set of indi-
viduals. Historically the intensional part takes the name of terminology or Thox, and
the extensional part the name of assertional part or Abox. Queries on a DL knowl-
edge base are answered by an inferential process involving both the Tbhox and Abox
parts. The answer to a query is deduced as logical consequences of the content of the
knowledge base according to the formal semantics.

17

2.1. DESCRIPTION LOGICS 18

2.1.1 Syntax and Semantics

All description logic systems are based on a common family of languages, called con-
cept languages, for describing structured classes of objects. The foundations of con-
cept languages are concepts and roles. a concept represents a class of objects sharing
some common characteristics, while arole represents a binary relation between objects
or, in other words, attributes attached to objects.

The language is completely described by aformal syntax and a Tarsky-like seman-
tics. A formal definition of the language is essential for knowledge bases characterisa-
tion, and for the definition of reasoning services.

A concept language is composed of an alphabet of distinct concept names (CN),
role names (RN) and individual names (O); together with a set of constructors for
building concept and role expressions. Concept expressions (or simply concepts) de-
scribe subsets of the domain; for example Mot or cycl es LI Car s denotes the union
of the elementsin Mot or cycl es and in Car s. Describing the abstract syntax, con-
cept names are indicated by letter A or B, role names by P, and individual names by
lowercase letters a, b. Concept expressions are indicated by letters C' or D, and role
expressionsby R or Q.

Description logicsform afamily of different logics, distinguished by the set of con-
structors they provide. Each language is named according to a convention introduced
in Schmidt-Schauss and Smolka [1991]: each constructor is associated to a different
capital letter (e.g. U to digunction and C to negation) and the name of a language is
composed by the prefix AL (acronym for attributive language) followed by the letters
correspondent to the constructorsin the language (e.g. ALU or ALC). One of therea-
sonsfor having such afine granularity on the classification of concept languagesisthat
the computational properties of the reasoning changes dramatically with the presence
or absence of a particular constructor; therefore the ability to indicate precisely the
constructorswhich arein aDL isvery useful.

The very basic language denoted by the prefix AL is close to the expressivity
of frame based representation systems. It enables the specification of hierarchies of
concepts by means of the conjunction of two concepts (). The expression C' 1 D
denotes the intersection of the elementsin C' and in D. The hierarchy comes from the
fact that C' ™1 D ismore specific than both C' and D, because it denotes a smaller set of
elements. A second group of constructorsin AL enables the specification of attributes
by the unqualified existential (3.R) and qualified universal (VR.C) quantifiers. These
expressions build new concepts in terms of the roles: expression 3. R denotes the set

2.1. DESCRIPTION LOGICS 19

of elements related to some other element by the role R, while VR.C' denotes the set
of elements which are related by the role R exclusively to elements of the concept
C'. Using frame systems nomenclature, the existential quantifier represents the fact
of having attribute R, while the universal quantifier specifies the type restriction of
that attribute. In addition, the concept language AL has the ability to represent the
complement of concept names by the expression —A,* and it provides the symbols T
and L for the full domain and the empty set respectively.

The semantics of DL constructors is defined in terms of an interpretation Z =
(A%, .T) consisting of a nonempty domain A% and ainterpretation function -Z. Thein-
terpretation function maps concept names into subsets of the domain, role names into
subsets of the cartesian product of the domain (AZ x A7), and individual namesinto el-
ements of thedomain. The only restriction on the interpretationsisthe so called unique
name assumption, which imposes that different individual names must be mapped into
distinct elements of the domain. Given aconcept name A (role name P) the set denoted
by A (P?) is called the interpretation, or extension, of A (R) w.r.t. Z.

Example 2.1

For example, given the concept names Even, Qdd, the role SUCC, and the individuals
one,two,t hree and f our. A possible interpretation is composed by the natural
numbers AT = {1,2, 3, 4,5} and the interpretation function defined by:

add? = {1,3,5}
Event = {2,4}
sSucCt = {(1,2),(2,3),(3,4),(4,5),(5,1)}

one? =

two? =

three? =

NV VN

four? =

Note that at this stage there is no way to say that an interpretation is correct or
wrong. In this examplethe interpretation (A%, -7) “looks correct” because of the natu-
ral language semantics we associate to the names, but a different interpretation where
the role SUCCis mapped to {(1, 1), (3, 3)} would be avalid interpretation as well.

1But not the negation of a general concept expression.

2.1. DESCRIPTION LOGICS

20

| Syntax | Semantics | Description
A AT C AT concept name
T AT top
L 0 bottom
CnbD ctnD? conjunction
VR.C {z|Vy(z,y) € R = y € C*} universal quantification
JR.C {z|3y(z,y) € RT Ay e CT} existential quantification (&)
-C AT\ C* genera negation (C)
CuD CI U DT disunction (/)
<nR {z8{y]| (z,y) € RT} <n} number restriction (\)
>nR {z|8{y]|(z,y) € R} >n}
<nR.C {z | 8{y]| (z,y) e RI/\y € C*} <n} | quaified number restriction
(Q)
>nR.C {z]8{y]|(z,y) e RE Aye CT} >n}
{ay,...,an } at, ... a,” one- of (O)

Table 2.1: Syntax and Semantics of concept expression constructors.

| Syntax | Semantics | Description
P PTC AT x AT role name
RMOQ RN @Q* role conjunction (R)
RUQ RTUQ* role digunction
R | {(y,2)] (z,y) € RT} | converserole (7)
RoQ RT o ()* role composition
C? {(z,2) [z € CT} |test
R* U;so(RY) reflexive transitive closure: (RH)Y =
- (3R.T)?)*, and (RT)i*! = (RY)i o RT

Table 2.2: Syntax and Semantics of role expression constructors.

2.1. DESCRIPTION LOGICS 21

Interpretations can be naturally seen as directed labeled graphs; the nodes are the
elements of the interpretation domain, while the interpretation function provides both
the labeled edges and the set of node labels. For example, the interpretation Z of
Example 2.1 is represented by the graph

{succ

{d {Even} {Cdd} n} {Cdd}
1

2 3 4
{succ) ¢ {suoch G {suoch G {sucg)

one t Wo t hr ee f our

Note that the node and edge labels are sets of concept and role names respectively,
because a single element of the domain can be in the extension of more than one con-
cept name (and analogously a pair of elementsin the extension of severa roles). Inthe
graph we indicated the mapping for the individual names with the dotted lines, but in
general thiswill be omitted when we are interested in the structure of the interpretation
only.

Expressions are interpreted according the semantics given in Table 2.1 and Ta-
ble 2.2; for instance, with respect to the Example 2.1 the expression (3SUCC.Even) g
isinterpreted as the set {1, 3}. The interpretation of a concept expression can be the
empty set as well; for instance, with respect to the interpretation of Example 2.1 the
set (Even M (3SUCC.Even))” isempty.

Aninterpretation is said to be a model for a concept expression if the extension of
that expression is nonempty. The existence of amodel for aconcept expression defines
the satisfiability of the concept itself; i.e. a concept expression C' is satisfiable if and
only if there exists an interpretation Z such that C* is nonempty.

Different concept expressions can be compared with respect to their models. Two
concepts are equivalent if and only if their extensions are equal with respect to every
interpretation. In a similar way, a concept is subsumed by another if the extension
of the first one is included in that of the second with respect to every interpretation.
Formally, concept C' is subsumed by concept D (written as C' C D) if and only if for
any interpretation Z the inclusion CZ C D7 holds.

2.1. DESCRIPTION LOGICS 22

2.1.2 DL based systems

Traditionally, the knowledge base of a DL-based system is composed of two distinct
parts. the intensional (Thox) and the extensional (Abox) components.

Terminology

The intensional part describes the relation between concepts and roles expressions. It
can be seen under two different lights: asacollection of definitionsfor role and concept
names, or as a set of axiomsthat restrict the modelsfor the knowledge base. The Thox
is composed of a set of statements of the forms:

C = D (2.1)
C C D (2.2)

The first statement asserts that the concept expressions C' and D are equivalent,
while the second that concept expression C' is more specific that (or included in) ex-
pression D. When the left hand side of the statement is a concept name (A = D or
A C D), the statement is said to be definitional, because it defines the characteristics
of the concept name. Examples of general statements are (Odd 1 Even) C L and
T C (= 1SUCC), whilel nt eger = (Gdd U Even) (= 1 SUCC) isadefinition.

The semantics of Thox statementsis given in terms of interpretations analogously
to the subsumption and equivalence seen in Section 2.1.1. Aninterpretation Z satisfies
(isamodel of) the statement C =D if and only if C*7 = D, andit satisfiesCC D if and
only if 07 C D*. Thegenerdisationto afull Thox is straightforward, an interpretation
iIsamodel for aThox if it satisfies al the statements contained in the Thox.

DL systems are also characterised by the kind of statements they alow on the
Thox. Systems with free Thoxes allow any kind of assertions, others restrict to the
definitional statements or to acyclic assertionsonly. A terminological cyclein a Tbox
is arecursive definition, or one or more mutually recursive definitions. Examples of
recursive definitions are Human C VOFFSPRI NGS.Human or the pair of definitions

Gdd = (—-EvennmnVSUCC.Even),
Even C VSUCC.Cdd '

2.1. DESCRIPTION LOGICS 23

Allowing terminological cyclesin the Thox rises several problems, on both the se-
mantic and computational aspects (see Nebel [1991]). For thisreason, most of the early
DL systems do not allow cycles in the terminology (see Borgida and Patel-Schneider
[1994], Baader and Hollunder [1991b]). On the other hand, recursive definitions are
ubiquitous in computer science (e.g. data structures), and a very natural way to model
application domains (e.g. the Human definition above). For these reasons recursive
definitions have been widely studied (see Nebel [1991], De Giacomo and Lenzerini
[1997]), and all modern systems provide unrestricted concept inclusion assertions.

The first problem for cyclic definitionsis providing a semantics; the different pro-
posed semantics are either fixed point based or descriptive. Using the descriptive se-
mantics, all the interpretations satisfying the Thox statements are models for the Thox
itself. While under the fixed point semantics, interpretations are filtered according a
fixed point operator (see Nebel [1991], De Giacomo and Lenzerini [1997] for more
details). The descriptive semantics is adopted here because of its wide acceptance as
the most appropriate one (see Donini et al. [1996b]).

We distinguish three different types of terminologies: definitional acyclic, defini-
tional, and free. The latter (free) type is the most general one: every kind of termi-
nological axiom of the form C' C D can be put in the terminology?. The definitional
approach restricts the form of the axioms in such a way that only concept names are
allowed on the left hand side of an axiom, and each name can appear only once in a
left hand side. Under the definitional restriction the axioms are called definitions.® The
most restrictive approach imposes that the definitions must be acyclic.

Many systemstake the acyclic definitional approach becauseit isthe simplest case,
and it exhibits good computational properties. In addition, it can be shown that a
knowl edge base containing only acyclic definitions can be transformed in an equivalent
one with an empty terminology.

The transformation proceeds in two phases. Firstly, all the inclusion definitions
of the form A C C are transformed into equivalent equality definitions A = C' M A*,
introducing a new concept name for each inclusion. Finaly, al the defined concept
names in concept expressions are substituted with their definition. After the transfor-
mation the Thox can be ignored and all the reasoning can be carried out with the fully
expanded expressions.

2Theinclusion axiom is general enough for representing definitions (C' = D) aswell. Infact, asingle
definition C' = D can be expressed by the pair of inclusionaxiomsC C D and D C C.

3Actually, in DLswhich provide the disjunctive constructor, free terminol ogies can always be trans-
formed in (possibly cyclical) definitional terminologies (see Buchheit et al. [1993]).

2.1. DESCRIPTION LOGICS 24

Abox assertions

The extensional part describes a particular configuration of a domain, introducing in-
dividual names and their properties. Aboxes are composed of statements of the form:

a:C (2.3)
(a,b):R (2.4)

The assertion a:C' expresses the fact that the interpretation of individual a isin the
extension of a concept expression C'. The role assertion {(a, b): R states that the pair
composed by the interpretations of individuals ¢ and b is in the interpretation of role
expression R. The semantics of an assertion is given with respect to interpretations.
An interpretation Z satisfies a:C' ({a, b):R) if and only if aZ € C% ((a?,b?) € RY).
Anaogously to the Tbox, an interpretation Z is a model for an Abox if it satisfies
every assertion in the Abox.

DL knowledge bases

A DL knowledge base is a pair ¥ = (7,.A), where 7 is a Thox and .4 an Abox.
Given the definition of models for a Tbox and an Abox, amodel for a knowledge base
¥ = (T,.A) isamodel for both 7 and .A. The definition of models of a knowledge
base naturally introduces the concept of logical implication: astatement o isalogically
implied (or entailed) by the knowledge base ¥ (written as ¥ = «) if and only if « is
truein every model of . For example the statement b: B isalogical implication of the
knowledge base (0, {a:VR.B, {(a,b): R}).

Two knowledge bases are equivalent if the models for one are models for the
other and vice versa. This equivalence is a powerful tool for manipulating knowl-
edge bases: as long as the equivalence is guaranteed, a knowledge base can be modi-
fied without affecting its logical implications. For example the knowledge base ¥ =
({A=BnN3R.C},{a:A})isequivalenttoy’ = ({A=BMN3R.C},{a:BN3IR.CY}),
and the statement a: B islogically implied by both 3 and .

2.2. REASONING WITH DLS 25

2.2 Reasoningwith DLs

Reasoning with DL knowledge bases is the fundamental process of discovering the
facts entailed by the knowledge base. The interaction with a DL system is performed
by a collection of reasoning services implemented employing automated reasoning
techniques. The reasoning services may differ according to the purpose of the DL
system, for example checking the truth value of boolean queries, or verifying the con-
sistency of the knowledge base.

The reasoning services provided by a DL system are formally defined in terms of
the logical consequence. Reasoning services can be classified as basic services, which
involve the checking of the truth value for a statement, and complex services. Among
complex reasoning services are tasks such as finding all the individuals being in a
concept expression, or organising the concept names appearing in the terminology in a
taxonomy. Basic services are for instance the verification of the subsumption between
two concepts or the satisfiability of a concept. The principal basic services are:

Knowledge base satisfiability written as > = T # L, is the problem of checking
whether thereis at least a nonempty model for X.

Concept satisfiability writtenas > = C # L, is the problem of checking whether
there existsamodel of 3 in which the extension of the concept C' is not empty.

Subsumption writtenas = C' C D, isthe problem of verifying that in every model
of ¥ the extension of C' isincluded in that of D.

Instance Checking written as > = a:C, is the problem of verifying that in every
model of X the interpretation of « isin the extension of C.

Reasoning services are not independent of one another, on the contrary each can be
often reduced to another. The reducibility actually depends on the underlying concept
language: using alanguage closed under negation, all the basic reasoning services can
be reduced to knowledge base satisfiability (see Schaerf [1994] for the details).

The complex reasoning tasks provided vary from system to system, and are de-
fined on top of the basic services. The most common are classification and retrieval.
Classification consists of explicitly representing the concept taxonomy entailed by the
knowledge bases. The concept taxonomy is a graph whose nodes are the concept
names that appear in the knowledge base, and the edges represent the subsumption
relation between them. This graph can be constructed by checking the subsumption

2.2. REASONING WITH DLS 26

between every pair of concept names. Retrieval (or query answering) is the collecting
of al individuals in the knowledge base that are instance of a given concept in every
model of the knowledge base. It is formally defined by the set {a € O | £ = a:C'},
where C' isthe querying concept.

2.2.1 Terminological reasoning

Terminological reasoning involvesonly theterminology (i.e. without considering Abox
assertions). In spite of the fact that all the reasoning services can be reduced to knowl-
edge base satisfiability, terminological reasoning is important because of the fact that
for most of the concept languages the terminology does not depend on the assertional
part. This independence relies on the fact that some services which require dealing
with concept expressionsonly (e.g. subsumption) can be performed ignoring the asser-
tions. Thisassumption is extremely useful; for example, it enables the verification that
an El ephant isaManmal without considering the complete knowledge base about
wild life.

Unfortunately, not all concept languages enjoy this property; among these are the
concept languages in which individuals can be used in concept expressions (e.g. the
ones with one- of). In fact, while in general the expression VR.{ a,b } is not sub-
sumed by VR. A, with respect to aknowledge base containing the assertions {a: A, b: A}
the subsumption actually holds:

(0, {a:A,b:A}) EVR{ a,b } CYR.A

Since most of the languages enjoy the property of terminology independence, and
terminological reasoning services are fundamental for knowledge representation sys-
tems (classification, for example), a big effort has been spent on the development of
efficient concept satisfiability algorithms (see Horrocks and Patel-Schneider [19984]).
The concept satisfiability problem is general enough, because concept subsumption
can be reduced to the unsatisfiability of a concept expressions. C' C D if and only if
C M —D isunsatisfiable.*

The main idea of the concept satisfiability algorithm, presented in Baader and Hol-
lunder [19914], is based on a notational variant of the first—order tableaux calculus. It
is based on the general ideathat, since presenting amodel isaway of showing that the

41f CN—D isunsatisfiable C intersected with ~D it is empty in each model, so C' hasto be included
in D. The other way around is anal ogous.

2.2. REASONING WITH DLS 27

concept is satisfiable, a tableau can be used to build amodel of the given concept.

Example 2.2

Looking for a model of expression A M 3R.B means building an interpretation Z in
which the expression’s extension is not empty. The process starts “creating” an object
x in the domain A%, which belong to the extension of the concept A M 3R. B:

r € (AN3R.B)T,

x should be in both AZ and (3R.B)* because of the semantics of M, so two more
constraints are induced:
v € A v € (AR.B)*

The semantics of the existential constructor guides the generation of a new individual
y € AT (potentialy different from x) such that:

(z,y) € R*,y € B*

From the set of constraints above an interpretation can be derived:

AT = {z,y}
AT = |z}
B* = {y}
R' = {(z,y)}

which can be easily verified as being a model for the initial concept expression A 11
dR.B.

Example 2.2 can be generalised by the notion of constraint system as defined in
Schmidt-Schauss and Smolka[1991]. A constraint systemisaset of constraints, which
are syntactic elements of the forms:

x:C concept constraint
(x,y):R role constraint (2.5)
T F£y inequality constraint

Although the syntax issimilar to the onefor the Abox assertions, thereisadifferencein
themeaning of the x and y items. Theseare not individuals, but variables, so the unique

2.2. REASONING WITH DLS 28

name assumption does not apply to them unless stated by an inequality constraint. The
similarity with Abox assertionsisthat both kind of expressionsrestrict their arguments
to be in a concept or role expression.

When in a constraint system between two variables the inequality constraint holds,
thesetwo variables are said to be separated. A constraint system can be seen asagraph
where the edges are |abelled with the roles, and the nodes are the variable names; when
avariable z is connected by arole R to avariable y, y is said to be an R-successor
of z. Given aconstraint system S the notation S{y/z] represents the constraint system
obtained by substituting each occurrence of variable y with variable z in the constraint
system S.

The process of looking for amodel proceeds by extending (or completing) a con-
straint system using a set of completion rules. These rules modify a constraint system,
adding or rewriting the constraints contained on it. For example the rule for the exis-
tential quantification (see Example 2.2) is defined as:

S =3 {{z,y):R, y:C}US
if :3R.C In S, yisanew variable
and thereisno z s.t. both (z, z): R and z:C'in S.

The meaning of the rule is that the constraint system .S should be expanded by
adding the constraints (z, y): R and y:C, if the conditions in the following lines are
verified. The set of completion rules varies according to the different concept lan-
guages, for exampletherulesfor ALCN are shown in Figure 2.1.

The concept satisfiability algorithm starts with the constraint system {x:C'}, where
C' isthe concept to check, then it applies the completion rules as long as the precon-
ditions are satisfied. When no rule is applicable the constraint system is said to be
completed, and if there are not contradictory constraints, a model for the concept C'
can be derived (see Donini et a. [1996b]). Contradictions in a constraint system are
detected by the so—called clashes, which are constraint systems containing constraints
of one of these forms:

1 {x:Ll}
2. {z:A, x:mA}

3. {m<nRYU{(z,y):R|i€l..n+1}
U{yi 2 y;|i,j €1...n+1,i # 5}

2.2. REASONING WITH DLS 29

S —n {fL’ICl, .ZU:CQ}US
if 37101 ([02 in S,
and both z:C, and z:Cy arenot in S.

S —u {=D}US
ifx:C’ll_ICginS,
neither z:C, or z:Cy isin S
and D =Cj,or D = (.

S —v {y:C}lus
if ©:VR.C'in S, and (z,y):Risin S,
and y:C' notin S.

S =3 {{z,y)R, y:C}US
if :3R.C InS,yisanew variable
and thereisno z st. both (x, z): R and z:C'in S.

S —=s {{zyy)yR|iel..nfU{yi#y;|t,j€l...ni#jUS
ifz:>nRinS,y ...y, aenew variables
and z has not n. pairwise digoint R-successorsin S.

S =< Sly/A
ife:<nRinS,
2 has no more than n R-successorsin S,
(x,y):R, (z,z):R arein S,
andy # zisnotin S.

Figure 2.1: Completion rulesfor ALCN

Not all the completion rules are deterministically applicable (i.e. only in one way).
For examplein thedigunctionrule —, one of the two concepts can be nondeterministi-
cally chosen to be inserted in the augmented constraint system; the choice can generate
resultsin two different constraint systems. One is chosen and if it leads to a clash, the
algorithm backtracks and tries the second one. In the case of ALCN the nondetermin-
istic rules are those associated with disjunction, and with the upper number restriction
(the variables to be merged are nondeterministically chosen).

The algorithm based on the completion rules has been proven to solve the concept
consistency checking problem; i.e. it produce a clash free completed constraint system
if and only if the concept is satisfiable (see Donini et al. [1996b]). Presenting the for-
mal proof of that result is not in the scope of this work, but an overview of how it is
structured can be useful because of it can be generalised to other concept languages
with different set of rules. Thefirst step consistsin showing that the deterministic rules

2.2. REASONING WITH DLS 30

application preserves the satisfiability of the constraint system, and that the nondeter-
ministic rules can be applied in such a way that the satisfiability is preserved. The
second step consists in showing that the rule application always terminates; i.e. all
the possible completed constraint systems which can be generated are finite. Finaly,
the last step shows that from a completed clash-free constraint system a model can be
constructed.

2.2.2 Hybrid reasoning

Hybrid reasoning takes account of both the parts of aknowledge base. We consider al-
gorithmsfor solving the problem of knowledge base satisfiability. In principle, this ap-
proach is genera enough because all reasoning services can be reduced to knowledge
base satisfiability (see Section 2.2). Indeed, most of the DL systems available pro-
vide different reasoning services by reducing them to KB satisfiability, and although
alternative approaches have been suggested (see for example Rousset [1999]), no other
satisfactory alternative has yet been found.

For a large class of concept languages, including ALCN, the agorithm can be
a generalisation of that used for terminological reasoning. The notion of constraint
system isextended, allowing the presence of constraintsfor individualsaswell as vari-
ables. In addition, due to the unique name assumption, each pair of different individu-
asimplicitly introduces an inequality constraint which forces them to be separated.

The initial constraint system is not composed by a single constraint as the termi-
nological case, but the full Abox is included in the constraint system. Each role or
concept assertion is added to the constraint system as a corresponding role or concept
constraint. Then the algorithm proceeds, completing the constraint system as in the
terminological case. In Buchheit et al. [1993] the proof of correctness and complete-
ness of the technique has been provided. Example 2.3 below, shows an knowledge
base completion for an instance checking problem.

Example 2.3
Consider the following knowledge base with an empty terminology:

susan:Fenal e,bi | | :—=Fenal e,
¥ = (0,{ (sarah,susan):FRI END, (sar ah,andr ea):FRI END, ;)
(susan,andr ea):LOVES, (andr ea, bi | |):LOVES

This is one of the classical examples for showing the necessity of reasoning by case

2.2. REASONING WITH DLS 31

in DL. The example pivots on the fact that the sex of the individual andr ea is not
specified, so the KB contains incomplete knowledge.®

We want to check whether sar ah hasafemale friend loving amale, i.e. verifying
the instance checking problem

Y. = sar ah:(3FRI END.(Femal e M (3LOVES.—Fenal e))).

It is easy to verify the instance checking problem using reasoning by case: we can
assume that andr ea is either in the concept Feral e or —Femnal e. Inthefirst case,
andr ea is the female friend of sar ah loving amale (bi | 1). In the second case,
susan isthefemalefriend of sar ah loving amale (andr ea).

This problem can be reformulated in term of KB satisfiability by verifying that the
knowledge base augmented by the assertion

sar ah:—~(3FRI END.(Fenal e 1 (3LOVES.—Fenal e)))

is unsatisfiable (see Donini et a. [1994]). The corresponding initial constraint system
is:®
sar ah:(VFRI END.(—Femnal e LI (VLOVES.Fenal e)))
susan:Fenal e,bi | | :-Femal e,
(sar ah,susan):FRI END, (sar ah, andr ea):FRI END,
(susan,andr ea):LOVES, (andr ea, bi | |):LOVES

Using the universal rule (—) applied to the first constraint and the role constraints,
new constraints for susan and andr ea are introduced:

susan:(—Fenal e Ll (VLOVES.Fenal e))
andr ea:(—Fenal e U (VLOVES.Fenal e))

With the new constraint for susan the nondeterministic —, rule can be applied.
However choosing the susan:—Fenal e constraint leads to a clash with the initial
susan:Fenal e assertion; therefore the second concept is chosen, and the constraint
system is extended with:

{ susan:(VLOVES.Fenal e) }

5The name Andrea is considered a male name in Italy, and female in most of the rest of the world.
6AIl the negations have been pushed in front of concept names.

2.3. ROLEAXIOMS 32

This congtraint, together with the role constraint (susan, andr ea):LOVES can be
used with the universal rule leading to the new constraint:

{ andr ea:Fenal e }
Again the —, can be applied to the not yet considered constraint
andr ea:(—Fenal e Ll (YLOVES.Fenal e))

containing adigunction. Asin the previous case, choosing andr ea:—Fenal e leads
to aclash, so the added constraint is:

{ andr ea:(VLOVES.Fenal e) }

which can be used with the (andr ea, bi | |):LOVES constraint to add the new con-
straint bi | | :Feral e, which generates a new clash. At this point al the possible
nondeterministic choices have been explored, and all the possibilitiesleaded to aclash.
Therefore the constraint system is not satisfiable, and the answer to the instance check-
ing problem is affirmative.

2.3 Roleaxioms

The DL s we have introduced up to now are powerful languages for describing classes
of elements, but the possibility of specifying “global” properties of therolesislimited.
For instance, a DL with the transitive closure constructor (see Table 2.2) can “talk”
about the transitive closure of arole but it cannot restrict the interpretation of arole to
be transitive.

Most of the recently developed DL systems have introduced the possibility of
adding axioms about roles into the terminology (see Horrocks [1998], Haarslev and
Moller [2000b]). Usually these axioms state the inclusion relationship between role
names; but, in addition, transitivity or functional restrictions can be imposed on role
names. The choice of role axioms provided by a DL system depends on the balance
between the representional usefulness of the construct, and the practical tractability of
the KB satisfiability problem.

Although some of the role restrictions can be imposed by appropriate concept ax-
ioms, having an agorithm which handles them directly is usualy more efficient. A

2.3. ROLEAXIOMS 33

typical caseisthefunctional restriction; i.e. the fact that every element has at most one
successor. This restriction can be enforced by a role axiom which states that a role
F isfunctional, or by using the concept axiom TC < 1 F.T (in DLs providing the
number restriction constructor). In spite of the fact that they are equivalent, the latter
method may introduce unnecessary nondeterminism in the tableau construction (see
Section 2.2.1).

In our work we concentrate on three kinds of role restrictions: transitivity, func-
tional, and inclusion (or role hierarchy). Indicated in the name of the logic respectively
by the letters z+, H, and f.

Transitivity Thisrestriction on role names states that the transitive closure of arole
must be contained in the role itself. Formally, this can be expressed as a requirement
for interpretations, in the sasmeway asin the case of concept axioms (see Section 2.1.2).
For example, if therole R istransitive then an interpretation Z = (A7, %) satisfiesthe
transitivity of R iff

{(z,y), (y,2)} C R* implies (z, z) € R*.

Transitivity can be extremely useful for modelling part-of relations (see Sattler [1996]
for more details). The reader may have noticed the similarity of the transitive re-
striction with the transitive closure constructor on roles (see Table 2.2). In fact, the
latter can be used in place of the transitive restriction (the converse is not true). How-
ever, transitive restriction has proved to be practically more tractable than the transi-
tive closure constructor, leading to ssmpler satisfiability algorithms (see Horrocks et al.
[1999h]).

Generally, the transitivity restrictions are not directly represented as axiomsin the
terminology; instead, we distinguish a subset of the role names as the set of transitive
roles(i.e. TRN C RN).

Functional If arole nameisfunctional, in every interpretation satisfying the restric-
tion the relation associated to the role name must be a partial function (i.e. it relate
any element of the domain to no more than one element). It is easy to see that this
is equivalent to a concept axiom of the form TC < 1 F.T. However, functional re-
strictions are common in domain modelling, therefore they are usually handled by the
satisfiability algorithm directly.

Analogudly to the transitivity restrictions, functional roles are considered a subset

2.3. ROLEAXIOMS 34

of the set of role names (i.e. FRN C RN). In addition, we impose the limitation (as
in the FaCT system) that the sets of functional roles and transitive roles are digoint.
The reason for this limitation lies in the fact that is not clear whether transitive func-
tional role are of any usefulness in the modelling process; moreover, the decidability
of suchaDL isstill an open problem (we know that allowing transitive rolesin number
restriction leads to undecidability, see Horrocks et al. [1999b]).

Inclusion This kind of axiom is the role counterpart of the concept axioms shown
in Section 2.1.2, with the difference that they relate sets of pair of elements of the
domain instead of sets of elements. Role axioms are expressed by statements of the
form R, C R,, where R, and R, are role expressions. An interpretation Z = (A%, -7)
satisfies the role axiom iff

Rt C Ry

We consider only simple axioms where the role expressions are simply role names, in
this way the role axioms express only a taxonomy of role names. It is worth notic-
ing that axioms hide an implicit negation,’ therefore without restrictions on the role
axioms full boolean role expressions can be obtained if the DL has conjunction or dis-
junction role constructors. The problem is that having alanguage for role expressions
closed w.r.t. negation push the DL close to the decidability border (see Lutz and Sattler
[2000]).

Obvioudly, sub-roles of functional roles must be functional aswell; therefore if the
DL providesthese three restrictions a transitive role cannot be included in a functional
role (see the discussion about transitive functional roles above).

Role hierarchy can be “simulated” by using either role conjunction or digunction.
Roughly speaking, the idea is to substitute each node of the role taxonomy by either
the conjunction of all the top level role names *“above” the node, or the disjunction of
the leaves below it. Each role name in then replaced by the corresponding expression;
thisismore or lessthe same process as the “unfolding” of the concept definitions. This
role unfolding can be performed only if the DL does not provide the qualified num-
ber restriction constructor (i.e. < n R.C') because for keeping decidability complex
role expressions are not allowed as argument of this constructor (see De Giacomo and
Lenzerini [1994]).

An example of the expressivity that role restrictions can provideisgiven by the fact

7Just consider the concept case in which the axiom C' C D is equivalent to assert that every element
of the domain must belong to the interpretation of the concept -C' LI D

2.4. THE DESCRIPTION LOGIC SHF 35

that arbitrary concept axioms can be represented by the combination of transitivity and
role inclusion (see Baader [1991]).

2.4 Thedescription logic SHf

In the rest of the thesis we consider the DL S7f; thisis the very same logic handled
by the DL system FaCT (see Horrocks [1998]) with the addition of the Abox.

SHfisan extension of thelogic ALC toinclude transitiveroles, role hierarchy and
functional restriction. Following the naming convention introduced in Horrocks et al.
[1999D], the DL ALC extended with transitive role (i.e. ALCx+) is abbreviated as S.
This is due to the relationship with the propositional (multi) modal logic S4 ., (see
Schild [1991]).

Summarising, the DL SHf is built over a signature of distinct concept (CN), role
(RN) andindividual (O) set of names; in addition we di stinguish two non—overlapping
subsets TRN, FRN of RN which denote the transitive and the functional roles.
Valid concept expressions are defined by the abstract syntax:

C:: =T|L|A|-A|C,NCy|CUC, |YR.C|3R.C

where A is aconcept name chosen from the set CA/ and R arole name from RN

A SHf knowledge base is composed by a Thox containing axioms of the form
C, C Cy or Ry C Ry, and an Abox containing individual assertions of the form a:C' or
(a,b):R. The semanticsis the one described in the previous sections.

Since role inclusion axioms contain role names only, from the set of role inclusion
assertions a taxonomy of role names can be trivialy build. In addition, if there is a
cycle in the axioms, then all the names involved in the cycle must correspond to the
same binary relation in every interpretation (satisfying the axioms). For this reason,
we assume that the role taxonomy is acyclical, and we represent it by a partial order <
defined over the set of role names.

In the next chapter we characterise the structure of the modelsfor aSHf KB. The
ideais to recognise a class of interpretations which completely describes S#f, in the
sense that whenever aKB has amodel it has amodel of this class aswell.

This characterisation of thelogic will be crucial for the following chapters describ-
ing the KB satisfiability and query answering algorithms.

Chapter 3

Model characterisation of SHf

As anticipated in the previous chapters, many of the convenient properties of Descrip-
tion Logics stem from their tree model property; i.e. the fact that every satisfiable
formula has a model that is a tree (see Vardi [1997], Gradel [1999]). In the logic we
consider the picture is slightly more complicated by the fact that Thox assertions on
roles and the Abox can force non-tree shaped models. In particular, the transitivity
forces the presence of “shortcuts’ corresponding to the transitive closure of parts of
the tree; while the Abox assertions can force any graph shape among the nodes corre-
sponding to individual names. However, we still have a tree-like model property; the
models look like a cloud containing the nodes corresponding to individual names with
(possibly transitive) trees hanging off the nodes in the cloud (see Figure 3.1).

Figure 3.1: Structure of interpretationsfor SHf

36

3.1. QUASI TRANSITIVE SHRUB INTERPRETATIONS 37

We call this kind of interpretations shrubs, because we distinguish a central inter-
connected part with branches coming out of it.> There are a few properties of these
interpretations which are fundamental for the proofs we are going to present in the
following chapters. Thefirst oneisthat elementsin distinct trees are not connected by
any link; i.e. elements of the trees cannot “see” elements of other trees. The second
isthat each tree is “attached” to a single node corresponding to an individual; if there
are links starting from other nodes in the cloud, then these edges must be the result of
atransitive closure. This meansthat all the connections of the tree with the rest of the
graph are “mediated” by the individual the tree is attached to.

This chapter will formally present the properties of this class of interpretations
which we have called quasi transitive shrubs. In addition, we define a transformation
for arbitrary interpretations which enables us to present a completeness result for both
the problem of satisfiability (see Section 3.3) and logical implication (see Section 7.2)
for SHI.

Note that completeness w.r.t. KB satisfiability can be proved by using a technique
simpler than the one we are presenting in this chapter. In fact, it is well know that
the DL SHf hasthe finite model property (see Horrocks [1998]),? while our technique
always generates infinite interpretations (even uncountable if the starting domain is
uncountable). So the natural question is whether we need a different mechanism. Our
answer to this doubt is obviously positive, because we need to show the compl eteness
w.r.t. a problem not directly reducible to KB satisfiability (see Section 7.2). We will
come back to this latter point in the last section of this chapter.

3.1 Quas transitive shrub interpretations

Asexplained above we are interested in interpretations being structured as a collection
of trees whose roots are possibly interconnected by links. We start from a set of trees,
then we add the required links connecting the roots to the rest of elements.

There are different way of building a tree; the one we have chosen consists of
selecting an alphabet (without any restriction of cardinality), and then consider the set
of al finite sequences of elements of that alphabet. When it comes to actually build
the tree by adding the edges, we are going to connect two sequences only if the second
one is equal to the first one with one more element of the alphabet (i.e. a sequence

IStrictly speaking a proper shrub does not have the interconnected core, but from an adequate dis-
tance they looks like balls of leaves with afew branches coming off them.
2Without Abox assertions, however Abox is not affecting the finiteness.

3.1. QUASI TRANSITIVE SHRUB INTERPRETATIONS 38

ag...a, can have only sequences a;...a, [as successors). This process naturally
leads to a forest where each element of the selected alphabet (or more precisely the
sequence containing a single element) can be the root of one of the trees. Note that
any node of the trees can have as many successors as the cardinality of the alphabet
(which isnot restricted in any way). Note that this method does not satisfy completely
our requirements, because there are till the problems of transitive relations, and Abox
role assertions. These two aspects are indeed considered in Definition 3.2.

We chosen this method because what we want to do is to take an arbitrary inter-
pretation and transforming it into aquasi transitive shrub interpretation still having the
same properties (in terms of satisfiability of aKB). In addition, we would like to main-
tain a strict relation between the elements of the original interpretation domain and
those of the new interpretation; the idea istaking the original interpretation domain as
an alphabet (see Section 3.2.1 for the details).

Let us start with the definition of the set of sequences of elements from a given
domain.

Definition 3.1. Let A be an arbitrary domain then X is the set of al the finite se-
guences of elements of A. We indicate the empty sequence as ¢, which by assumption
. .=
isnotin A.

To distinguish the elements of the “alphabet” from the sequences we are going to
use the letters z, iy for elements of the “aphabet” domain, and the letters u, v, w for
sequences. We indicate with ex,. . .z, the sequence containing the elements =+, . . ., =,
of A; while ux represents the sequence resulting from the concatenation of the the
element z to the sequence w.

We use the set of finite sequences as the domain for the quas transitive shrub
interpretations; in addition, we impose some restriction on the interpretation function.
In particular, we require that individual names are mapped to sequences of length 1,
and we add a few regquirements on the interpretation of roles, which we will detail
below.

Definition 3.2 (Quasi transitive shrubs). Let A be an arbitrary domain. Aninterpre-
tation Z = (AZ,-7) over a set of individual names O, role names RN/, and concept
names CN\ isaquasi transitive shrub interpretation iff it satisfies the following prop-
erties. Let u, v be arbitrary elements of AZ, z an element of A, and R anamein RN

3.1. QUASI TRANSITIVE SHRUB INTERPRETATIONS 39

ATc X (329)
if u € OF thenthereisy € A suchthat u = ey (3.2b)
if (u,er) € R then {u, ex} C OF (3.2c)
if (u,vr) € R theneither u = v or {(u,v), (v,vz)} C R* (3.2d)
if {(u,v),(u,vz,...2,)} C R then (v,vzy...2,) € R* (3.2¢)

The first two restrictions of Definition 3.2 correspond to the two above mentioned
properties that the domain is composed by finite sequences of given elements, and
the individual names are aways interpreted as “singleton” sequences. The third prop-
erty (3.2c) ensuresthat thereis not any link going back from one of the trees to the root
of any other tree; i.e. the interaction between different trees is always mediated by the
roots, and is restricted to elements mapped from individual names.

The last two properties ((3.2d) and (3.2€)) ensure the tree-like shape, extended to
the transitive case. Property (3.2d) extends the tree-shape idea to cover the transitive
parts of the interpretations. In fact, if the transitive closure is not considered, the
presence of an edge (u, vz) impliesthat . = v (the successors of a node are sequences
containing just one more element). However, we need to consider the case in which
aroleis transitive or contains a transitive sub-role; therefore we must allow the case
in which (u, vz) is a shortcut for the two edges (u, v) and (v, vz). The last property
relates the elements contained into a subtree with elements outside the given subtree.
In fact, given a node v, al the nodes in the form vz;...z, (with z; € A) arein
the subtree rooted in v. The property describes the case in which there is an edge
connecting a node outside this subtree (u) to both the root (v) and an element of the
subtree® In this caseit is ensured that the edge (u, vz, . . .z,) isashortcut for the path
(u,v)and (v, vzy. . .x,).

Clearly, the the structures characterised by Definition 3.2 are neither trees nor
acyclic graphs. However, we can distinguished the tree-like structures defined by all
the elements beginning with the same sequence. With an abuse of terminology we call
these substructures trees. In fact, if we consider their intuitive support tree, the added
edges are only the result of transitive closure of the support tree. This restriction does
not apply to the roots of these trees, which can be connected in any way (even with
cycles). Theideaisthat the relation among the roots reflects the role assertions in the

3Thecasein which u = v istrivially satisfied.

3.1. QUASI TRANSITIVE SHRUB INTERPRETATIONS 40

Abox.

The restriction on the structure of g.t. shrub interpretations are strong enough to
characterise two sequences connected by a role. This is shown by the next lemma
which is used in Chapter 7 for showing the completeness of the proposed algorithm
for query answering (see Proposition 7.16).

Lemma3.3. LetZ = (Af,.7) beaquasi transitive shrub inter pretation built fromthe
domain A (i.e. AT C X). Let R be an arbitrary role name, v and v = ex;.. .z, be
elements of AT (z; € Afori =1,...,n)for n > 1.* Thenthe pair (u,v) isin RZ
only if:

thereisanindexk < n st.u = exy.. .z (3.39)
or {u,ex;} C OF and {(u, ex), (exy,v)} C RT (3.3b)

Proof. Since the length of the sequence v isfinite, then we prove the lemma by induc-
tion on the length of v.

Let be v = exyx,, then by (3.2d) either v = exy or {(u, ex), (ex1, exy20)} C RE;
indeed, these are exactly the two cases (3.3a) and (3.3b).

Let us assume that the lemma holds for any sequence whose length is less than
n, and let us consider (u,exr;...r,) € RE. By (3.2d) either u = exy...z,_ OF
{(u,€x1...T0 1), (€x1. . Ty 1, €Ty . .7y 17,)} € RE. In the first case (3.39) is sat-
isfied by £ = n — 1, while for the latter case we can use the inductive hypothesis
for the pair (u,ex;...z,_1) € RE. Therefore, either thereisanindex k < n — 1
such that u = exy...zp or {(u,exy), (ex1,€exy...2,—1)} C RE. In the first case
(3.39) is satisfied, while in the second we have (u,ex;) € R*. We need to show
that (exy, exy...xn_17,) € RE. Thisis verified by (3.2€) because (u,ex;) € R and
(u, €xy...7,) € RT by hypothesis. O

The previous lemma describes the situation in which there is a relation R be-
tween an arbitrary element « and an element v which is “inside” one of the trees (it
cannot be one of the roots because it is a sequence longer than a single element by
assumption). When thisis the case then either v is contained in the subtree rooted in
u (condition (3.3a)), or the relation is “coming” via the root of the tree containing v
(i.e. the sequence ex; (condition (3.3b)). Notethat by Definition (3.2c), when the latter
condition is verified the element « must correspond to one of the individual names.

“We excludethe case v = ex, because thisistrivially covered by the definition in (3.2c).

3.1. QUASI TRANSITIVE SHRUB INTERPRETATIONS 41

This property is important because it guarantees that inside one of the trees links
can only go downward. Therefore there cannot be any link going back to one of the
roots, or to elements contained in any other tree.

3.1.1 Canonical interpretations

The definition of a quas transitive shrub interpretation is independent of any given
knowledge base. In particular it does not take into account restrictions on the inter-
pretations imposed by a particular KB, like transitivity restrictions on role names, or
inclusion relations between roles. Therefore, by using Definition 3.2 we cannot prevent
the transitive closure of relations or multiple relations connecting two elements, even
when they are not required (by the kb). The point is that we really need to minimise
the non-tree characteristics of the structure of an interpretation (for reasons which will
be clear in Chapter 6 and Chapter 7).

Let us consider for example the assertion S C R. In terms of the structure of
interpretations, the axiom guarantees that whenever there is an edge labelled with S
between two nodes then there must be an edge labelled R aswell. Thisisnot ageneral
property of the SHf logic, but only of interpretations satisfying the knowledge base
containing the given assertion.

This problem is specifically related to the possibility of specifying terminological
axioms about roles. For example with ALC, or even aDL as expressive as PDL, the
tree-model property can be stated independently from any particular kb.

In our case the DL SHf allows the presence of role axioms; therefore, what we
really need is a definition characterising an interpretation w.r.t. a given KB. For this
reason we introduce the notion of canonical interpretations w.r.t. a given KB (Def-
inition 3.6). Roughly speaking, the definition considers the transitivity and the role
ordering induced by the KB in order to restrict the structure of allowed interpretations.
It isimportant to notice that a canonical interpretation does not necessarily satisfy the
knowledge base; the two notions are orthogonal one to the other.

Given a knowledge base ¥, the role inclusion axioms in the terminology define a
partial order over the set of role names RN, we use the symbol <y to denote this
reflexive order (by definition R C R). For the sake of ssimplicity, wherever thereisonly
a single terminology the KB is omitted and the ordering of role names is denoted by
the symbol < aone. Moreover, some of the role names have additional restrictions:
namely being functional or transitive. Note that the functionality restriction propagates
w.r.t. the role ordering, forcing each subrole of a functional role to be functiona as

3.1. QUASI TRANSITIVE SHRUB INTERPRETATIONS 42

well. We distinguish these two non-overlapping subsets of RA as FRAN (functional)
and TRN (transitive).

L et us consider the requirement that two elements of the domain of a canonical q.t.
shrub interpretation are related by two different roles only if thisis required in every
interpretation. Suppose that we have two elements z, y in the original interpretation Z
related by two different roles ((z,y) € R* N S%); in the g.t. shrub interpretation, all
the sequences of the form ux and uxy would be related by the same pair of roles. In
order to avoid this, we can duplicate the element y into vy and ys, then add the pair
(uz, uzryg) to the interpretation of R and (ux, urys) to the interpretation of S. This
technique cannot be applied in every case; for example, if therole S isincludedin R
(i.e. S < R), whenever apair (z,y) isin ST it must bein % aswell.

Therefore we must consider groups of role names that must “stay together”. Fortu-
nately, this can be discovered by looking at the structure of the relation < induced by
aknowledge base, together with the functional restrictions. We identify a subset of all
the subsets of RN, caling the elements of it labels. Intuitively, we are going to make
as many copies of elements of the original domain as the number of possible |abels.

The following definition provides the formal description of the set of labelsw.r.t. a
given knowledge base. It isimportant to stress the fact that this set is induced by the
assertions about the roles in a knowledge base, therefore they are not intrinsic to the
logic SHf.

The first thing we need to do is to formalise the notion of the fact that two roles
can “stay together”; i.e. the fact that when we have different roles connecting two
elements they cannot be split. The simplest case iswhen arole nameisincluded in an
other (i.e. R < S), but the interaction between role hierarchy and functional restriction
makes the story dlightly more complicated. For example, let us consider two role
names R?; and R, both included in a functional role F'. In an arbitrary interpretation
7, whenever (z,y) € R, and (7,2) € R," we know that both (z,y) and (z, 2)
must be in 7 because of the inclusion; in addition, F'Z isfunctional therefore y = .
This scenario may be even more elaborated by considering three roles R, Rs, Rs3
and two unrelated functional roles F', F, having the inclusion relation like R, < Fj,
Ry < Fi, Ry < F,, and R; < F;. With arguments which are similar to the simpler
case, we can conclude that if in all three relations an element has a successor (i.e.
(z,y1) € R\, (z,92) € RyF, and (z,y3) € Rs™) then this successor must be the same
(i.e.y1 = ya = y3).

Note that we are not saying that (z,y) € R,* impliesthe presence of (z,y) € Ry®

3.1. QUASI TRANSITIVE SHRUB INTERPRETATIONS 43

aswell (likethe caseinwhich R, < R»), but only that if they are in the interpretation
then they must coincide. This property is used in the proofs for the query answering
algorithm presented in Chapter 7 (see Proposition 7.15).

The broad idea in the definition is the fact that for a non—functional role R every
“preceding” role in the hierarchy must stay with it; while when R is functional we
must take the “successors’ as well. This should be propagated for covering the cases
shown above. So we define arelation < describing the “ staying together” of the roles.
Note that this relation is not always symmetric because if it isthe casethat S < R
and R A S, then S < R but not the converse, while when there are functional roles
involved it becomes symmetric (e.g. in the first of the example above, we have that
R, < R, and the converse as well).

Definition 3.4. Therelation < isrecursively defined by

)
Ry = Ry, or

_ Ry <= Ry and R, isfunctional, or

Ry < Ry iff (3.49)

Ry S Rand R < R, forsomerole R if neither

Ry X Rynor Ry X Ry

\

The relation is well defined because it can be build by using the structure of the role
hierarchy. We use the newly defined relation for introducing the set of labels of a KB.

A label L isasubset of RN (L € 2*V). For afixed ordering < and set of func-
tional roles FRN we define the set of labels of RN as amaximal® subset £ of 27V
satisfying the properties that for any label L € £

if {(R,S}CLthenR< SorS<R; (3.4b)
if Re Lthen{S|R<S}C L. (3.4¢)

First we show afew properties of the sets of labels of a given KB.

SMaximal w.r.t. set inclusion.

3.1. QUASI TRANSITIVE SHRUB INTERPRETATIONS 44

Proposition 3.5. Let us consider a set of labels £ of a given KB:

0eL; (3.59)
for all R € RN thereisL € Lst. R € L; (3.5b)
the set of labelsis unique; (3.5¢)
if two labels share a functional role, then they are equal. (3.5d)

Proof. 3.5a Let assumethat () ¢ £, clearly () satisfies the propertiesin Definition 3.4.
Therefore {()} U L isaset of labels which strictly includes £, contradicting the
hypothesisthat £ is maximal.

3.5b Let us assume that thereisarole R st. R ¢ L for any label L in £. Let us
build the new label L' = {S | R < S}, notethat L' satisfies both the properties
in Definition 3.4; therefore { L'} U £ isaset of labels which strictly includes L,
contradicting the hypothesisthat £ is maximal.

3.5c Let £, £, be two sets of labels satisfying the Definition 3.4. We are going to
show that £, C L, by choosing alabel L in £; and proving that it must be in
Lo aswell.

If L isthe empty set, thenitiscontained in £, by (3.58), so we consider the case
inwhich L #). Let usassumethat L ¢ L,; the label L satisfies the properties
in Definition 3.4 because £, is a set of labels. Therefore {L} U L, is a set of
labels which strictly includes £, contradicting the hypothesisthat £ is maximal.

Using the very same arguments we can show that £, C L, therefore they are
equal.

3.5a Let Lq,L, betwo labelsin £ sharing afunctional role F'.

First we show that I.; C L,. Let usconsider an arbitrary role name R in Ly; if
Risequal to F, thenitisin L, by definition. Let us assume that R is different
from F'; by Property (3.4b) we have that either ¥ < Ror R < F. If F S R
then R € L, by Property (3.4c). Let us supposethat R < F,since R < R we
can use Definition (3.4a) for showing that F' < R aswell (substitute R, with F,
and R,, R’ with R. Therefore R € L, by Property (3.4c).

Anaogously, we can show that L, C L4, therefore L; = L,.

3.1. QUASI TRANSITIVE SHRUB INTERPRETATIONS 45

Definition 3.6 (Canonical Interpretations). A quas transitive shrub interpretation
T = (AZf,.7) is said to be canonical w.rt. a KB X if the following two conditions
apply. Given arbitrary rolenames R, Ry, .. ., R,,, and different elements u, v, w of AT
withw ¢ O7:

if {(u,v), (v,w), (u,w)} C R then
thereisatransitiverole S < R such that {(u, w), (v, w)} C S*

if {(u,w)} C RIn...NnR, thenthereisalabel L st. {R,,...,R,} C L (3.6b)

(3.6a)

The definition of a canonical interpretations is given in such a way that it tries
to minimize the non-tree characteristics of the structure of an interpretation. In fact,
given the SHf DL we cannot restrict ourselves to tree structures; for example the role
hierarchy can force two different edges connecting the very same pair of elements, or
the transitivity can force “ shortcuts’ of role paths.

Thefirst restriction (3.6a) ensures that a canonical interpretation contains only the
necessary shortcuts; i.e. those required for satisfying the transitivity restrictions. The
property statesthat if theinterpretation containsashortcut (i.e. { (u, v), (v, w), (u, w)} C
RT), thismust be caused by atransitive role. Because of the interaction between tran-
sitivity and role inclusion, it is not necessary that the role R is transitive: atransitive
role included in R can force the shortcut as well.

This is not enough, in fact the restriction (3.6a) does not require the expected
(u,v) € ST. Thereason comes from the interaction of assertions about the individual's
with the role structure; in fact, we know that Abox assertions can impose any shapein
the part of interpretations concerning the individuals.

Example 3.1
Let us consider the Abox assertions

(a,b):R, {a,c):S, (b,c):S",
a:A,b: A, c:(AN3AS . —-A)

together with the inclusion assertions S’ C S, S C R, and the role names S,S’ being
transitive. One interpretation (Z) satisfying the assertions is depicted as the graph

3.2. TRANSFORMING INTERPRETATIONSINTO Q.T. SHRUBS 46

below

{5, S, R}

where the element u corresponds to a (i.e. aZ = u), v to b, and w' to ¢; in addition
w 1S an anonymous element. It is not difficult to realise that Z is a sort of “minimal”
interpretation satisfying the set of assertions; in addition, it doesnot force any transitive
subrole of R connecting the elements corresponding to a and b.

Therestriction (3.6b) concernsthe case of multiple edges connecting the very same
pair. Again, these cases are restricted to only those which are necessarily imposed by
the knowledge base.

3.2 Transforminginterpretationsinto g.t. shrubs

In this section we show how to build a canonical g.t. shrub interpretation from an
arbitrary interpretation satisfying a given knowledge base. First we define the transfor-
mation, leading to what we call the unravelled interpretation and its transitive closure
(Section 3.2.1), then we highlight some of their properties (Section 3.2.2). These re-
sults are used to show the completeness of the class of q.t. shrub interpretation w.r.t.
the problem of kb satisfiability (Section 3.3), and conjunctive query answering as pre-
sented in Chapter 6 and Chapter 7 (see Section 7.2).

The underlying idea of the transformation is simple: we take the domain of the
interpretation as the starting alphabet for the sequences, then we define the interpre-
tation function according to the properties, w.r.t. the original interpretation, of the last
element of each sequence. Roughly speaking, a sequence isin the extension of a con-
cept name if the last element is in the extension of the same concept w.r.t. the original
interpretation. Analogously, two sequences are related if the second oneis equal to the
first one with the addition of an element (see Definition 3.2), and their last elements
arerelated in the original interpretation (see Definition 3.7).

Example 3.2

3.2. TRANSFORMING INTERPRETATIONSINTO Q.T. SHRUBS 47

L et us consider the following simple interpretation without individual names:

{s}
g ———
{A} {S. R} {5} {B}

The ideaistransforming it into into an interpretation containing an infinite number of
treeslike:

{4} {4}
{S,R}/ \{5} {5}
A A
() {A} {4}
wuvz {A}

where w is an arbitrary sequence of elements from the set {u, v, 2} or the empty se-
quence (¢).%

Asshown inthe example above, even starting from afinite interpretation we aways
build anew infinite interpretation (because of the arbitrary sequence w in the example).
It is concelvable to impose more restrictions in order to obtain smaller interpretations
(e.g. in the example we may restrict the prefix w to the empty sequence €); however,
more restrictions means more complications and the construction we use is sufficient
for our purpose.

The construction we sketched makesthe new interpretationsviol ating any transitive
restriction. For instance, the original interpretation of the example above satisfies a
transitive restriction on therole S, but the newly build interpretation do not satisfiesit.
Note that thisis something intrinsic in the construction; therefore in a subsequent step
the appropriate relations are transitively closed (see Definition 3.8). In addition, this
simpleinitial ideais complicated by the fact that the interpretation must be canonical
w.r.t. agiven knowledge base, together with the perniciousinteraction of transitive and
functional restrictions with the role hierarchy.

6Actually, the transformation is more involved as we are going to show in the following sections.
This exampleis giving the intuition behind the transformation.

3.2. TRANSFORMING INTERPRETATIONSINTO Q.T. SHRUBS 48

3.2.1 Unravelingtheinterpretation

We assumethat the interpretation we are transforming is defined over a set of individual
names O, of concept names CN, and role names RN . The set of role names includes
two non-overlapping sets: the functiona (FRN) and transitive (7RA) names. In
addition, a partial ordering < is defined on RN/; this ordering must satisfy the con-
ditions that names included in functional names are functional as well, and transitive
roles cannot be included into functional roles. Formally, given two names S, R in RA
if S < RthenR € FRN impliesS € FRN,and S € TRN impliesR ¢ FRN.

Now we define the unravelled interpretation of Z. We start by building as many
copies of A asthe number of labelsin £ (A}, for any L € L£). For each label L there
isabijection ¢;, mapping each copy in A;, to the original element in A. We define a
new domain A’ by taking the union of all the copiesof A (i.e. A" = |J, .. Ar). For
any element of this new set we define two mappings: the first (6) maps any element
to the original element of A it was copy of (i.e. 0 = (U, ., dr); while the second (\)
maps any element to the label corresponding to the given copy of A (i.e. A : A" — L,
and \(z) = L iff x € Ap). Using the domain A’ we define the set A of all the finite
nonempty sequences of elements of A’ (see Definition 3.1). The mappingsd and A can
easily be extended to B by using the value of the last element of the given sequence
(i.e. d(uz) = d(z) and Auz) = A(z) forany u € & U {¢}).

Elements of A’ can be naturally associated to nodes in a forest, where ex are the
roots and ux is a successor of u. We then use the relation structure in the origina
interpretation Z for adding the necessary edges between nodes. Since we did not make
any assumption on the original domain A, we cannot fix the width of the resulting tree.
In fact it can be even uncountable. The following definition formally describes the
unravelled interpretation of Z.

To simplify the notation we indicate with ©7 the set of elements of A to which
the individual names in O are mapped by the interpretation Z = (A,) (i.e. O =
{z € A]F0e 0.0F =z}).

Definition 3.7 (Unravelled inter pretation). TheunravelledinterpretationZ = (AZ, %)
of Z = (A, 1) isdefined as:

o the domain AZ isthe set of al the finite nonempty sequences of elements of A’

AT = A

3.2. TRANSFORMING INTERPRETATIONSINTO Q.T. SHRUBS 49

e givenanindividual nameo € O

o = ex for somex € A st. §(z) = of and A\(z) = 0);

e givenarolename R € RN,

RE = {(u,v) e OF x OF | (6(u),d(v)) € RI} (3.79)
U {(u,uz) € AT x AT | (5(u),(z)) € BE, R € Ma),

N (3.7b)
andu ¢ OF or é(z) ¢ O*}.

Note that the two sets (3.7a) and (3.7b) are distinct because in the first one all
the pairs are of the form (ez, ey), while in the second (u, ux). The condition
“u ¢ of or § (z) & OF" inthe (3.7b) part prevents pairs of the form (ex, exy)
being added to the interpretation when an analogous pair can be added by the
(3.78) part. Without the condition, an assertion like (a, b):F in the Abox with
F functional would cause the functional restriction on F' to be violated in the
unravelled interpretation.

e given an atomic concept A € CN

Af:{ueAfw(u)eAI}.

The mapping Z iswell defined; in particular the only problem can arise from the
non—unigueness of the element x in the interpretation of individual names. However,
it is easy to redlise that we map an individual name o to a single copy of the origina
element o (the onein the domain Ay).

The unravelling is a well known technique for showing that a modal logic has the
tree model property (see Vardi [1997], Streett [1982], Gradel [1999]). Unfortunately,
the standard technique is not enough in our case, in fact the unravelling of an interpre-
tation would not satisfies the transitive restriction on roles. It iseasy to see the problem
by considering the fact that only pairslike (u, ux) are added to the interpretation of a
role by the (3.7b) set; therefore if both (u,ux) and (uz,uzy) are in the interpreta-
tion of atransitive role, the required (u, uxy) pair is obviously missing. We overcome
this shortcoming by simply adding the transitive closure of relations corresponding to
transitiverole names. We call this operation the transitive closure of the interpretation.

3.2. TRANSFORMING INTERPRETATIONSINTO Q.T. SHRUBS 50

Definition 3.8. Let T = (Af, -f) be the unravelled interpretation of Z. The transitive
closure of 7, writtenas Z+ = (AZ", .T"), is defined as following:

o the domain AZ" isequal to the unravelled domain AZ;

individuals are mapped asin 7

given an atomic concept A € CN

given anon—transitiverole name R € RN \ TRN

I+ _pt 7+
R™ =R'U U s
SETRN,S<R,RAS

given atransitiverole name R € TRN

R = {(u,v) | 3{z1,..., 20} € AT st. {21, ..., 2,} isfiniteand

zlzu,zn:v,{(zi,ziﬂ)|i:1,...,n—1}§Rf}

The definition of transitive closure of 7 is recursive and well defined because we
assume an acyclic ordering <, therefore Z can be build “bottom-up” w.r.t. the ordering
over role names. It is easy to realise that the transitive closure satisfies the transitive
restrictions on role names, while it does not lose the other properties of the unravelled
interpretation. This will enable us to conclude that given an arbitrary interpretation
we have an effective way of providing an example of an interpretation satisfying the
required properties. Thisisthe fundamental brick which provides the foundations for
the compl eteness proof as we show in the following sections.

3.2.2 Propertiesof unravelled interpretations

In this section we present two results which constitute the foundation for the compl ete-
ness proof. Thefirst two propositions highlight some of the properties of the (transitive
closure of) unravelled interpretations; while the last one shows that these generated in-
terpretations are indeed canonical g.t. shrubs.

3.2. TRANSFORMING INTERPRETATIONSINTO Q.T. SHRUBS 51

We start by showing that the unravelled interpretation 7 satisfies some fundamental
properties; then in Proposition 3.10 we show that the same properties are maintained
even after the transformation in transitive closure.

Proposition 39. Let 7 = (Af, -f) be the unravelled interpretation of Z = (A, -7).
Then, 7 satisfies the followi ng properties:

For any o € O, §(o%) = o* (3.9a)

For any {u,v} C AT androle R, if (u,v) € RZ, then (6(u),5(v)) € RT (3.9b)

For any u € Af,Ax € A, and roIeAR, if (0(u),z) € R, then (350
thereisv € A st. (u,v) € Rf and6(v) = o

For any u € AZ and concept C, u € C iff §(u) € CF (3.9d)

For any u € AZ and functional role R € FRA ,
t{v | (wv) € BT} =t{o | (5(u),2) € BT}

For any u, v in Af, androlenames R, S st. S < R,

if (u,v) € ST and (8(u),5(v)) € RZ, then (u,v) € RE

(3.9¢)

(3.9)

Proof.

(3.98) Thisistrue by definition, because §(o%) = 6(z) = o.

(3.9b) If (u,v) € RZ then by Definition 3.7 in both the two sets (3.7a) and (3.7b), the
condition (6(u), 6(v)) € R* must be satisfied.

(3.9c) Let usassumethat (§(u),z) € R* withz € A. We distinguish the two casesin
which u isor is not mapped from an individual name (i.e. v € (’)f).

— Letassumethat u € OZ. If z € OF, then thereis an element 2’ € A’ such
that \(2') = 0, and §(2") = z (0 € L by Proposition (3.5a)). In addition,
ez’ € OF by definition; therefore (u,ex’) € R7 because it is in the set
(3.78). The element v we are looking for isex’.

If x ¢ OF, then there is an element 2/ € A’ such that R € \(z') and
d(z") = x (by Proposition (3.5b) thereis at least alabel containing R). We
are going to show that the element ux' is the v we need. Clearly uz’ ¢
O7 because = ¢ OF; in addition, (5(u), §(uz’)) € R because §(ua’) =

3.2. TRANSFORMING INTERPRETATIONSINTO Q.T. SHRUBS 52

d(z") = . Therefore the pair (u, uz') isin the set (3.7b), soitisin RT as
well.

— Now we assume that u ¢ oz, By definition there is an element 2/ € A’
suchthat R € A\(2') and 6(=") = x. We can proceed as in the previous case
by considering uz'. Clearly 6(ua') = 6(z') = x, s0 (6(u), d(ua')) € R%;
therefore all the conditionsfor the set (3.7b) are satisfied (we assumed that
u ¢ O7) and (u,uz') € R

(3.9¢) Let us consider the mapping J restricted to the domain {v | (u,v) € Rf}. First
we show that the codomainisequal totheset {z | (6(u), z) € R*}, andthenthat
the restriction of § is bijective. Thisis enough for prooving that the cardinality
of the two sets are equal.’

If v € {v | (u,v) € Rf} then (6(u),d(v)) € R? by the already shown Propo-
sition (3.9b), therefore 6(v) € {z | (6(u),x) € R*}. For the other direction,
let z be an element of {x | (§(u),z) € RT}. By Proposition (3.9c) there is an
element v such that (u,v) € R and d(v) = z; thereforev € {v | (u,v) € Rf}
(and therestriction of 6 we are considering is surjective).

For showing that the restriction of § ishbijective we only need to show that itisin-
jective. Thisistrivialy truein the case that the cardinality of {v | (u,v) € Rf}
is less than 2. Therefore we assume that it contains at least two elements. Let
vy and v, be two elements of the first set such that v; # vy. We reason by
contradiction by assuming that §(v1) = 6(vy).

The pair (u, v;) either belongs to the set (3.7a) or (3.7b), and the same applies
to (u,vy). If both of them belong to (3.7a), then v; = ex; and v, = exo, With
both A(z;) and \(z,) egual to (). This meansthat =; and x5 belong to Ay; in
addition oy (z1) = dg(x2) because 6(v1) = §(vq). Therefore x; = x5 because dy
isabijection: thisis clearly in contradiction with the hypothesisthat v, # vs.

If (u,v;) belongs to the set in (3.7a), then u € OZ; therefore (u, v) cannot be
in the set in (3.7b). The converse applies if we assume (u, v5) in the set (3.7a).
Therefore both (u, v1) and (u, vy) must bein the set in (3.7b).

This means that vy = wx; and v, = uxy With z; # x5 because v; # vy by
hypothesis. By definition of the domain A’ there should be two labels L, and
L, suchthat z; € Ap, and zo € Ag,. Inaddition, d,, (x;) = 0r,(z2) because

"Note that we do not make any assumption on the initial interpretation Z.

3.2. TRANSFORMING INTERPRETATIONSINTO Q.T. SHRUBS 53

d(v1) = d(vy) therefore Ly # L, because both §;, and d;, are bijective. By
definition of the set (3.7b) the role R must be in both the labels L, and L.

Therole R isfunctional by hypothesis, and we already showed that if two labels
have a functional role in common they must coincide. Thisis in contradiction
with the fact that L, and L, are different. Therefore, the assumption that ¢(v,)
can be egual to §(v,) isfalse, so o restricted to the two given sets of (3.9¢) is
injective as well as surjective.

The existence of a bijection between two sets guarantees that the cardinality of
the two setsis the same.

(3.9F) If (u,v)isin S7 then, by Definition 3.7, the pair (u, v) iseither in the set (3.7a)
or inthe set (3.7b). Inthefirst case (u, v) € OF x OF and (§(u), 5(v)) € RT by
assumption? therefore (u, v) € RZ.

Inthe second case v = uz for somez in A’, S € A(v), and it is not the case that
u e OF and §(x) € OF. Notethat S < R (see Definition (3.4a)), so R € \(v) as
well by Definition (3.4c). This enable us to conclude that (u,v) € R? by using
Definition 3.7.

(3.9d) We prove this point by induction on the structure of the concept expression C'.
For atomic concept namesiit is true by definition.

For the inductive step we assume that (3.9d) holds for the concepts C, D, then
we show that it holds also for =C', C'1 D, and 9R.D.

-C' Forany u, u € (ﬂC)f iff u & CZ. For theinduction hypothesisthisistrue
iff 5(u) ¢ CT, whichisthe caseiff §(u) € (—C)%.

CnD Forany u,u € (CN D)f iff uw € CT andu € DT, Asin the previous
case thisisthe caseiff §(u) € C* and 6(u) € D*, whichistrueiff 6(u) €
(C' D)~

AR.C 1f u € (AR.C)Z, thenthereisav € AT such that (u,v) € R andv € C7.
By (3.9b) (6(u),d(v)) € R%, and 6(v) € C? by the inductive hypothesis.
Therefore §(u) € (IR.C)*.

For the other direction, let us assumethat §(u) € (3R.C)*. Then thereis
xz € A suchthat (6(u),z) € RT andz € C*. By (3.9) thereisv € A

8Note that since we do not assume that the interpretation Z satisfies the role inclusion, we explicitly
add (§(u),d(x)) € R asaprerequisite.

3.2. TRANSFORMING INTERPRETATIONSINTO Q.T. SHRUBS 54

such that (u,v) € R and d(v) = z. Sincew € C7 by induction hypothesis
u € (AR.C)L.

O

Now we turn our attention to the transitive closure of the unravelled interpretation,
showing that this operation would not destroy the properties described in Proposi-
tion 3.9, provided that the original interpretation satisfies the transitive and inclusion
restrictions for role names. In addition, in the case of the transitive closure we as-
sume that the original interpretation satisfies the restriction on the roles imposed by
the knowledge base. Thisis necessary because Definition 3.8 adds the pairs for ensur-
ing the satisfiability of these restrictions to the interpretation of roles. If these are not
satisfied in the original interpretation, then there is a dichotomy between the original
and the result interpretations which may invalidate part of the properties we stated in
Proposition 3.9.

Proposition 3.10. Let Z+ = (AZ*,.Z") be the transitive closure of the unravelled
interpretation Z = (AZ,). If the original interpretation Z satisfies the transitive and
inclusion restrictionsthen Z+ satisfies all the propertiesin Proposition 3.9.

Proof.

(3.98) Sinceo?” = of then 5(o ") = o.

(3.9b) If (u,v) € RT* then either (u,v) € RZ or there is a transitive role S < R
such that thereisa sequence v = z,...,z, = v of elements of AT such that
{(z,241) | i=1,...,n} C SZ. Inthefirst case (§(u), (v)) € RT by (3.9b). In
the second {(6(2;),0(z41)) | i =1,...,n} C ST, therefore (§(u), d(v)) € ST
because S7 is transitive by hypothesis (transitive restrictions are satisfied). In
addition, ST C R? because the inclusion restrictions are satisfied; therefore
(6(u),d(v)) € RE.

(3.9c) Thisistrivially satisfied because RZ C RZ" for any R.

(3.9¢) If arole R isfunctional, then by the restriction on the language it has not any
transitive subroles (i.e. S A R forany S € TRN. Therefore RT" = RZ by
definition, so the property is satisfied because R* satisfies (3.9¢).

3.2. TRANSFORMING INTERPRETATIONSINTO Q.T. SHRUBS 55

(3.9)

(3.90)

Let (u,v) € ST*, we disti nguish the two cases in which S isor is not transitive.

If S istransitive and R is not transitive, then ST° C RZ* by Definition 3.8; so
let us assume that R istransitive as well. By Definition 3.8 there is a sequence
w=2z,...,2, =vof dementsof AZ suchthat {(z;, zi41) |i = 1,...,n} C SZ.
By Proposition (3.9b)

{(8(2),0(zi01)) | i =1,...,n} C S7, and
((6(2),0(z41)) | i=1,...,n} C RT

because S < R and the inclusion restrictions are satisfied by hypothesis. We
can use Proposition (3.9f) for showing that {(z;,z41) |i=1,...,n} C RZ,
therefore (u,v) € RT* by construction (see Definition 3.8).

If S isnot transitive and (u,v) € ST*, then either (u,v) € ST or there is a
trangitive role " st. §' < S, S A 5, and (u,v) € S, In the first case
(u,v) € Rz by Proposition (3.9f) and Rz - RZ". In the second case S’ <R
because S < R and we can proceed as in the previous case in which S was
transitive, by using S’ in place of S.

We can proceed exactly asin the corresponding proof in Proposition 3.9. In fact,
the proof relies on the previously shown (3.9b) and (3.9¢).

O

Before verifying that whenever an interpretation satisfies a KB, the transitive clo-
sure of its unravelled interpretation satisfies the very same KB; we want to be sure that
the interpretation we defined is a canonical quas transitive shrub. Thisiswhat we are
going to prove with the next proposition.

Proposition 3.11. Let Z+ = (AZ",.Z") be the transitive closure of the unravelled
interpretation Z = (AZ,). Then if Z satisfies the role ordering, Z* is a canonical
guasi transitive shrub interpretation.

Proof. First we show that Z+ is a quas transitive shrub (Definition 3.2). The first
properties (3.2a) and (3.2b) are trivially satisfied by definition.

(3.2c) Let (u,ex) be apair in RT" for an arbitrary role name R. Summarising the

Definition 3.8, either (u, ez) € R7 or thereisatransitiverole S < R and afinite

3.2. TRANSFORMING INTERPRETATIONSINTO Q.T. SHRUBS 56

(3.2d)

(3.2e)

sequence of elements 24, . . ., z, of AT such that
{(ziyzix1) |i=1,....,n— 1,2y =u,z, = ex} C s,

In the first case (u, ex) must be in the set (3.7a) (because u # ¢ by definition);
therefore {u, ez} C OZ. In the second case, the same property can be shown for
al thedements 2, 4, ..., 2.

Let (u, vx) beapairin RT" for an arbitrary role name R.

If Ristransitivethen thereisafinite sequence of element z4, ..., z, of A7 such
that {(z;,2i41) |i1=1,...,n—1,21 = u,2, =vx} C RT. Notethat z,_;, = v
because v cannot be the empty sequence (see (3.7b)). If n = 2thenu =z, | =
v; otherwise (z,_1,2,) = (v,vx) isin R? and (uy zn—1) = (u,v) isin R7 by
definition (take the sequence z4, . . ., z, 1 in Definition 3.8).

If R is not transitive, then (u,vz) € RT of (u,v2) € Uscrrn.s<mnzs S -
In the first case v = u by definition (see (3.7b)). In the latter case, thereis a
transitiverole S st. S < R, R 2 S and (u,vz) € ST*. We just showed that
if the role istrangitive then either u = v or {(u,v), (v,vz)} C ST". Moreover,
ST" < RT" because S < R.

Suppose {(u, v), (u, vzy...z,)} C RT*, we distinguish two caseswhere n = 1
andn > 1.

— If n = 1then (u,vx;) € RT". Since we already showed that (3.2d) holds,
we can useit to conclude that either u = v (i.e. (u, vx1) = (v,vz;) € RT")
or (v,vry) € RZ". In both cases the property is satisfied.

— Let usassume n > 1. Since (u,v) € RI", then u # vay...z; for all
i =1,...,n by construction (see Definitions 3.8 and 3.7).

Firstly we show that for any role R, when u # wvz,...z; for al i =
1,...,nand (u,vay...z,) € RE', then (vay. . .1, vxy. . .a;) € RT for
i =2,...,n. Since (u,vx;...r,) € Rf+, then either v = vx,.. .21
or {(u,vzy...xy 1), (V21... Ty 1,021...2,)} C RZ*. The first case can
be ruled out because u # vzy...x; for al i = 1,...,n; therefore both
(w,vzy. . .2y 1) @nd (vEy. . .2, 1,021...2,) aein RI". Wecan apply the
same arguments to (u, vx;. ..z, 1) to conclude that both (u, vx;. ..z, 2)
and (vzy.. .2y 9,0%1.. .2, 1) @ein RTY as well; this inductive argument

3.2. TRANSFORMING INTERPRETATIONSINTO Q.T. SHRUBS 57

can be carried on for each vzy...x,_,, aslongasn — ¢ > 2. Therefore
{(u,vzy. . wpy), (VX1 . Wiy, 0T 1)} C R foranyi=2,...,n.

In addition, we can use the fact that (u, vzi2y) € RZ* to conclude that
(v, vx;) by using the same arguments.

If R is transitive then, (v,vz;) € RZ and (vay...wi 1, vay...1;) € RE
for any : = 2,...,n (by construction, see Definition 3.8). Therefore
{(v,var...2;) |i=1,...,n} C RT", 50 (v,va1. . .2,) € RE".

If R is not trangitive, then there is a trangtive role S < R such that
(u,21...2,) € RE" because n > 1 by assumption, so (u, vzy. . .2,) can-
not be in RZ. By using the same arguments as the transitive case we can
conclude that (v, vz,. . .a,) € ST', therefore (v, va:. . .z,) € RT™ aswell.

The next step is to show that 7+ iscanonical (Definiton 3.6).

(3.6b) Let Ry, ..., R, berole names and u, w elements of AZ* such that w ¢ OT. We
have to show that if {(u,w)} € R* N ...N R,” then there is a label L st.
{Ry,...,R,} C L. Sincew ¢ OF and {(u,w)} C R,”, then there are two
dementsv in AT and z in A’ such that w = vz (by Definition (3.2c), because
it has been proved above that 7+ isa g.t. shrub). By using Definition (3.2d)
together with the fact that (u, vx) € Rzﬁ, for each role R;, we can conclude
that either u = v or {(u,v), (v,vz)} C RZI". Notethat if u = v, this must be
true for all theroles Ry, . . ., R,, and the hypotesis would become {(u, uz)} C
RiIn...NnR,%; onthe other hand, v would be the same for al the roles again,
therefore {(v,vz)} € R n...NR,*. Thisshowsthat we can restrict ourselves
tothecase {(u,uz)} C R, N...N R,* without loss of generality, which alows
us to consider only the Definition 3.7 of unravelled interpretation, by ignoring
the transitive closure.®

By the fact that the pair has the structure (u, ux), we know that for every role R;
(u, uz) € {(u,ux) e AT x AT" | (§(u),d(z)) € R and R; €)\(:v)}

therefore R; € A(z) for all roles Ry, .. ., R,,, which shows that there is a label
(A(z)) which includes all the roles.

9The role hierarchy does not add any pair (u,uz) to arole because of the Property (3.9c) and the
fact that 7 satisfies the role ordering by hypothesis.

3.2. TRANSFORMING INTERPRETATIONSINTO Q.T. SHRUBS 58

(3.6a) Letu,v,w bedifferent elementsin AZ* such that w ¢ OF and

{(u,v), (v,w), (u,w)} € RE".

If R istransitive then (3.6a) is verified by definition because R < R. So let R
be non—transitive: this meansthat either (u, w) € R7 or there isatransitive role
Sst.S <R R #£S, and (u,w) € ST" (see Definition 3.8). Analogously,
either (v, w) € RZ or thereis a transitive role §” st. ' < R, R £ §', and
(v,w) € ST" . Let us consider this case by case.

— If (u,w)isin R, then w = ux for somez € A’ because w ¢ OF" (see
Definition 3.7). If (v, w) € RZ then w = v aswell, therefore u = v. This
isin contradiction with the assumption that « and v are distinct.

— Let (u,w) bein R and (v, w) bein ST, Then w = ux and there are
zl,...,zninAfS.t.zl =v,2, =w,and {(z;,2;11) | i=1,...,n—1} C
S, Since w = ux then 2n-1 = u, therefore (u, w) = (2,1, 2,) I1SIN st
which isincludedin 52

— If (u,w)isin ST*, and (v,w)isin RZ, then we can conclude that (v,w)is
inSZ" aswell by using the very same arguments as for the previous case.

— Let (u, w) bein ST and (v, w) bein ST Thenthereare 21, . .., 2, and

o inATst s =, 2 =0, 2, = 2y = w,
{((ziyzip) |i=1,...,n—1} C ST
iy ~1+1 P =)

and)
{(z',7i1) |[i=1,...,n" =1} C s

Asin the previous cases we note that z,, | = 2',,_1; therefore (z, 1, w) €
ST 57, since ST C ST* by definition (see Definition 3.8), and S'Z C
ST then (2,1, w) € ST- N ST

By using the aready proved Property (3.6b), we know that there is a label
L containing both S and S’; by Definition (3.4b), either S’ < Sor S <
S’. Note that by assumption neither S nor S’ can have any functional role
which includes them (or be functional themselves). Let us assume that
S' < S; since S’ isnot functional then either S’ < S or thereisarole R’
such that S < R' and R < S. Thefirst case is our goal, while in the

3.3. COMPLETENESS OF Q.T. SHRUB INTERPRETATIONS 59

latter case we can assume that 2’ must not be functional because S’ cannot
be included into a functional role. Since the ordering < is well defined,
sooner or later we are going to hit .S without reaching any functiona role;
therefore the result isachain of inclusionswhich showsthat S’ < S by the
transitivity of <.1% Assumingthat S < S’ we can concludethat S < S’ by
using the same arguments we used for the dual case.

Therefore we havejust shown that either S’ < S or S < S’. Let usconsider
the case in which S < S’. We assumed that 7 satisfies the role ordering,
then by using (3.9b) and (3.9f) it iseasy to show that if S < S’ then ST+ C
St (see the proof for Lemma 3.12). Therefore both (u, w) and (v, w) are
in S’f+. If we consider the case where S’ < S we obtain the same result
with S instead of S’.

3.3 Completenessof q.t. shrub interpretations

Now all the pieces are in place for showing the completeness of the described models.
Obvioudly, if a knowledge base has a quas transitive shrub model it has a model.
The difficult bit is showing that having an unrestricted model implies that there is a
quasi transitive shrub model as well. Clearly, the complex transation which has been
described in the previous sections provides the basis for such a proof. We start by
showing that given an arbitrary interpretation satisfying a KB, the transitive closure of
itsunravelled interpretation satisfies the KB as well.

Lemma 3.12. Let ¥ be a knowledge base, < be the role ordering induced by ¥, and
TRN FRN be the transitive and functional role names. We assume that 7RN
and FRN are consistent w.r.t. <. If an arbitrary interpretation Z = (A, -7) satisfies
52, then Then the transitive closure of its unravelled interpretation Z+ = (AZ",.Z%)
satisfies > aswell.

Proof. We prove the lemma by considering all the assertions in > and showing that
they are satisfied by 7+. Since Z satisfies 3, the requirement for Proposition 3.10 are
satisfied. Therefore we are guaranteed that the properties in Proposition 3.9 hold for
7t

19The last point can be demostrated more formally by induction on <, but we think that it is clear
enough.

3.3. COMPLETENESS OF Q.T. SHRUB INTERPRETATIONS 60

e Let CC D beaconcept axiomin Y. Assume that the axiomis not satisfied, then
there is an element u such that u € CZ" andu ¢ DZ*. By (3.9d), 5(u) € C
and §(u) ¢ D* therefore Z do not satisfies . Thisisin contradiction with the
hypothesis, therefore C' C D must be satisfied.

e Let ST R bearoleaxiominX; then S < R by definition. Let (u,v) be apair
in 57", then (§(u), 6(v)) € ST by (3.9b). We can conclude that (u, v) € RZ" by
using (3.9f).

o If R € TRN, then RT" istransitive by construction (see Definition 3.8). This
can be proved by considering that if {(u,v), (v,2)} € RZ", then we have two
pathsin RZ: one connecti ng u to v, and a second connecting v to z. Therefore
thereisapathin R connecti ng u to z.

e If Risfunctional, then for any u € AZ",
ol (o) e B} =t | (5(u),2) € B}

by (3.9¢). In addition, §{xz | (6(u),z) € R*} < 1 because R” is functional;
therefore RZ" isfunctional aswell.

e Let a:C be aconcept assertionin X. It is easy to see that al" = ea?, therefore
5(a’) = af. The assumption that o ¢ CZ" implies that 6(aZ") ¢ C7 by
(3.9d). Obvioudly thisis a contradiction with the hypothesis that Z satisfies ¥;
therefore o’ € O+,

o Let (a,b):RR be arole assertion in ¥. Let us consider the pair (aZ™,b7"): by
Definition 3.8 aZ” = o and b7 = b7. Note that (aZ,b?) € OF x OF, and
(5(aT), 6(b7)) = (a%, b%). Moreover, (aZ,b”) € R” because T satisfies the role
assertion. Therefore, (af+,bf+) € RZ because the pair isin the set (3.7a), and
(aZ*,0%") € RT" because R C RT".

O

We can now conclude by stating the completeness of quas transitive shrub models
w.r.t. our logic. In Chapter 7 we present a slightly different version of the present
theorem for deduction instead of satisfiability.

Theorem 3.13. A knowledge base ¥ is satisfiable iff there is a canonical quasi transi-
tive shrub interpretation satisfying it.

3.4. APPLICATION TO TERMINOLOGICAL REASONING 61

Proof. The “only if” direction direction istrivial because if there is a quasi transitive
shrub interpretation satisfying X, then X is satisfiable by definition. For the “if” direc-
tion, let be T an interpretation satisfying ¥, and Z+ = (AZ", .Z") the transitive closure
of its unravelled interpretation. According to Lemma 3.12 7+ satisfies & as well; in
addition Z+ isacanonical guasi transitive shrub interpretation by Proposition3.11. [

3.4 Application to terminological reasoning

We can use the very same technique to establish the completeness of the class of inter-
pretations we described w.r.t. terminological reasoning. In particular we concentrate
on the problem of verifying the satisfiability of a concept expression w.r.t. a given ter-
minology (see Chapter 2). We have already shown that the structure of models for a
generic kb is a set of quas transitive trees “glued” together through their roots. For
terminological reasoning (i.e. without individuals) models are much simpler because
they are single transitive trees. This property is exploited in Chapter 5 to show the
completeness of the presented kb satisfiability algorithm.

A given concept C' is satisfiable w.r.t. aterminology 7 iff there is an interpretation
T satisfying 7T, such that the set CZ is non empty. The property we want to show is
that thisisthe case iff there is a quasi transitive shrub interpretation Z, s.t.. it satisfies
T, itisasinglequasi transitivetree, and the root of thistreeisin C'Zt. These properties
will be used in Chapter 5.

We notice that the given satisfiability problem can easily be reduced to knowledge
base satisfiability (see Schaerf [1994]). Infact, C' issatisfiablew.r.t. aterminology 7T iff
the knowledge base X = (7, {a:C}) is sdtisfiable (where a is an arbitrary individual
name). Thiscan easily be proved by considering that if Z isan interpretation satisfying
7T, such that C7 is not empty; then, we can build an intrepretation for X by mapping
a to one of the elements of C'Z. Converdly, if 7 satisfies X then a? is an element of
C7T; therefore C is satisfiable w.r.t. 7.

We use this reduction to establish the completeness result. Let us start from an
arbitrary interpretation Z satisfying C'. As we have just shown, there is a direct way
of obtaining an interpretation Z' satisfying X, by taking Z' as equal to Z but for the
addition of the mapping from « to a given element of CZ. As shown in Section 3.2.1
webuild 7' asthe transitive closure of the unravelled interpretation of Z".

The main idea is “extracting”, from 7" the single tree rooted in o, Sincein
Y there are not any role assertion, al the g.t. treesin 7" are unconnected, and there

3.5. REMARKS 62

cannot be any loop on the root Pl (see Definition 3.7). Formally, we extract an
interpretation Z, = (A%, -7t by selecting al the elements of AT connected to o'

T _ _ f/"" . .. f1+ f1+
A {v] v=a" ,orthereisafinite sequence {zy,...,2,} CA*~ \ O
androlesRy,...,R,_ St.
=+
z=a" |z, =vand(z,241) € Rifori=1,....,n—1},

and then we define the new interpretation function -%¢ restricting the original I tothe
new domain:

AT = AT A AT
RZ = R A AT x AT

By construction Z, is connected, in the sense that there is a path from the root o?”
to any other individual. It is not difficult to verify that Z, is till a canonical quas
transitive shrub interpretation satisfying 7, and the root isin C%¢.

3.5 Remarks

At this point we need to clarify the reason why the complicate mechanism that has
been put in place was really necessary. The alternative technique can be derived from
the algorithm used for showing the satisfiability of DL formulae w.r.t. a terminology
(see Horrocks [1998]). It can be shown that if the formulais satisfiable the algorithm
produces a pseudo—model from which an interpretation can be trivially built. 1t is not
difficult to show that the interpretations generated by the pseudo—models satisfy the
propertieswe are interested in. Thismethod isvery good for showing the compl eteness
of the class of interpretations w.r.t. the problem of kb satisfiability (Section 3.3), but it
has the disadvantage that the connection between an arbitrary interpretation and one of
the interpretations belonging to the restricted class cannot easily be established.

This connection is not necessary for kb satisfiability, but we need it for the prob-
lem of query answering (see Horrocks and Tessaris[2000]) when the query languageis
different from the assertional language (see Section 7.1). Aswe will see in Chapter 6,
query answering is strongly related to logical deduction; which, roughly speaking, is

3.5. REMARKS 63

the problem of deciding whether aformulais verified in al the interpretations satisfy-
ing aknowledge base (writtenas X =).

In general, when the knowledge base and the formul ae share a common language
closed under negation the problem ¥ = ¢ is simply tranformed into the kb (un) satis-
fiability problem X U {—¢}. In the case of our language, thisis not directly possible
because the formula ¢ is written in a language strictly more expressive than the one
of . However, our goal is to reduce the problem to KB (un) satisfiability anyway, by
introducing a transformation of the original formula ¢ into a kind of negation 7, such
that X = ¢ iff X U@ isnot satisfiable.

The required transformation is inspired by the “tree-model property” of the DLs
we consider (see Section 6.2.2); therefore we show a restricted version of the logical
deduction problem in which we consider only interpretations belonging to agiven class
['.!! |.e. deciding whether aformulais verified in all the interpretations belonging to
the classI" and satisfying a knowledge base (written as ¥ |=r).

The class of interpretations cannot be chosen arbitrarly, in fact we are interested in
aclassT suchthat ¥ = ¢ iff ¥ =1 ¢. Our candidate class is the one presented in
this chapter, therefore we must show that it satisfies the required property. The “only
if” direction isthe easy bit, since & = ¢ takes into account all the interpretations, we
must show that if ¥ =1 ¢ then X |= .

The technique we will usefor this proof (which will be presented in detail in Chap-
ter 7) relies on the interpretation transformation presented in Section 3.2; in particular,
on the ability to relate the origina and the transformed interpretations in both direc-
tions. If we were interested in kb satisfiability only, we needed only thefirst direction;
therefore the mere existence of an arbitrary interpretation belonging to the required
class would have been enough.

| n particular we consider the class of g.t. shrub canonical w.r.t. the kb (see Section 3.1).

Chapter 4
KB satisfiability algorithms

In this chapter we present abrief overview of the different methodsfor KB satisfiability
presented in the literature, then we describe the precompletion technique, investigated
inthisthesis. In addition, we provide the motivation for our decision to concentrate on
the precompl etion method.

4.1 Alternative Abox reasoningtechniques

In our analysis we concentrate on complete algorithms suitable for DL s whose expres-
sivity isat least ALC with general axioms. Thischoiceisdictated by the acknowledge-
ment that the ability to express general axiomsisessential for modern DL systems. For
this reason, for example, we are not going to describe the structural algorithm used by
the CLASsIC DL system.

4.1.1 Direct tableaux

In Section 2.2.2 we provided an example of verification for the satisfiability of a KB
based on an extension of the tableaux—based technique presented in Section 2.2.1. In
general, tableaux algorithms for terminological reasoning can be extended to hybrid
reasoning without major changes.

The main idea is that the expansion starts with an initial set of constraints (see
Equation 2.5) corresponding to the assertions in the Abox (see Buchheit et al. [1993],

4.1. ALTERNATIVE ABOX REASONING TECHNIQUES 65

Haarslev and Moller [2000b], Horrocks et al. [2000b]).} Individual names are sub-
stituted by different variables in the constraint system; therefore if the unique name
assumption holds for individuals, inequality constraints are added for imposing that
two different individual names are never merged.

It is worth mentioning that up until now the fastest DL system providing Abox
reasoning (described in Haarslev and Moller [2000a]) uses a direct tableaux technique.

We are interested to experiment with a technique which maintains the algorithmic
distinction between Abox and Thox. In addition we want to reuse terminological rea-
soners as they are (if possible). So we decided to not investigate the direct tableaux
technique but a variation of it, called the precompletion technique, which will be de-
scribed later on.

4.1.2 Encoding

The encoding technique reduces the KB satisfiability problem to the problem of veri-
fying the satisfiability of aconcept w.r.t. aterminology (see De Giacomo and Lenzerini
[1996]). Thisisachieved by treating individuals as mutually digoint newly introduced
concept hames, and encoding the Abox assertions as terminological axioms. For ex-
ample the assertions a:C' and (a, b):R are encoded as the two axioms P, C C' and
P, C 9R.P, respectively.

Thisidea alone does not provide a complete solution, since when concepts are used
instead of individuals we are relaxing the fundamental property of an individual of be-
ing unique. In fact we cannot restrict the cardinality of the concept the individual has
been substituted with, therefore it is possible that a knowledge base which is unsatisfi-
able because of this uniqueness restriction results in a satisfiable one once encoded.

A similar idea was exploited in Borgida and Patel-Schneider [1994] and Era and
Donini [1992]; however in the first case a different semantics was adopted for the
individual name,? while the second approach works only for not very expressive DL,

In De Giacomo and Lenzerini [1996] the proposed algorithm deals with very ex-
pressive DLs, providing correct and complete reasoning. Thetrick they useisto ensure
that, given an interpretation for the encoded KB, all the elements belonging to the same
individual representative concept are indistinguishable. To guarantee this property they
use terminology axiomsto impose that if an element of a representative concept P, has

!Notethat terminol ogical reasoning always starts with asingle concept formulaC' to check, therefore
corresponding to the single constraint z:C'.
2In fact they relaxed the assumption that an individual is unique.

4.1. ALTERNATIVE ABOX REASONING TECHNIQUES 66

aproperty (i.e. belongsto aconcept) C' then all the elements of P, have the same prop-
erty.

Note that the concept C' is not specified, and in principle there are infinitely many
different expressions; therefore, infinitely many new axioms for each representative
concept. However, they show that the number of different concept expressions they
need isfinite and polynomialy bound by the size of the original knowledge base.

Although the technique is a very powerful theoretical mechanism for investigating
the computational properties of very expressive DL, this method has not lead to any
practical implementations. The encoding they suggests requires a very expressive un-
derlying language (i.e. Converse PDL), for which no efficient reasoner isyet available;®
it isalso the case that the size of the generated terminology, although polynomial, soon
becomes unmanageabl e when the number of individuals grows.

4.1.3 Resolution based methods

In spite of the fact that the DL community is strongly focused on tabl eaux—based meth-
ods, recently there have been some attempts to apply resolution—based methods to the
KB satisfiability problem. We will not spend much time here on this approach since
reasoning with Aboxes using resolution seems to be still at an early stage. However,
some results have been obtained by translational methods* applied to terminological
and Abox reasoning (see Hustadt and Schmidt [2000], Tammet [1995]). Note that a
resolution—based terminological reasoner can be used in conjunction with the tech-
nique we are investigating (see Section 4.2).

Recently, adirect resol ution—based method has been proposed for KB satisfiability
(see Areces et al. [1999]). Although the DL they cover lacks some important fea-
tures (for example the possibility of expressing general inclusion axioms) we think
that more work in this subject can produce interesting results, since severa modern
computational logic tools are based on resolution methods rather than tableaux.

3In fact, no attempts have been made to investigate whether the encoding technique is applicable to
different DLs.

“Modal or Description logics are translated into First Order Logic and then resolution methods are
applied with an appropriate strategy for guaranteeing termination.

4.2. PRECOMPLETION 67

4.2 Precompletion

The main idea behind the precompl etion technique isto split the KB satisfiability algo-
rithm in two parts. In the first part al the information implicit in the role assertionsis
made explicit, generating what we call a*“precompletion” of the knowledge base, then
aterminological reasoner isused for verifying the consistency of the concept assertions
for each individual name (see Hollunder [1996], Donini et al. [1994]).

The precompletion approach has been successfully used for both providing cor-
rect and complete algorithms, and analysing the complexity of the KB satisfiability
problem. The works cited above focused on DL knowledge bases with empty termi-
nologies, and languages not including transitive or functional roles.® With the work
presented in this thesis we generalised the precompletion technique for KBs with gen-
eral inclusion axioms, transitive roles, and functional roles (i.e. the DL SH).

Let us consider for example avery simple Abox containing only the assertions:

A ={aVR.C,{a,b):R,b:~C'} .

The two first assertions can be used to derive the new assertion b:C'; itiseasy to realise
that A is satisfiable iff A’ = AU {b:C} is satisfiable as well (which is not the case,
because b cannot bein C' and —~C' at the same time). The interesting point is that when
we check the satisfiability of A" we do not need to consider the role assertion, because
its effects have been made “explicit” in the new assertion. Therefore we can verify
the KB satisfiability by checking the satisfiability of the concepts VR.C and C' 11 =C
Separately.

This technique consists of a correctness—preserving process which eliminates spe-
cific information regarding dependencies between individuals, while maintaining the
consequences of such information. Once these dependencies are eliminated, the as-
sertions about a single individual can be independently verified, ignoring the fact that
an individua isinvolved. The precompletion, or elimination of the dependencies, is
performed by adding new assertions using a set of nondeterministic syntactic rules.
Because of the nondeterminism of the rules, many different precompletions can be de-
rived from a single knowledge base, which is satisfiable if and only if at least one of
these precompletionsis satisfiable.

A subset of the tableaux rules for SHf (see Horrocks [1998]) is used to transform

SEvenif the DLsincluded number restriction constructors, general axioms are needed for simulating
functional restrictions.

4.2. PRECOMPLETION 68

the KB into one of its precompletions (see Figure 5.1). In the case of SHf, the only
“dropped” rule is the 3-rule (see Figure 2.1), and this means that new variables are
never generated.

The nondeterminism isintroduced by the Li-rule and possibly an exponential num-
ber of precompletions can be generated. On the other hand, since the number of vari-
ables is constant, the size of a precompletion is alway polynomial in the size of the
original KB, and, most importantly, we do not need to worry about the possible non—
termination of the algorithm (see Section 5.1).

The main advantage of this technique liesin the fact that the concept satisfiability
tests can be performed by using any available terminological reasoner (providing a suf-
ficiently expressive DL language); in particular, impressive results have been recently
obtained by optimised tableau—based systemslike FaCT (see Franconi et al. [19980]).
Indeed, one of the primary motivationsfor reexamining the precompletion approach is
the availability of such optimised systems.

The formal proof of correctness and completeness of the algorithm is provided in
Chapter 5, here we sketch the actual algorithm and the technique used for proving its
compl eteness.®

4.2.1 KB satisfiability algorithm

Theinput consists of a set containing the constraints (see Formulae 2.5) corresponding
to the assertions in the Abox. In this section we introduce the algorithm for the less
expressive language SH (i.e. without functional roles). The rulesfor thislanguage are
simpler and more intuitive, the full details for S7f are presented in the next chapter.
The rulesin Figure 4.1 are repeatedly applied to the initial set until either no rule is
applicable or a contradictory combination of constraintsis detected (a so-called clash).

The LI-rule generates several alternatives branches, these are exhaustively explored
by means of backtrack points where the algorithm restarts in case of afailure.

Intuitively, a clash corresponds to an unsatisfiable combination of constraints in
the constraint set. When the precompl etion process encounters a clash there isno need
to continue adding new constraints, the precompletion will be unsatisfiable anyway;
therefore the algorithm backtracks to the most recent backtrack point and continues
the precompletion from that state.

If none of the rules is applicable a precompletion has been generated, and can

61n this case the correctnessis the easy part.

4.2. PRECOMPLETION 69

A _>E {OC}UA
ifoisinO, TCCisinT
ando:C' isnotin A.

A —n {o:Cy, 0:CL}UA
|f 0301 1 02 in ./4,
and either 0:C; or 0:Cy isnotin A.

A —, {ooD}UA
if :C; UCyin A,
andD =C,orD = (Cy
and o:D isnotin A.

A —y {:C}UA
if :VR.C'in A,and (0,0'):Sisin A,and S < R,
and o’:C'isnotin A.

A =y {0VRC}UA
if o:VT.C in A, (0,0'):Sisin A,
and thereisR € TRN suchtha S < R < T,
and o:VR.C isnotin A.

Figure 4.1: Precompletion rulesfor SH

be checked for its satisfiability. This is done by gathering all the concept assertions
concerning an individual, the concepts are then conjoined generating a new single
concept associated to each singleindividual. These concepts are then verified by using
an external call to aterminological reasoner; if they are all satisfiablethen thealgorithm
terminates with success, otherwise it backtracks asin the case of clash detection.

If the process fails to find a satisfiable precompletion after all the nondeterministic
branches have been explored, then it terminates with failure.

As presented here the algorithm sounds rather naive and prone to inefficient explo-
ration of the search space. In fact, we need a few “tricks’ to avoid a hopelessly slow
algorithm. In Chapter 8 we will come back to this point and show how to improve the
algorithm to obtain acceptable behaviour in most of the cases. Note that the theoretical
worst case complexity of reasoning is EXPTIME, therefore there can be pathological
KBs manifesting this complexity.

Example 4.1

4.2. PRECOMPLETION 70

We use a dightly modified version of Example 2.3 to illustrate the precompletion al-
gorithm. Let us consider the problem of checking the satisfiability of the Abox

;

sar ah:(VFRI END.(—Femal e U (VLOVES.Fenal e))),)
susan:Fenal e,

andr ea:JdLOVES.—Fenal e,
(sar ah,susan):FRI END,
(sar ah,andr ea):FRI END,
(susan,andr ea):LOVES

\ Ve

with an empty terminology. This Abox corresponds to the one of Example 2.3 where
thetwo constraintsbi | | :—mFemal e and (andr ea, bi | |):LOVES have been replaced
by the constraint andr ea:JLOVES.—Fenual e. Note that this Abox is still unsatisfi-
able, it can be easily verified by using similar arguments to those used for the previ-
ously seen example; however we want to show its unsatisfiability by using the precom-
pletion algorithm.

Using the V—ule with the first concept constraint and the two role constraints
(sar ah,susan):FRI END and (sar ah,andr ea):FRI END we add the two con-
straints

susan:(—Fenal e Ll (YLOVES.Fenual e)),
andr ea:(—Femal e U (VLOVES.Fenal e)) |

Both the newly added constraints are possible branching points where the Li—rule is
applicable; however if we choose to add the concept constraint susan:—Fenmal e we
obtain a contradiction straight away. Therefore we ignore that branch and we add the
constraint

{ susan:(VLOVES.Fenual e) } :

We can carry on with the deterministic rules and apply the V—rule with the latest added
constraint and therole constraint (susan, andr ea):LOVES; thisresultsin the further
addition of the constraint

{ andr ea:Femal e } .

At this point, the only option is applying the Li—rule to the constraint
andr ea:(—Fenal e U (VLOVES.Fenal e)).

The choice of adding the constraint andr ea:—Fenal e can beimmediately ruled out

4.2. PRECOMPLETION 71

by the fact that it is in contradiction with the previously added andr ea:Fenal e,
therefore we select the other digunct and we add the constraint

{ andr ea:(VLOVES.Fenal e) }

It is easy to verify that we have obtained a precompletion, since there are no further
applicable rules; in addition, all the search space has been explored. Therefore, the
original Abox is satisfiable iff this precompletion is satisfiable. The satisfiability check
is performed by verifying the satisfiability of the concept constraints associated to each
individual:

Individual Concept
sarah (VFRI END.(—Fenal e L (VLOVES.Fenal e)))
susan (Feral e (—Femal e U (VLOVES.Fenal e)) M (YLOVES.Fenal e))
andrea ((3LOVES.—Femal e) N (-Fenal e U (VLOVES.Fenal e))
N Femal e 1 (VLOVES.Fenal e)).

Thefirst two concepts are satisfiable, while the third one is not because of the conjunc-
tion of (JLOVES.—Fenal e) and (VLOVES.Femal e). Therefore the initial Abox is
unsatisfiable.

4.2.2 Correctnessand completeness of the algorithm

This section presents an overview of the proof for correctness and compl eteness of the
precompletion technique; the full formal proof is provided in the next chapter.

The proof isdivided in two parts: inthefirst we show that the set of precompletions
characterises the satisfiability of the original knowledge base. The second part givesa
method for checking the satisfiability of such a precompletion using a terminological
reasoner.

The definition of a precompletion for a knowledge base > = (7, .A) is given in
a procedural way as anew KB X,, = (7, .4,.) where the ABox A, is obtained by
extending .4 using the nondeterministic syntactic rules in Figure 5.1 as long as they
are applicable.

The precompletion rules are designed in such a way that, whatever strategy of
application is chosen, the process of completing a knowledge base always terminates,
with the same set of precompletions. In fact the only rule that does not introduce a

4.2. PRECOMPLETION 72

smaller assertion in the knowledge base isthe V™ —rule, but its applicability is bounded
by the number of role assertions, which isinvariant. The number of precompletions of
a KB can be exponential because of the presence of a nondeterministic rule, however
the size of each precompletion is polynomial with respect to the size of the original
KB.

The set of all precompletions of a knowledge base characterises its satisfiability.
If one of the precompletions is satisfiable then the original KB is trivially satisfiable
because the process never removes constraints, therefore the assertionsin the Abox are
till in the precompletion. The other direction is proved by using a technique similar
to that used in Horrocks and Sattler [1998]. A model Z of ¥ which witnesses its
satisfiability is used to deterministically guide the application of precompletion rules
to a unique satisfiable precompletion. For this purpose the only nondeterministic rule
istransformed into its deterministic counterpart:

A—pg{o:D}UA
if 0:C; LU Cyin A,
and D = C, if o € C%, D = C, otherwise
ando:Disnotin A.

Satisfiability is preserved by rule application since if Z is a model for the ABox
before the application of the rule, then it is a model for the extended ABox as well.
Therefore, given the fact that the terminology does not change, Z is a model for the
generated precompletion.

Now we know that we can concentrate on precompleted KBs without |oss of gen-
erality. In SH all the contradictions can be detected by the terminological reasoner,
but in SHf there can be clashes involving role assertions (see Definition 5.7). For this
reason in Chapter 5 we will assume clash—free precompletions, since the presence of a
clash makes a precompletion trivially unsatisfiable.

Given a precompleted knowledge base X,,., for each individual o in the KB we
consider the individual concept []L£(X,., 0), which is defined as the conjunction of
all the concept expressionsin the set {C' | 0:C € A}, or T if there are no assertions
about o. Itisclear that amodel for the knowledge base isamodel for every individual
concept. We now show how, given models for the individual concepts, we can build a
model for the knowledge base.

If each individual concept []|L(X,.,0) is separately satisfiable with respect to
the terminology, then for every individual name o there is an individual model Z,, =

4.2. PRECOMPLETION 73

(A,, -Z°), which witnesses the satisfiability. Interpretations can be infinite, but with-
out loss of generality it can be assumed that their interpretation domains are pairwise
digoint, as well as having tree structures,” whose root elements (indicated by IAO) are
in the extension of the corresponding individual concept []L£(X,.,0) (as shown in
Section 3.4).

Theideaisto build aunioninterpretation Z = (A, -7) by “gluing” together all the
tree interpretations, and adding new pairs to the interpretation of roles according to the
role assertions.

The fact that the union interpretation is a model for the precompleted KB is in-
tuitive for the propositional part (concept conjunction, disunction and negation), but
not so for the modal part. In particular, trouble can arise from the interaction between
the universal quantification and the newly added pairs. However, the domain digoint-
ness and tree structure assumptions guarantee that the properties of role interpretations
overcome this problem.

e First, new links are added only to root nodes (those associated to individual
names); in fact for each pair in (z,y) € R,z € (A, \ {07}) impliesthat (x, y)
isin R%>. An important consequence of this property is that if a role connects
two individuals of different individual domains, then the first element of the pair
must be aroot individual.

e Second, there cannot be a connection between elements from different individual

domains without a path passing through a root node. That is, given two distinct
individuals u and v, whenever thereis a pair (u%,z) € RZ withz € A,, there
should be atransitive role S included in R such that both pairs (u?, v7), (v7, z)
arein S7, or z = vZ.
This property ensures that elements in different individual domains can interact
only via individual names in the Abox (i.e. the roots). Therefore, restrictions
like VR.C' holding inside an individual model cannot affect elements belonging
to other individual domains.

It is easy to see that interpretation of roles satisfies the role assertions in the KB,
because of their simple form; however concept assertions are more problematic. In
fact, although the interpretation of a concept name is simply the union of the interpre-
tations of individual models, the extension of some concept expressions can violate the

"Actually, the structure is more tree-like, as explained in Chapter 3, but here we can consider it
simply asatree.

4.2. PRECOMPLETION 74

semantics of concept forming constructors because of the presence of new pairsin the
interpretation of roles.

Example 4.2

For example, given the simple precompleted knowledge base ((), {{a, a): R}), we can
build an individual model Z, for the label of a. We choose the interpretation domain
A, = {0} with the interpretation function ¢’ = 0, and C** = R« = (). The union
interpretation maps R to {(0,0)} and a to 0.

Let us consider the concept expression VR.C', by the semantics of the universal
constructor (see Table 2.1) a** € (VR.C)* because a’* is not related to any other
element via R. However, in the union interpretation thisis no longer true because a’«
isrelated to itself via RZ<, but a’ cannot bein C%= = ().

This problem islocalised to root individuals, because the interpretation of roles re-
stricted to non—root individuals does not change. In fact, the interpretation of arbitrary
concept expressions, restricted to non—oot individual sisamonotonic extension of the
one in individual models; i.e. for any concept expression D, D% \ {of} C D7 for
each individual name o.

For root individuals this property does not hold for arbitrary concept expressions;
however, the property is still valid for concept expressions which appear as assertions
inthe precompleted KB. Infact, for each assertiono: D € A, theindividual aZ isinthe
extension DZ. This restricted property (together with the more general applicability to
non—roots) is sufficient to prove that all the axioms and assertions in the precompl eted
knowledge base are satisfied.

4.2.3 Prosand cons of precompletion

The initial motivation of our research was exploring the feasibility of providing an
Abox reasoner for the DL of the FaCT system (SHf). In particular we areinterested in
the differences in developing DL systems with and without Abox. For this reason we
decided to investigate the precompletion technique, since it enables a clear distinction
between the hybrid reasoning and the terminological component of the algorithm.

The agorithm is completely independent from the terminological reasoner which
is used for the concept satisfiability test. In thisway, an Abox can be easily added to
most existing DL systems without re-implementing the whole system. Moreover, op-
timisation strategies implemented at the terminological level do not adversely interact
with the precompletion agorithm.

4.2. PRECOMPLETION 75

A further advantage of precompletionisthat it confines the exponential blow of the
complexity to the terminological reasoning. In fact, the size of precompletionsis poly-
nomial in the size of the KB. This may indicate that a system based on precompletion
can run with a smaller memory footprint compared to a system based on an extension
of the Tableaux method.®

On the other hand, precompl etion presents two big disadvantages w.r.t. other tech-
niques. Thefirst oneisrelated to the fact that the precompletion process cannot obtain
useful information from the terminological reasoner (just abinary yes/no). This means
that in case of failure of a concept satisfiability test, the precompletion process cannot
use additional information for improving heuristics in the exploration of the search
space.

However, we think that the major drawback liesin the fact that the limitson the ex-
pressiveness of DL s suitablefor thisapproach are not clear. For example, the extension
of precompletion to the inverse role constructor is problematic.

Example 4.3
Consider for example the Abox

{a:3S.(VS™'.(VR.C)),b:=C, (a,b):R} .
ThisAbox is unsat‘l{ sflsakzl as can an be seen by consi derlng{the EO”OWI ng diagram

RO T

a =
P ,
!

(vs 1RO} /S VRO

The key point is the combination of the existential and universal quantification
35.¥S~!.(...) which pushes “new” restrictions on the individuals a and b (i.e. the
concept VR.C' on a, and consequently the concept C' on b). Note that the Abox is
aready precompleted, and the concept 35.(VS~!.(VR.C)) is satisfiable; therefore a
naive application of precompletion leads to awrong result.

Precompletion isfailing in this case because it does not take into account the fact
that new concepts may have to be added to the label of an individual because of the
terminological reasoning.

8This actually depends on the kind of optimisation implemented in the DL system. Aswe are going
to suggest later on, the precompletion technique can be used as a testbed for improving strategies for
Tableaux based systems.

4.2. PRECOMPLETION 76

In the next chapter we prove that the precompletion technique can be used with
the DL S#f. From the precise description of the technique an actual agorithm can
be easily devised. We have implemented a prototype of an Abox reasoner based on
precompletion, and we performed some evaluation experiments with it. The system
and the results are described in Chapter 8.

Chapter 5
Precompletion algorithm for SHf

The proof for correctness and completeness of the technique is in two parts: in Sec-
tion 5.1 we present a method for deriving a set of smpler knowledge bases called
precompletions, and we show that this set characterises the satisfiability of the origi-
nal knowledge base. The second part, in Section 5.2 shows that the satisfiability of a
precompletion can be verified using a terminological reasoner.

The purpose of the precompletion process is to generate a simpler (not smaller)
knowledge base where the role assertions about individuals can be ignored. Precom-
pletions of knowledge bases are built using a set of nondeterministic syntactic rules
which extend the Abox of the original knowledge base. 1t will be proved that a knowl-
edge base is satisfiable if and only if a satisfiable precompletion can be derived.

In Section 5.2 we show that for checking the satisfiability of a precompletion the
role assertions can beignored. In aprecompletion the relevant el ements are the concept
assertions and the terminology. Each individual is associated to the conjunction of
the concepts appearing in its concept assertions. If al those individual concepts are
satisfiable with respect to the terminology, then we show that their models can be
combined in an interpretation satisfying the precompleted knowledge base.

5.1 Precompletionsof knowledge bases

Without loss of generality we assume that all the concept axiomsin the Thox arein the
form T C C', where C' isaconcept expression. This assumption is not restrictive at all
in DLs closed under negation. An arbitrary assertion C'; C (', can be transformed into
the equivalent assertion T C (—C U Csy), which isin the required form.

A second assumption we adopt is that concept expressions are in negation normal

77

5.1. PRECOMPLETIONS OF KNOWLEDGE BASES 78

form, where the —- constructor can appear only in front of concept names. Any concept
expression can be transformed into an equivalent expression in normal form using the
following rewriting rules.

-—C=C -~(CnND)=-CU=-D -3R.C =VR.~C
—I(C L D) =-Cn-D —VR.C =3R.-C

This assumption simplifies the description of the algorithm and the proofs detailed in
this chapter.

Intuitively, a knowledge base is precompleted if all the information entailed by
the presence of role assertions is exhibited in the form of concept assertions. The
definition of a precompletion for a knowledge base is given in a procedural way as a
new KB where the Abox is extended using the syntactic rules of Figure 5.1 aslong as
they are applicable.

We define a set of new binary operators - =, - (one for each individual name o), to
simplify the formulae in the rules. Intuitively, they take into account the possible in-
teraction between the role hierarchy and the functional restrictions (see Section 3.1.1).
Two role names R and S are - =, - related if they are functional, and the Abox asser-
tions force the R and S successors of the individual name o to be the same element.
Strictly speaking, the operator depends on the KB as well, but for simplifying the no-
tation we are omitting it. In places where the relation is used, it will be clear whichis
the KB we are referring to.

Definition 5.1. Giventwo roles R and S, an individua o, andaKB X = (7, A), the
relation R ~, S holdsiff:

e thereisarole Ry < R st. either 0:3R,.C) or (0, 0'): Ry isin A; and
e thereisarole S, < S st. either 0:35,.D, or (o, 0"):Sy isin A; and

e thereisaset of roles{R;,... R,_1}, and aset of functional roles {F, ..., F,,},
s.t.

— either 0:3R;.C; or (0,0'):R; isin A,foranyi=1,...,n — 1 and
- RPN, SXF, R XF,R Ry X F,...,R,_ | XF,.

The - ~, - relation can be better understood by considering that it is describing a

5.1. PRECOMPLETIONS OF KNOWLEDGE BASES 79

situation in which part of the role taxonomy looks like

INSNSN S\
\ S

R[) SO

and theindividual name o hasasuccessor for each of therolenames R, Ry, ..., R, 1, S.
In this case, the functional restrictions cause al these successors to be interpreted as
the very same element. By the way it is defined, the relation - =, - is symmetric (i.e.
R=~,S=S~,R).

Proposition 5.2. Let > = (7, .A) bea KB, and Z = (A%, -%) be an interpretation
satisfying X. For any individual name o, role name R, S, and elements z, y of AZ. If
(of,x) € RE, (o%,y) € ST,and R ~, S, thenz = y.

Proof. All theroles R, S, Ry, ..., R, 1 of Definition 5.1 are functional because they
are included in functional roles (F1, ..., F},); therefore of has at most one successor
for any of these roles. We are going to show that all these successors are equal.

Note that for any R;, the constraint o:3R;.C; (or (o, o'): R;) impliesthe existence of
an element z; in AT st. (0%, z;) € R,

Let us consider (o, ;) € R,%, and (o%,2) € R%. Since R,* C Fy* and R* C
F7, then { (0%, z1), (o*,x)} C Fy*. From the functionality of F,* we can conclude
that z; = z.

The very same arguments can be applied to al pair of roles R;, R;. 1, including the
last R,,_1, S; thereforer = oy =29 = ... = 2,1 = ¥. O

Given thisintroductory definition, the transformation rules of Figure 5.1 should be
clear, and we are going to introduce the formal definition of a precompletion of a KB.

Definition 5.3. A precompletion of a knowledge base ¥ = (7, .A) is defined as a
knowledgebase ¥, = (T, A,.), where A, is an extension of .A built by applying the
syntactic rulesin Figure 5.1 aslong as their pre—conditions are satisfied.

The precompletion rules are designed in such a way that, whatever strategy of
application is chosen, the process of completing a knowledge base always terminates
(Proposition 5.4).

5.1. PRECOMPLETIONS OF KNOWLEDGE BASES

A —>E

A — v+

{o:C}UA
ifoisinO, TCCisinT
and o:C'isnotin A.

{OICI, 0202} U A
if o:C; M Csisin A,
and either 0:C; or 0:Cs if notin A.

{o:D}U A

if 0:C, LU Cyisin A,
andD =C,orD = C,
and o:D isnotin A.

{:C}U A
if 0:3R.C and (0, 0'):S arein A,
R~,S,ando:Cisnotin A.

{:C}U A

if o:VR.C and (0, 0'):S arein A,
thereisR' < Rst.R' ~, S
ando":C isnotin A.

{:C}YUA
if oVR.C'isin A, and (0, 0'):Sisin A,and S < R,
ando’:C'isnotin A.
{:VR.C} U A
if o:VT.C'in A, (0,0'):Sisin A,
and thereisR € TRN suchtha S < R < T,
and o:VR.C isnotin A.

Figure 5.1: Precompletion rules for SHf

80

5.1. PRECOMPLETIONS OF KNOWLEDGE BASES 81

Proposition 5.4. The precompletion process always terminates, and any precomple-
tion has a size which is polynomial w.r.t. the size of the knowledge base.

(Sketched). The number of new assertions introduced by the terminology viathe —
rule is equal to the number of individual names in the KB multiplied by the number
of concept axioms in the Thox. The rules —, —,, =31, =1, and —y aways in-
troduce assertions smaller than the original ones. The only rule that introduces non
decreasing assertions is —v+; however, its applicability is bounded by the number of
role assertions, which isinvariant.

For estimating the size of each precompletion we can use the argument that the
number of different concept expressions that can be generated is polynomial w.r.t. the
size of the KB.! Therefore the size of a precompletion cannot exceed the number of
individual names multiplied by the number of concept expressions, and this number is
still polynomial w.r.t. the size of the KB. O

The precompletion algorithm generates a finite, but possibly exponential, number
of precompletions; which can be individually checked for their consistency. The ad-
vantage over the original knowledge base is that they are simpler, enabling the use of
techniques based on terminological reasoning.

The satisfiability of a knowledge base and the satisfiability of its precompletions
aredtrictly related. Infact, the knowledge baseis satisfiableif and only if at least one of
its precompletions is satisfiable (Proposition 5.5). Since Proposition 5.4 ensures that
the precompletions of a given knowledge base can be enumerated, the satisfiability
checking can be performed on precompleted knowledge bases.

Proposition 5.5. A knowledge base ¥ = (7, A) is satisfiable if and only if it has a
satisfiable precompletion.

Proof. <= Since ¥ isincluded in all its precompletions, a model for a precompletion
Y. iIsamodel for 3 aswell.

= Givenamodel Z = (A%, .F) for ¥, a satisfiable precompletion of 3 can be built.
This precompletion £,,. = (7, .A,.) isbuilt by extending .4 using a set of rules
constrained by the model Z. The rules are the same as Figure 5.1 apart from
the nondeterministic — |, rule, which is transformed into a deterministic one by
using the model Z:

1Again the only problem may come from the — + rule, but the number of formulae that it can
generateis limited by the number of transitive role names.

5.1. PRECOMPLETIONS OF KNOWLEDGE BASES 82

A —g {o:D}UA
if o:CUCyin A,
and D = C, if o € C* and D = C, otherwise
and o:D isnotin A.

All the rules preserve satisfiability, in the sense that if Z isamodel for the Abox
before the application of the rule, then it is a model for the extended Abox as
well:

—c If Z isamodel for (T, .A), then every element of the domain is in C*
(including o” for each o € O). Therefore the assertion o:C' is satisfied.

—n If Zisamode for (T, A), then of € (C, N Cy)%. Therefore o € CF and
ol € CL.

— If Zisamodel for (T, A), then of € (C, U Cy)%; therefore either o € C7
or o € CZ. Suppose that o* € C%, then A is extended by adding the
assertion 0:C'; whichissatisfied by 7, and analogously for the casein which
of € CF.

—o If T isamode for (T,.A), then (o7, 0'") € S7, and there is an element
z € CF st. (oF,x) € RT. By Proposition 52 z = o'*; therefore the
interpretation Z satisfies the assertion o’:C aswell.

—y If T isamode for (T, A), then (o7, 0'") € ST, and every element z st.
(of,x) € RT mustbein C?.
Since k' =, S, thereisarole Ry < R' and an element = suchthat (0%, z) €
Ro*. Inaddition, R' < R therefore (o”, #) € R?, which meansthat 2
Cr.
Finally, we can use Proposition 5.2 with R' and .S for concluding that = =
o'", s0 T satisfies the assertion o':C.

—y If T isamode for (T, A), then o* € (VR.C)7, (oF,0") € ST and ST C
R%. So (oF,0'") € RT aswell, therefore o' € C7.

—y+ If Zisamodd for (T, A), then o € (VI.C)Z, (o%,0'") € ST C RT C
TT and RT = (RT)*. If there is z in A” such that (o'*,z) € RZ, then
(oF,z) € R* aswell because R* istransitive. The element = should be in
C7? because of € (V1.C)T and R C T7; therefore o'” € (VR.C)Z.

52 SATISFIABILITY OF PRECOMPLETIONS 83

Because of the preserved satisfiability, Z must be a model for the precompleted
knowledge base ¥,,. as well.
O

The following Proposition 5.6 makes explicit the logical properties of precomple-
tionsimplicit in the rules of Figure 5.1.

Proposition 5.6. A precompleted S#f knowledge base ¥,,. = (7., A,.), containing
assertions about the set of individual names O, satisfies all the following conditions:

—c ifoec Oand TC C € Ty theno:C € A,;

—n ifa:CiNCy € Ay thena:Cy € A, and a:Cy € A,

—y ifa:CyUCy € Ay thena:Cy € Ay or a:Cy € Ay,

—q if {o:3R.C, (a,b):S} C A,.,and R =, S, thenb:C € A,;

—w If {o:VR.C, (a,b):S} C A,., andthereisR' < Rst. R =, S,thenb:C € A,;
—v if{a:VR.C,(a,0):S} C A,,and S < Rthenb:C' € A,;

—v+ If {a:VT.C,{a,b):S} C A,. and thereisatransitiverole R € TRN such that
S < R=<T,thenb:YR.C € A,.

Proof. Each property corresponds to the pre—conditions of one of the rules of Fig-
ure5.1. So if the property is not satisfied, the corresponding rule is still applicable and
X, Isnot yet a precompletion. O

At this point we have reduced the problem of checking the satisfiability of a SHf
knowledge base to the problem of verifying whether one of its precompletionsis sati fi-
able. Now we turn our attention to precompleted KBs. The advantage in concentrating
on such KBs is that the consistency can be verified using a terminological reasoner
(Theorem 5.20).

5.2 Satisfiability of precompletions

In this section we show how the satisfiability of a precompletion can be reduced to the
concept satisfiability problem. This reduction enables us to close the circle and leads
to the main result for ageneral KB in Section 5.3.

52 SATISFIABILITY OF PRECOMPLETIONS 84

Since we are going to ignore the role assertions of a precompleted KB, first we
must make sure that a precompleted KB does not contain any contradiction caused by
role assertions. In SHf this case is restricted to assertions involving functional roles.

Definition 5.7. A precompletion £,. = (7, .A,.) contains a clash iff there are two
roles R, R' € RN, and individual names a, b, c with b # ¢, such that R ~, R, and
{{a,b):R, (a,c):R'} C A,.

A precompletion containing a clash is not satisfiable because it violates some the
functional restrictions; in fact, by Proposition 5.2 the interpretations of b and ¢ must
coincide, which isin contradiction with the unique name assumption. Precompletions
not containing clashes are said to be clash-free.

Given aknowledge base, the label of anindividual isthe set of concept expressions
in the assertions on the individual itself. Thisisformally defined in the next definition.

Definition 5.8. Givenaknowledgebase > = (7, A), thelabel of anindividua o € O
with respect to X (written as L(, 0)) is defined as the set of all concept expressionsin
the assertions about the individual name o:

{C']0:C € A} if thissetisnot empty, or
{T} otherwise

L(X,0) = {

By using the label of an individual, the concept expression [| £(X, o) isdefined asthe
conjunction of all the concept expressionsin £(X, o):

[0=Cin...nC,

where {C; |i=1,...,n} = L(X,0).

Since in precompleted knowledge bases the information carried by role assertions
is made explicit, al the relevant properties of an individual are in the form of concept
assertions. The label of an individual completely characterises the properties of the
individual, and it can be used to verify that these properties are not contradictory.

If each individual concept [|L(X,.,0) is separately satisfiable with respect to
the terminology, then for every individual name o there is an individual model Z,, =
(A,, -Z°), which witnesses the satisfiability. As seen in Section 3.4, it can be assumed
that each individual model has a quasi transitive tree structure.

The domains of the models can be considered pairwise digoint without loss of
generality. Let Z, and Z, be two models of []L£(X2,u) and []L(X,v) respectively,

52 SATISFIABILITY OF PRECOMPLETIONS 85

whose domains A, and A, overlap. A new domain A! can be chosen having the
same cardinality as A, and being digoint from A,, and a bijection can be defined
between the sets A, and A! . Moreover the defined bijection can be used to build a
new interpretation in which every element of A, is substituted by the mapped el ement
in A’. It is easy to show that that new interpretation 7/, = (A/,, -%+) isamodel for the
corresponding concept [| £(X, u) with respect to the given terminol ogy.

Starting from the individual models Z,,, an interpretation for the overall knowledge
base can be build by combining them. The domain of the union interpretation is the
union of al the domains from each individual model. The interpretation function is
defined in terms of the interpretation functions of each individual model:

e Each individual name is interpreted as the root of its corresponding model (i.e.
o*°), which is defined because to each individual name corresponds a label (see
Definition 5.8).

e Concept namesareinterpreted asthe union of their interpretationsin the different
models.

e Interpretation of role names is slightly more involved because the union of the
single interpretations is not enough. In fact, the pairs corresponding to the role
assertions in the Abox must be added as well (including those induced by both
therole hierarchy, and transitive restriction on roles).

As anticipated, the interpretation of roles involves something more than the union
of individual interpretations. First, the role assertions should be added; then, we must
ensure that functional roles are till functional. The latter point can be understood
by considering the precompletion of the KB ¥ = ((), {(a, b):F, a:3F.C'}), where F
is a functional role. The precompletion of X is (0, {{(a, b):F, a:3F.C,b:C'}), which
is satisfiable. From the precompletion, two individual models can be derived: Z, for
the concept 3F.C and Z,, for C. If we try to merge these two models, together with
the pair generated by the role assertion (a, b): F, the resulting interpretation would not
satisfy the functional restriction on F'. The solution to this problem relies on a more
careful definition of the union interpretation, which takes into account the functional
restrictions on role extensions. For this purpose we introduce the notion of restricted
interpretation of roles (Definition 5.9).

The ideais to remove the links that will be added later on by means of role asser-
tions in the Abox. We perform this operation only on functional roles, because they
are the problematic ones.

52 SATISFIABILITY OF PRECOMPLETIONS 86

Definition 5.9. Let £,, = (T,.A,.) be a clash—free precompleted KB, and Z, =
(A,, %) be the individual model for the individual o in ¥,.. The restricted individ-
ual interpretation function -Ze for o is defined as:

To — Lo
ALe = AT

R%\ {(o%,z) | (o%,2) € R%} ifthereare R, R"st. R < R,
R = (0,0'):R" € Ay,,and R' =, R";

R%e otherwise.

Since therestricted interpretation is different from the original one only for therole
names, in the following we are going to use it only with role names.

Notethat if R istransitive, then RZe = R%> because R does not have any functional
super—role (see Definition 5.1).

Note that the restricted role interpretation depends on the knowledge base as well
as on each individual model. It is used instead of the original interpretation function
in Definition 5.10, where the extension of role names is defined in such a way that
pairs removed by means of Definition 5.9 are substituted by pairs induced by Abox
assertions. This is necessary only for non—transitive roles, because transitive roles
cannot have functional super—oles by assumption, so the - =, - relations do not hold
among transitive roles.

Then, the following Sections provide the formal proofs showing that this union
interpretation isindeed a model for the precompleted KB.

Definition 5.10. Given a precompleted knowledge base ,,. = (T, A,.) and the indi-
vidual modelsZ, = (A,, -Z°) for each individual o € O, then the union interpretation

52 SATISFIABILITY OF PRECOMPLETIONS 87

7 = (A,) isdefined as:

A=A,
0eO
OT = ol°
Af =[] A%
0eO
(= Uyco B2 U {(GT, b5) | (a,b):R' € Ape, R =, R’} if 12 isnot transitive,
" O{(78) | (0 bR € Ay R < R}
UlUs<r.serrn S*
| = Useo B2 U {(a,07) | (0,0): € Ape, ' < R})* otherwise

Foreacho € O, A € CN, R € RN. The operator - builds the transitive closure
of arelation. For an arbitrary binary relation p, it isdefined as p™ = Un21 p"; where
pt = p, and p"*! isthe composition of p and p”, i.e. p"*! = po p".

Note that the definition is recursive because the union interpretation is used to
build the interpretation for roles. Given the fact that we assume that the role hierarchy
isacyclic (see Section 2.4), the interpretation of the rolesiswell defined.

Thefact that the union interpretationisamodel for the precompleted KB isintuitive
for the propositional part (concept conjunction, disunction and negation), but not so
for the modal part. In particular, troubles can arise from the interaction between the
universal quantification and the newly added pairs. However, we are going to prove
that the domain digointness and tree-like structure of the individua interpretations
guarantee that the union interpretation isindeed a model for the precompleted KB.

5.2.1 Interpretation of roles

The disointness of the domains guarantees that the individual model! trees do not over-
lap, so the role interpretations RZ> are pairwise disoint. This property is crucial for
the structure of the role extension in the union interpretation, since it ensures that new
links are added only to root nodes (i.e. to those associated to individual names).

First we are going to show that restricted interpretations still satisfy the role hier-
archy.

Proposition 5.11. Let £,. = (T, .A,.) be a clash—free precompleted KB, and Z, =

52 SATISFIABILITY OF PRECOMPLETIONS 88

(A,, %) be the individual model for the individual o in X,.. For any pair of role
names .S and R, individual name o, if S < R then SZe C RZe,

Proof. Since Z, satisfies the role hierarcy by hypothesis, SZe C RZe; therefore the
only case in which SZ= ¢ RZe is the one in which a pair is removed from RZ° but
not from SZ-. We are going to reason by contradiction, assuming that there is a pair
(o', z) € R*o N SZ st. thereare R',R", R < R, (0,0'):R" € A,.,,and R’ ~, R"
(see Definition 5.9). This generates a contradiction because S < R < R/, therefore
the pair should have been eliminated from SZ- as well. 0J

Now we consider the relation between the union interpretation and the individual
interpretations. We start by verifying that no pair of elements, coming from the same
individual domain, isin the union interpretation of arole unlessit isin the individual
interpretation of the role itself. Naturally, we must exclude the case of a pair induced
by an Abox interpretation like (a, a): R, which forces the pair (a”, a%) in RZ.

Proposition 5.12. Given a precompleted knowledge base ¥,. = (7, A,.), and the
unioninterpretationZ = (A, -Z) fromtheindividual modelsZ, = (A,, %) witho € O.
For eachrole R € RN/, individual nameo € O, and elements {z, y} C A,:

(z,y) € RT and y # o” implies (z,y) € R%

Proof. We prove this proposition by induction using the partial order < over the set
of roles RA/. By the structure of Definition 5.10 we can start from transitive roles
(no induction is necessary in this case), and then prove the property for non-transitive
roles.

If R istransitive, we consider the set

R=|JR=U {(af, b | (@, b):R' € Ay, R < R} ,
[

and we show that for any integer n, {z,y} C A,, (z,y) € R, andy # oF implies
(z,y) € R%=. We show this by induction on n.

o If n =1 then either

(x,y) € U RE or

[

(z,y) € {(af, bT) | (a,b):R' € Ay, R < R} .

52 SATISFIABILITY OF PRECOMPLETIONS 89

The second case can be ruled out because y ¢ O7. In addition, the sets R%" and
RZe aredigoint for any o’ € O different from o, because the individual domains
are digoint by assumption; therefore (x, y) € R%e.

e As an inductive hypothesis we assume that the property holds for any number
less or equal than n, and we show that it holdsfor n + 1.

If (v,y) € " thereisan element z suchthat (z, z) € Rand (z,y) € K. Note
that = must be different from oZ, because we assumed that 7, isaquasi transitive
shrub (see Section 3.1). We can use the inductive hypothesis to conclude that
both (z,2) and (z,y) are in RZe; therefore (z,y) € R’ because R%> C R
and R”- is trangitive by assumption. In addition, RZe = R%> because R cannot
have any functional super—role (see Definition 5.9 and Definition 5.1). Therefore
(z,y) € REe.

If R isnot transitive then we have four cases:

(z,9) € |J R®,

[

(,y) € {(af, b7) | (a,b):R' € Ay, R ~, R’} ,
(,y) € {(af, bT) | {a,b):R' € Ao, R < R} ,
(x,y) € U ST,

S<R,SETRN
The three initial cases are analogous to the one for transitive rolesand n = 1: the
second and third cases can be ruled out because y ¢ OF, while the first case satisfies
the proposition because of the digointness of the individual domains.
In the fourth case there is atransitive role S included in R (and different, because
Risnot transitive) st. (,y) € SZ. Sincewe already proved the property for transitive
roles, then (z,y) € SZe; therefore (z, y) € RZe by Proposition 5.11. O

The following proposition shows that pairs of root elements come from Abox as-
sertions only.

Proposition 5.13. Given a precompleted knowledge base ¥,. = (7, A,.), and the
unioninterpretationZ = (A, -%) fromtheindividual modelsZ, = (A,, -%°) witho € O.

52 SATISFIABILITY OF PRECOMPLETIONS 90

For any role R € RN and elements =, y of A, if (z,y) € R andy € OF then:

(2,) € { (7, 07) | (a,b):R € Ape, K < R}, o
(v,9) € { (a7, 07) | {0, B} € Ay, Ry R}, or

(z,y) € ({(af, b5) | (a,b):R' € Ape, R < S})Jr for sometransitiverole S < R.
Proof. If R istransitive, let us consider the set

E:Lﬁﬁx{@?ﬁnmﬁw?e4m353}

[

We show by induction on . that if (z,y) € R" andy € O7 then

(%wqu{m|@wﬂeAmﬁij#

For n = 1 it is true because (z,y) & U, R% since Z, is a quasi transitive tree
interpretation for any o (see Section 3.3). Let us assume the property for any integer
less or equal than n, and we consider B, I (z,y) € B*"", then there is an element
zst (x,2z) € Rand (z,5) € R". By theinductive hypothesis applied to (z,y) € R"
we conclude that

@@e@@?%|@mﬂeAmﬁijﬂ

therefore z € OF. We can then use the inductive hypothesis with (z, z) € R conclud-
ing that
(2,2) € ({ (e, 67) | (@, b):F € Ay, R X R})'

aswell; therefore

(%wquém|@mﬂeAijRb#

If R is not transitive and (x,y) € RZ, then one of the following cases must be

52 SATISFIABILITY OF PRECOMPLETIONS 91
satisfied:

(z,9) € |J R®,

ocO

(,y) € {(af, b7) | (a,b):R' € Ay, R ~4 R’} ,
(z,y) € {(af, b0) | {a,b):R' € Ao, R < R} ,
(x,y) € U ST,

S<R,SETRN
We can rule out the first case because of the structure of the individual interpretations.
The second and third cases trivially satisfy the proposition, while the fourth case falls
into the previously proved property for transitiveroles. O

The second important property of role extensions in union interpretation is that
there cannot be a connection between elements from different individual domainswith-
out a path passing through a root node (Proposition 5.14). This property ensures that
all the restrictions applying to anon—root element can only be induced through the root
of its own individual domain, instead of by being directly propagated from different
individual domains.

Proposition 5.14. Given a precompleted knowledge base ©,. = (T, A,.), and the
unioninterpretationZ = (A, -Z) fromtheindividual modelsZ, = (A,, %) witho € O.
For any role R € RN, different individual names a, b, and elementsz € A,, y € Ay,
if (,7) € RT thenz = o7, and y = b” or thereisarole S € TRA suchthat S < R
and {(x, b7), (7, y)} c s7.

Proof. The proof follows the same structure of the previous Proposition 5.12.
If R istransitive let us consider the set

E=|JREU {(af, b7) | {a,b):R' € Ay, R < R} .

We show by induction on n that that for any integer, if - € A,, y € A, witha # b and
(z,y)isinR", thenz = o7, and y = b” or (z,b%), (b%,y) arein R (this satisfies the
condition, because R istransitiveand R < R).

52 SATISFIABILITY OF PRECOMPLETIONS 92

o If n =1 then either

(z,y) € {(af, b0) | (a,b):R' € Ay, R’ < R} .

The first case can be ruled out because of the digointness of the individual do-
mains, so x € Of. In addition, a? is the only element in both A, and O7;
therefore z = o7 (and analogously y = b7).

e As an inductive hypothesis we assume that the property holds for any number
less or equal than n, and we show that it holdsfor n + 1.
If (z,y) € B thereisan element = such that (z, z) € Rand (z,y) € &".
If z € A,, we can use the inductive hypothesiswith n = 1 for concluding that
x = af. We then distinguish the two cases = = 7 and z # b%. In the first

case the condition is trivially satisfied (note that " C RZ for any n). In the
second case, {(:p, bT), (b7, z)} C RT by the inductive hypothesis; in addition

the transitivity of RZ and the fact that {(bf, 2), (z,y)} C RT, guarantees the
satisfiability of the condition.

If z & A,, then thereisan individual o different fromb st. z € A,. We can use
the induction hypothesis with o and b for (z,4) € R", concluding that z = o?
and either y = 7 or {(z,bf), (o7, y)} C RT. Since (z,0%) € RL, z € OF
by Proposition 5.13; therefore z = aZ. If y = b7 the condition is trivially
satisfied, while if {(z, bf),(bf,y)} C R7, {(x,bf),(bf,y)} C R7 because
{(x, 2), (2, bf)} C R” and R istransitive.

If R isnot transitive then have four cases:

(z,y) € |J RB®,

ocO

(29) € { (7, 07) | (0,b): R € Ape, Rorea R},
(r,9) € { (@, 07) | (,D):F € Ape, B < R},
(x,y) € U ST,

S<R,SETRN

The first case can be ruled out because of the digointness of the individual domains.

52 SATISFIABILITY OF PRECOMPLETIONS 93

In the second and third case + = a? because a” is the only element in both A, and
OZ (and analogously y = %). Finaly, for the fourth case there is a transitive role S
includedin R st. (z,y) € SZ, and we can conclude that the proposition is true because
we have aready shown that it holds for transitive roles. O

Before considering the interpretation of concepts, we must verify that the func-
tional restrictions, and the role hierarchy are still satisfied in the union interpretation.

Proposition 5.15. Given a precompleted knowledge base ©,. = (7, .A,.), and the
unioninterpretationZ = (A, -Z) fromtheindividual modelsZ, = (A,, %) witho € O.
If arole R isincluded in afunctional role F (i.e. R < F), thenjj{y|(:v,y) c Rf} <1
for any element = of A.

Proof. Note that there are no transitive roles included in R (and R ¢ TRN), since
thisis forbidden by the language definition. First of al we are going to show that if
isincluded in afunctional role F' then the definition of R” (see Definition 5.10) can be
simplified by the formula:

R = JR=U {(af, b7) | (a,b):R' € Ay, R~ R’} . ()
0€O

Since R isincluded in afunctional role, then it is not transitive and it does not include

any transitive role; therefore the component | J, <RSETRN ST is empty. We just need

to show that

{(aI, b0) | (a,b):R' € Ay, R < R} c {(af, b0) | (a,b):R' € Ay, R =, R’} ,

by proving that if S < R, then S =, R’ implies R ~, R’ for any role R’ (see
Definition 5.1). But thisis actually the case because S < R, and by assumption there
isafunctional role (F') including both S and R. The sequence of rolesin Definition 5.1
can be extended for R by using S and F', and if there is a constraint a:35,.C' (or
(a,0"):Sp) with Sy < S, thisisgood for R aswell because Sy < S < R.

Now that we proved Equation (x) we are going to show that the functional restric-
tion on R is satisfied. We proceed by contradiction, assuming that there are (z, y),
(z,2) st.y # z and {(z,y), (x,z)} C RT. For doing this we use the aternative
definition of RZ shown in Equation (x).

52 SATISFIABILITY OF PRECOMPLETIONS 94

Note that it cannot be the case that {(z,y), (z,2)} C .o R because R% is
functional for any o, and the individual domains are digoint. If

{(z,y), (x,2)} C {(aI, b7) | (a,b):R' € Ay, R ~, R’}

then thereiso € O st. 2 = of, and R ~, R because R isincluded in a functional
role (see Definition 5.1); therefore, there is a contradiction between the assumption
that iy # 2 and Proposition 5.2.

Therefore

(z,y) € U R% and

ocO

(v, 2) € {(a,07) | (@, D) € Ape, Rwy '}

(or the converse, since using y or z issymmetric). Note that there must be two individ-
ual nameso and o', st. z = of, 2 = o7, (0,0'):Sisin Ay, and R =, S.

Since (o7, y) € U, RZ, then (o7, y) € RZ because of the digointness of the
individual domains. Thisisin contradiction with the fact that R ~, S (see Defini-
tion 5.9). O

Now we show that the inclusion restrictions among role names are satisfied as well.

Proposition 5.16. Given a precompleted knowledge base ¥,. = (7, A,.), and the
unioninterpretationZ = (A, -Z) fromtheindividual modelsZ, = (A,, %) witho € O.
For two arbitraryroles R and S, if S < R then ST - RZ.

Proof. Let be (z,y) € SZ, we need to show that (z,y) € R” aswell.

If y € OF, then (x,y) € RT because of Proposition 5.13 and the way the union
interpretation is constructed (see Definition 5.10).

We assume that y ¢ OF, and we distinguish the two cases in which {z,y} € A,
for same individual o, and in which z € A,, y € A, witho # ¢o'. In the first case
(z,y) € S% by Proposition 5.12, therefore (z,y) € R*e by Proposition 5.11. If
xr € A,andy € A, witho # o, then by Proposition 5.14 either y = o'’F (whichis
in contradiction with the assumption that y ¢ ©Z), or there isatransitiverole S < S
st. {(:U,o’f), (o’f, y)} C S, If R isnot transitive, then S’ < RZ by construction
(see Definition 5.10); therefore we assume that R is transitive. In addition, by using
Proposition 5.12 we can conclude that (o', y) € S'Z, therefore (o'%,y) € R%' by

52 SATISFIABILITY OF PRECOMPLETIONS 95

Proposition 5.11. By Proposition 5.13

(2,07) € ({(a,07) | (0, b): R € Ape, R < 5" })7,

because S’ does not have any functional super—role; therefore (z, o’f) € R” aswell.
Finally, we can concludethat (, y) € R” because RT istransitive by construction (see
Definition 5.10). O

Now we are going to look at the concepts, by considering the properties of the
union interpretation.

5.2.2 Interpretation of concepts

It is easy to prove that the interpretation of roles satisfies the role assertions in the
KB (because of their relatively low expressivity); however concept assertions are more
problematic. In fact, the presence of new pairsin the interpretation of roles can modify
the extension of concept forming constructors (see Example 4.2).

This*non-monotonicity” problem does not involve any element of the domain, but
it islocalised to root elements. Roughly speaking, the reason for this lies on the fact
that the interpretation of roles, restricted to non—oot elements does not change (see
Proposition 5.12). Proposition 5.17 showsthat, if we restrict to non—oot elements, the
extension of arbitrary concept expressions w.r.t. the union interpretation is monotonic
w.r.t the individual models.

Proposition 5.17. For any individual name a € O and concept expression D, D% \
{af} - DT,

Proof. The proposition is proved by induction on the structure of the concept expres-
sion D. The basic case of a concept name is true by construction of Z (see Defini-

tion 5.10). If it is true for the concept expressions C; and Cs, then for each more
complex expression:

—-A Letz € A, \ {af} be such that = ¢ A%, then = ¢ AT by construction (the

individual domains are disjoint), so z € (—A)Z.

(C, 1 Cy) By definition (Cy M Cy)T = ¢T N CF and €% C CF, 2= C CF for the
induction hypothesis; therefore (C, 1 Cy)%« C (C; M 02)7.

(Cy1 U Cy) Itisanalogousto the M case.

52 SATISFIABILITY OF PRECOMPLETIONS 96

(3R.Cy) If z € (AR.Cy)% \ {af}, then there existsy € A, such that (z,y) € R%
andy € C¥*. Notethat (z,y) € R%, because only pairs whose first element is
the root element are removed in the restricted individual interpretation function
(see Definition 5.9). Therefore (z,y) € RT (see Definition 5.10). In addition,
y # oF because 7, isaqt. tree, soy € CZ by theinduction hypothesis; therefore
z € (AR.Cy)T.

(VR.C,) Let be x such that = € (VR.Cy)% \ {af}, and (v,y) € RZ. By using
Proposition 5.13 and Proposition 5.12 we can conclude that (z,y) isin R so
y € CT= andy # o. Thereforey € CZ for the induction hypothesis.

O

As shown in Example 4.2, this monotonicity property does not hold for arbitrary
concept expressions applied to root elements. However, it is still valid for concept
expressions which appear explicitly as assertions in the precompleted KB (Proposi-
tion 5.18). Infact, the concept in Example 4.2 does not appear in the KB asan assertion
involving the individual a. Moreover, this restricted property of the union interpreta-
tion (together with the more general one applying to non—oots) is sufficient to prove
that all the axioms and assertionsin the precompleted knowledge base are satisfied by
the union interpretation (Proposition 5.19).

Proposition 5.18. For any individual namea € O, a:D € A, impliesa’ € DT,

Proof. The Proposition is proved by induction on the structure of the concept expres-
sion D.

e The basic case is a concept name: If a:Aisin A,.then A € L(X,.,a) S0a €
AZa: therefore o € AT because AZ- C AZ.

e If itistrue for the concept expressions C'; and C, then for each more complex
expression:

—~A If a:mA € A, then —A € L(Z,.,a) s0a® ¢ A%. From the digointness
of the individual domains aZ ¢ AT (see Definition 5.10), therefore o €
(~A)*

(C1 1 Cy) If a:(Cy 1 Cy) € Ay, then both a:C, and a:C, arein A, (Proposi-
tion 5.6). For the induction hypothesis a” isin both CZ and CZ, soitisin
(Cy 11C,)T aswell.

52 SATISFIABILITY OF PRECOMPLETIONS 97

(CruCy) If a:(CyuCy) € A, then either a:Cy or a:Cy isin A, (Propo-
sition 5.6). If a:C; isin A,., then for induction hypothesis «* € CZ;
therefore a” € (O, LI C,)T aswell. The sameif a:C, isin A,..

(3R.Cy) If a:(3R.Cy) isin A, then (FR.C) € L(E,,a); therefore there is
an dement y in A, st. (aZ,y) € R™ andy € C,%. The problem is that
R C R, sothe pair (aZ,) can be removed in the restricted individual
interpretation function (see Definition 5.9).

If (aZ,y) € R, then (aZ,y) € RT aswell, and since y € A, \ {af}
because of the tree-like structure of Z,,, theny € o by Proposition 5.17.
This concludes that o” € (3R.C,)~.

If (a%,y) ¢ R, thenthereare R, R" st. R < R', (a,0'):R" € A,. and
R ~, R". Since R ~, R" and R < R', thereisafunctional role F' such
that R < F and R’ < F; inaddition, the constraint a:(3R.C) isin A,,, SO
R ~, R" (see Definition 5.1). This means that

(Z,y) € {(aI, bT) | (a,b):R" € Ay, R =, R"}

therefore thereis an individual b sit. y = b7 and (aZ, b%) € RZ (see Defini-
tion 5.10).

The only remaining thing isto show that 7 € C,~. However, the constraint
b:C' must bein A, because of the —3: rule (by Proposition 5.6); therefore
we can use the inductive hypothesis to conclude that 57 € o, r.

(VR.C}) Suppose that (aZ,z) € RZ, then we distinguish three different cases
according to the element z: z is one of the root elements (i.e. z € OF),
€A\ {af}, or thereisb # ast.z € Ay \ {bf}

— If 2 = o” then the pair (a”,) must be introduced by means of Abox
assertions (see Proposition 5.13). Let us consider the three different
Cases.

x |f

(Z,2) € {(af, bT) | (a,b):R' € Ay, R < R}
there is a constraint (a, b):R' with R' < R st. = = bZ. The con-
straint b:C, must be in A,. because of the — rule (by Proposi-
tion 5.6). Therefore we can use the inductive hypothesis for con-
cluding that =z € C,~.

52 SATISFIABILITY OF PRECOMPLETIONS 98

* |f

(o7, 2) € {(a 17) | (0, D): R € Ape, Rz '}
there is a congtraint (a, b):R' with R ~, R’ st. 2z = b*. The
constraint b:C'; must bein A, because of the —: rule (by Propo-
sition 5.6). Therefore we can use the inductive hypothesisfor con-
cluding that x € c, L.
* If

(a7, 2) € ({(a7,07) | (a,b): R € Ay, B < S}

thereis a set of constraints
{<Cl, 01>§Sl, <01, 02>§SQ, ceey <0n717 0n>:Sn} g Apc

and atransitiverole Sst. S; < S < Rfordl:=1,...,n,and
z = o0,%. By Proposition 5.6 each i = 1,...,n the contraints
0;:(VS.Cy) and o0;:C, are in A,. (because of the —y+ rule and
the —). Therefore 0,:C; is A,. and z € C,F by the inductive
hypothesis.

—IfzeA,\ {af} then (a”, z) € R%, because both «” and z areinthe
same individual domain (see Definition 5.10). In addition, (VR.C,) €
L(X),a)s0x € C, %+ because Z, is amodel for the label L(Epe,a).
Using Proposition 5.17 we can concludethe z € c,Z.

— If thereisb £ ast.z € A, \ {bf}, then by Proposition 5.14 there is
atransitiverole S st. S < R and both (a7, b7), (b7,) arein ST. By
using the very same arguments as the first case we can show that the
constraint b:(vS.C4) isin A,.; therefore we can concludethat = € le
by using the same arguments as in the previous case.

5.2.3 Satidfiability of a precompleted KB

It is clear that a model for the knowledge base is a model for every individual con-
cept. Given the results of the previous sections, Propositions 5.19 shows that the union
interpretation isamodel for the precompleted knowledge base.

52 SATISFIABILITY OF PRECOMPLETIONS 99

Proposition 5.19. A clash-free SHf precompleted knowledge base X, = (7, Apc)
is satisfiable if and only if for each individual name o € O the concept expression
[1L(X,, 0) (see Definition 5.8) is satisfiable with respect the terminology 7,,..

Proof. = LetZ beamodel for X, then for any individual name o and for any concept
C in L(Z,.,o0) the individua o is in the extension C* (see Definition 5.8).
Therefore o € ([L£(X,¢,0))* soitsinterpretation is non—empty with respect
to the terminology 7.

<« If for every named individua o the concept expression []£(X,., o) is satisfiable
with respect to the terminology 7,., there is a quas transitive tree interpreta-
tion Z, which satisfies 7. and having the root element in ([£(2,., 0))% (see
Section 3.4). Therefore the union interpretation Z = (A, -Z) can be defined as
Definition 5.10. Verifying that interpretation 7 satisfies every assertionin X, it
can be proved that it isamodel for ¥,,..

e Leta:C beaconcept assertion in A, then by Proposition 5.18 af € 7,

o Let (a,b):RR bearoleassertionin A, then (a%, %) € RT by construction
of RZ in Definition 5.10.

e Let T C C bean axiomin 7, then T satisfies the axiom if and only if
every element in the domain A isin the extension of C with respect to Z.

Let 2 be an element of A, then there existsa € O such that =z € A,, and
x € C= because the model Z, satisfies 7,.. There are two cases. = = af

orz e A, \ {aT}
—If £ = of then z € CT because of Proposition 5.18 (a:C' isin the
precompleted ABox .A,,. by Proposition 5.6).
— If 2 # o, then z € CT by Proposition 5.17.
e If R € TRN then RT istransitive by construction (see Definition 5.10).

e If therole R isfunctiona (i.e. R € FRN, or thereisarole F € FRN
such that R C F)), then its functional restriction is satisfied by Proposi-
tion 5.15.

e If SC Risanaxiomin7,,, then S < Rand ST C R” by Proposition 5.16.
O

5.3. KNOWLEDGE BASE SATISFIABILITY 100

5.3 Knowledge base satisfiability

As summarised in Theorem 5.20, the satisfiability of a general knowledge base can
be verified by checking the satisfiability of its precompletions via a terminological
reasone.

Theorem 5.20. The satisfiability checking problemfor an SHf knowledge base can be
reduced to concept satisfiability with respect to a terminology.

Proof. A knowledge base ¥ is satisfiable if and only if one of the precompletions
¥, ..., %, generated by the algorithmin Definition 5.3 is satisfiable (Proposition 5.5).
Moreover, the problem of checking the satisfiability of each one of the precompletions
can be solved by a concept satisfiability checking for each named individual in the
knowledge base (Proposition 5.19). O

This means that we now have a KB satisfiability algorithm: the precompletion
rules of Figure 5.1 provide an agorithmic way to enumerate the precompletions of
a knowledge base, while the satisfiability of each precompletion is verified using an
external terminological system such as FaCT (see Horrocks [1998]).

Chapter 6
Querying Aboxes

In earlier chapters we have shown how to verify the satisfiability of a SHf KB (Chap-
ter 5) and how to answer to smple DL queries (Section 2.2). This chapter introduces
the reader to anovel query answering technique for DL KBs. Thistechnique provides
correct and complete answers for digunctions of conjunctive queries. The aim of this
chapter is to introduce the ideas underlying this technique for the ssmpler DL ALC.
The full formal discussion of the extension to the language S#f isin the next Chapter.

6.1 Introduction

Typically, the only kind of query DL systems support is instantiation (is an individual
¢ an instance of a concept C'?), realisation (what are the most specific concepts: isan
instance of ?) and retrieval (which individuals are instances of C'?). The reason for this
weakness is that, in these expressive logics, all reasoning tasks are reduced to that of
determining KB satisfiability (consistency). In particular, instantiation is reduced to
KB (un)satisfiability by transforming the query into a negated assertion; however, this
technique cannot be used (directly) for queriesinvolving roles because these logics do
not support role negation.

For example, it can be inferred that John isan instance of Ani mal if and only if
the KB is not satisfiable when an axiom isadded to the Abox asserting that John isnot
aninstance of Ani mal (i.e, that John isan instance of the negation of Ani mal). Re-
alisation and retrieval can, in turn, be achieved through repeated application of instan-
tiation tests. However, this technique cannot be used (directly) to infer from the above
axioms that the pair (John, Bi | |) isan instance of the transitive role Br ot her , be-
cause these logics do not support role negation, i.e., it is not possible to assert that

101

6.1. INTRODUCTION 102

(John,Bi I |) isaninstance of the negation of Br ot her .

In this chapter we introduce a technique for answering such queries using a more
sophisticated reduction to KB satisfiability. We then show how this technique can be
extended to determine if an arbitrary tuple of individuals (i.e., not just a singleton or
pair) satisfies a digunction of conjunctions of concept and role membership assertions
that can contain both constants (i.e., individual names) and variables. This provides
a powerful query language, similar to the conjunctive queries typically supported by
relational databases,® that allows complex Abox structures (e.g., cyclical structures)
to be retrieved by using variables to enforce co-reference (see Chandra and Merlin
[1977]). For example, the query

{{z,y) | Iz((z,Bi | |):Parent A (z,z):Parent A
(z,y):Parent A (z,y):Hates)} (6.1)

would retrieve all the pairs of hostile siblingsin Bi | | ’sfamily.?

In our work we focus on answering boolean queries, i.e., determining if aquery is
true with respect to a KB. Retrieval can be easily (although inefficiently) turned into
a set of boolean queries for al candidate tuples. Note that in available systems, the
retrieval problem is similarly reduced to instantiation.® It is important to stress the
fact that, given the expressivity of DLs, query answering cannot simply be reduced to
model checking as in the database framework (we illustrate this point in Example 6.1
below). This is because KBs may contain nondeterminism and/or incompleteness,
making it infeasible to use an approach based on minimal models. In fact, query an-
swering in the DL setting requires the same reasoning machinery aslogical derivation.

Example 6.1
For using model checking technique for query answering we must be able to as-
sociate a “preferred” model to a given KBs, and this is quite difficult for arbitrary
DL KBs. Let us consider for example a simple KB containing the single axiom
El ephant C —-Mbuse, stating that elephants and mice are digoint, and the Abox
assertion hat hi :(El ephant L Mouse).

We can identify two minimal (w.r.t. inclusion) interpretations satisfying the KB:

1The work is inspired by the use of Abox reasoning to decide conjunctive query containment (see
Horrocks et al. [19994], Calvanese et al. [19984]).

°Note that a sound and complete KB satisfiability agorithm will guarantee sound and complete
guery answers.

3Apart from not very expressive DL languages (see for example Rousset [1999]).

6.2. CONJUNCTIVE QUERIESIN DL 103

in the first the element mapped from the individual hat hi isin the extension of the
concept El ephant , whilein the second it isin the extension of the concept Mouse.
Which of the two interpretations can be considered the “ preferred” one? The point is
that there is not any general mechanism for choosing one, even with thistrivial KB.

An important advantage with the technique presented hereisthat it is quite generic,
and can be used with any DL providing general inclusion axioms where instantiation
can be reduced to KB satisfiability. It could therefore be used to significantly increase
the utility of Abox reasoning in awide range of existing (and future) DL implementa-
tions.

6.2 ConjunctiveQueriesin DL

In this chapter we will focus on conjunctive queries only (i.e. queries containing only
conjunctions of terms), and the DL .ALC. This choice has been made for simplifying
the description of the underlying ideas. In the next chapter we are going to formally
present the technique for a wider range of queries and the more expressive DL SHf.

A key feature of conjunctive queries is that they may contain variables, and we
will assume the existence of a set of variablesthat is digoint from the set of individual
names. A conjunctive query is a formula 3x;...xx(¢1 A ... A gn), Where gy, ..., q,
are concept or role query terms. Concept and role terms are syntactically equal to
Abox assertions of the form z:C' or (z,y):R where C' is a concept, R is arole and
x,y are either individual names or variables.* A query formulagenerally contains free
variables which correspond to the tuple the query is meant to retrieve; these variables
are also caled distinguished. Queries without free variables are said to be boolean,
and the answer to these queriesis not a set of tuples but a true or false value.

In this chapter we are going to introduce the semantics of query answering in a
intuitive way; aformal definition will be presented in the next chapter. The semantics
relies on the the definition of interpretations for a DL: an interpretation Z satisfies a
query @ iff the interpretation function can be extended to the variablesin () in such a
way that Z satisfiesevery termin (). In addition, we require that free variablesin @) are
interpreted as element corresponding to individual names; this restriction ensure that
the set corresponding to a query answer contains only individual names. Using this
definition we can introduce the knowledge base into the framework: a query @ istrue

“We decided to avoid the more common notation C'(z) and R(x, y) becauseit is confusing when C
and R are complex concept and role expressions.

6.2. CONJUNCTIVE QUERIESIN DL 104

w.r.t. 3 (written X | Q) iff every interpretation that satisfies X also satisfies (). The
answer to a non-boolean query will be the set of tuples of individual names that, once
substituted to the distinguished variables, make the query true w.r.t. the knowledge
base. For example, the query

Q= (Bill,y):Parent A (y,z):Parent A z:Mal e (6.2)

istruew.r.t. aKB X iff it can be inferred from X that Bi | | has a grandson. Note that
query truth value and the idea of logical consequence are strictly related. In fact, a
boolean query istruew.r.t. aKB iff it isalogical consequence of the KB.

In the following, we will only consider how to answer boolean queries. Retrieving
sets of tuples can be achieved by repeated application of boolean queries with differ-
ent tuples of individual names substituted for variables. For example, the answer to
the retrieval query {(y,z) | Q} w.rt. aKB X is a set of tuples (a, b), where a, b are
individual names occurring in X2, such that ¥ = @’ for the boolean query " obtained
by substituting a, b for y, z in Q. Of course the naive evaluation of such a retrieva
could be prohibitively expensive, but would clearly be amenable to optimisation. For
example, let us consider the query (6.1) of the previous section. In many DLs the ex-
pressivity of the Abox for rolesis very limited: in ALC, for example, aKB impliesa
query termlike(z, Bi I |):Par ent , where the second argument is an individual name,
only if there is an explicit assertion of this form in the Abox. Therefore we may use
role assertions in the Abox to reduce the number of candidates among the individual
names.

We will show how to answer boolean queriesin two steps. Firstly, we will consider
conjunctions of terms containing only individual names appearing in the KB; secondly,
we will show how this basic technique can be extended to deal with variables. For
simplifying the notation, we represent the knowledge bases as a single set containing
both the Thox and Abox assertions (instead of a pair asin Chapter 2).

6.2.1 Querieswith multipleterms

In this section we will consider queries expressed as a conjunction of concept and
role terms built using only names appearing in the KB (i.e. without variables); e.g.,
TomSt udent or (Tom CS710):Enr ol | ed.

Aswe have aready seen, logical consequence can easily be reduced to aKB satis-
fiability problem if the query contains only a single concept term (thisis the standard

6.2. CONJUNCTIVE QUERIESIN DL 105

instantiation problem). For example, TomPer son isalogica consequence of the KB
{St udent C Per son, TomSt udent } iff the KB

{St udent C Per son, TomSt udent , Tom—Per son}

isnot satisfiable. Thiscan be generalised to queries containing conjunctions of concept
terms simply by transforming the query test into a set of (un)satisfiability problems: a
conjunction a;:C; A ... A a,:C, isalogica consequence of aKB iff each ¢;:C; isa
logical consequence of the KB.

However, this simple approach cannot be used in our case since a query may also
contain role terms. Instead, we will show how simple transformations can be used to
convert every role term into a concept term. We call this procedure rolling up a query.

Therationale behind rolling up can easily be understood by imagining the availabil-
ity of the DL one- of operator, which allows the construction of a concept containing
only a single named individual (see Schaerf [1994]). The standard notation for such
aconcept is { a }, where a is an individua name, and the semantics is given by the
equation { ¢ }* = {a”}. For example, the expression { Bi | | } represents a concept
containing only theindividua Bi I | (i.e, { Bi | | }I ={Bill*}).

Using the one- of constructor, the role term (John,Bi | |):Br ot her can be
transformed into the equivalent concept term John:(3Br ot her .{ Bi | | }). Further-
more, other concept terms asserting additional facts about the individual being rolled
up (Bi | I inthiscase) can be absorbed into the rolled up concept term. For example,
the conjunction

(John,Sal | y):Parent A Sal | y:Fermal e A Sal | y:PhD

can be transformed into John:3Par ent .({ Sal | y } M Feral e 1 PhD). The ab-
sorption transformation is not strictly necessary for queries without variables, but it
serves to reduce the number of satisfiability tests needed to answer the query (by re-
ducing the number of conjuncts), and it will be required with queries containing vari-
ables. By applying rolling up to each role term, an arbitrary query can be reduced to an
equivalent one which contains only concept terms, and which can be answered using a
set of satisfiability tests as described above.

However, the logic we are using does not include the one- of constructor, and
most of the state of the art DL systems do not provide the constructor (with the excep-
tion of thelatest version of the DL P reasoner, see Patel-Schneider [1998]). Fortunately,

6.2. CONJUNCTIVE QUERIESIN DL 106

we do not need the full expressivity of one- of , and in our case it can be “simulated’
without the need of adding new axioms (see Section 4.1.2). The technique used isto
substitute each occurrence of one- of with a new concept name not appearing in the
knowledge base. These new concept names must be different for each individual in
the query, and are called the representative concepts of the individuals (written P,,
where a is the individual name). In addition, assertions which ensure that each in-
dividual is an instance of its representative concept must be added to the knowledge
base (e.g., Bi | | :Pgj). In general, a representative concept cannot be used in place
of one- of because it can have instances other than the individual which it represents
(i.e, P," 2 {a”}). However, representative concepts can be used instead of one-

of in our reduced setting. In particular, the conjunction (a,b):R A b:C'is alogica
conseguence of a given knowledge base if and only if a:3R.(P, M C) isalogica con-
sequence of the very same knowledge base augmented by the assertion b: P,. Note
that the trick of using a concept as representative for an individual has been used in a
few other cases in the literature (see De Giacomo and Lenzerini [1996], Borgida and
Patel-Schneider [1994], Eraand Donini [1992]).

6.2.2 Querieswith variables

In this section we show how variables can be introduced in this framework by using
amore complex rolling up procedure in order to obtain a similar reduction to the KB
(un)satisfiability problem. Variables can be used exactly asindividual names, but their
meaning isas* place-holders’ for unknown elements of the domain. Because variables
may be interpreted as any element of the domain, they cannot simply be considered as
individual names to which the unique name assumption does not apply; nor can they
be treated as referring only to named individuals, giving the possibility of nondeter-
ministically substituting them with names in the KB. In fact the query

(Bi | | ,y):Parent A (y,z):Parent A z:Mal e (6.3)

istrue w.r.t. both the KBs

(Bi 'l ,Mary):Parent,
(Mary, Tom:Par ent , and {Bil | :3Parent.(3Parent .Mal e)},
TomMal e

6.2. CONJUNCTIVE QUERIESIN DL 107

but for the first KB the variables can be substituted by the individual names Mar y and
Tom while in the second case the variables may need to be interpreted as elements of
the domain that are not the interpretations of any named individuals.

Answering queries containing variables involves a more sophisticated rolling up
technique. For example, let us consider the terms (y, z):Par ent and z:Mal e of
query (6.3). If z were an individual name, then the terms could be rolled up as
y:JPar ent .(P, N Mal e), but this is not an equivalent query when z is a variable
name because = can be interpreted as any element of the domain, not just an element
of P,Z. However, since in this case z is no longer referred to in any other place in
the query, there is no other constraint on how an interpretation can be extended w.r.t.
z, S0 the concept T (whose interpretation is aways the whole domain) can be used
instead of P,. The resulting concept term is y:3Par ent .(T 1 Mal e), which can be
simplifiedto y:3Par ent .Mal e. The same procedure can now be applied to y, thereby
reducing query (6.3) to the single concept term Bi | | :3Par ent .(IPar ent .Mal e).

In order to show how this procedure can be more generally applied, it will be useful
to consider the directed graph induced by the query, i.e., a graph in which there is a
node x for each individual or variable x in the query, and an edge R from node = to
node y for each role term (x, y): R in the query. For instance, Query (6.3) corresponds
to the graph®

_ Par ent Par ent Mal e
Bill Y z

It is easy to see that the rolling up procedure can be used to eliminate variables from
any tree-shaped part of aquery by starting at the leaves and working back towards the
root (thisis similar to the notion of descriptive support described in Rousset [1999]).
The fact that rolling up should start from leaves is essential for correctness. for ex-
ample, rolling up query (6.3) in the reverse order would lead to the non-equivalent
Bi | | :9Parent . T Ay:3Parent.T A z:Mal e.

However, this simple procedure cannot be applied to parts of the query that contain
cycles, or where more than one edge enters a node corresponding to a variable (i.e.,
with termslike (x, z):R A (y, 2):5).

Let us consider the case where a variable is involved in a cycle, e.g., the simple

SMore details are provided in the next chapter.

6.2. CONJUNCTIVE QUERIESIN DL 108

query

(x,y):Path A (y, z Path/\ (z,z):Pat h (6.4

Path/ \Pat h

Pat h

which tests the KB for the presence of a particular type of loop involving the role
Pat h. Rolling up one of the terms does not help, because the resulting query

(x,y):Pat h A (y, z):Pat h A z:3Pat h.P,

Pat h Pat h
HPat h.P,

still contains another reference to the variable -, and replacing P, with T would result
in anon-equivaent query that no longer contained acycle. Moreover, it isobvious that
there isno way to roll up the query in order to obtain a single occurrence of any of the
three variables.

This problem can be solved by exploiting the tree model property of the logic.
Given this property, we know that Tbox assertions alone cannot constrain all mod-
els to be cyclical (if there is a model, then there is a tree model), so any cycle that
might satisfy a cyclical query must be explicitly asserted in the Abox. Moreover, given
the restricted expressivity of role assertions (i.e., that they apply only to atomic role
names), cycles enforced in every interpretation must be composed only of elements
interpreting individual names occurring in the knowledge base. Therefore, before ap-
plying the rolling up procedure, a variable occurring in a cycle should be substituted
by the individual names in the KB. This procedure generates a number of alternative
gueries corresponding to each individual in the KB. In the next chapter we will see
how they are handled. Theintuition behind this property can be understood by consid-
ering that, given an arbitrary interpretation satisfying the cycle only with elements not
corresponding to individual names, a new interpretation can be build where the cycle
is split by duplicating one or more of the involved elements. This new interpretation
can be defined in such a way that it still satisfies the KB, but no longer contains the

6.2. CONJUNCTIVE QUERIESIN DL 109

required cycle. This duplication can be performed only if the elements are not “fixed”
individual names and by assertions in the Abox. For example, if in the query (6.4) the
variable x is substituted by the individual name «a, then it can be transformed into the

query
(a,y)y:Pat h A (y, z):Pat h A z:(3Pat h.P,),

which no longer contains a cycle composed only of variables. Consequently, it can be
rolled up into the single concept term

a:dPat h.(3Pat h.(3Pat h.FP,))

where the concept P, is used to close the cycle.

For DLs which can enforce more restrictions on role structure (for example the
transitivity or hierarchy in S#f) the simple formulation of the tree model property is
not longer valid and a more involved definition must be adopted (see Chapter 3). This
fact complicates the basic algorithm we are sketching in this chapter as we show in
Chapter 7.

A similar argument can be used when variables appear as the second argument of
more than oneroleterm, e.g., thevariable z inthe query (z, z): RA (y, z):S. Such vari-
ables can also be dealt with by nondeterministically substituting them with individual
names occurring in the Abox.

We have seen how role terms containing variables can be rolled up into concept
terms, but these may still be of the form x:C', where x isavariable. For example, the
query (x,y):Par ent , where x and y are variables, can only be reduced to the single
term z:3Par ent . T. Inthiscase we need to verify that theinterpretation of the concept
dPar ent . T isnonempty in every interpretation that satisfies the KB. In general, the
interpretation of a concept C' is nonempty in every interpretation that satisfies the KB
Y iff adding the assertion T C —C' to X makesit unsatisfiable.

Summarising, the procedure for answering an arbitrary boolean conjunctive query
isdivided into two phases. Firstly, therole termsare eliminated by repeatedly applying
the following rules: (i) if the graph induced by the query contains a leaf node y, then
therole term (z, y): R isrolled up, and the edge (z, y) is removed from the graph; (ii)
otherwise, if the graph contains a node y with multiple incoming edges, then al role
terms (x, y): R arerolled up,® and the corresponding edges are removed from the graph;

8If y isavariable, then it isfirst replaced with an individual name chosen nondeterministically from
those occurring in the the KB.

6.2. CONJUNCTIVE QUERIESIN DL 110

(iii) if the graph still contains edges but no leaf nodes and no confluent nodes, then it
must contain acycle. Inthiscaseanodey inacycleischosen (preferably an individual
as this reduces nondeterminism) and rolled up as in case (ii) above. Secondly, the
query (which now contains only concept terms) evaluates to true iff there is at least
one nondeterministic replacement of variables with individual names such that every
term isalogical consequence of the KB.

6.2.3 Extending theframework

In the previous sections we sketched the very basic idea of the query answering al-
gorithm. This intuitive procedure cannot be applied straight away to the S#f logic
we are considering. In fact, role hierarchy and transitivity complicate the structure of
interpretations (see Chapter 3). In addition, the presence of potential cyclesintroduces
implicit disjunctions which we have not yet shown how to handle.

We need to add a further note about the one- of constructor (or the so called
nominals in the Modal Logic community). From Section 6.2.1 the reader may have
drawn the erroneous conclusion that this constructor can be used to represent variables
aswell asindividual names. Thisisfase, and providing alogic with one- of would
not eliminate the creation of alternative queries in presence of cycles as described in
Section 6.2.2. The reason for this is that, even though both variables and one- of
represent a single element in the interpretation, the name of the individual inthe one-
of ismorerestrictive than the name of avariable.

Let us consider for example the query 3z, y((z,y):R A (z,y):S). We may be
tempted to use the one- of constructor for representing the joining variable y by in-
troducing a new individual name o, and “rolling up” as in Section 6.2.1, giving the
new query Jz(z:(3R.{ o, }) A z:(3S{ 0, })). The semantics of the new query is
completely different from the original one, because it is satisfied by an interpretation
only if the interpretation function maps o,, to the appropriate element.” On the other
hand, if the actual name o,, does not appear in the knowledge base, the element mapped
from o, by an interpretation function is arbitrary. Therefore, there is always at least
an interpretation where o, is mapped to a “wrong” element. This means that the new
query would be never satisfied, even if the original one would be.®

"Le. if the interpretation is Z, satisfying the condition that (i, 0%) € R* and (i,0%,) € S” for some
i€ AT,
8The query must be satisfied in every interpretation satisfying the KB.

6.3. RELATION WITH OTHER WORKS 111

6.3 Reéation with other works

In the DL community soundness and completeness of reasoning services are consid-
ered essential; therefore we consider only approaches which satisfy this requirement.
This assumption excludes for example the work done with Loom which provides a
first order query language with an incomplete algorithm (see MacGregor and Brill
[1992]).

Aswe mentioned early on, our work on conjunctive query answering has been in-
spired by the application of Abox reasoning for solving the problem of query contain-
ment under constraints (see Horrocks et al. [2000a] and Calvanese et al. [1998a)]). The
similarity between the two problems comes from the fact that the query containment
problem can be reformulated into a query answering problem. The trick, well known
in the database community (see Chandra and Merlin [1977]), consistsin transforming
the less general query into a database by considering the variables as constants. |f
querying this simple database with the more general query provides an answer, then
the inclusion is verified. This simple technique can be generalised to the case where
the valid databases are restricted by a DL based constraint language (see Calvanese
et a. [1998a]). The query containment problem is reduced to query answering in the
DL setting where the constraints are transformed into the terminology.

The relation between the two problemsis also exploited in Calvanese et al. [2000].
In their framework the query answering problem is reduced to satisfiability of Con-
verse PDL formulae (see Chapter 4). Their technique is very similar to the one we
are presenting, in fact we have been inspired by their work, particularly the idea of
representing a query as agraph and using a“rolling-up” technique.

Thedifferencelieson the underlying DL they use and the scope of their work. They
rely heavily on Converse PDL logic for the transformation, therefore their approach is
only applicableto systems providing a Converse PDL reasoner. In contrast, we want to
present a general technique which is applicable to awide range of DL systemswith a
minimum effort. For this reason, for example, we develop a mechanism for simulating
the inverse role constructor which is provided by Converse PDL but not implemented
in most of the available DL reasoners.

Even if Converse PDL is, for most aspects, more expressive than the logic SHf
we are focusing on, the presence of transitivity and functional restrictions as well as
role hierarchy in SHf makes the structure of its interpretations more convoluted (see
Chapter 3). This complexity is reflected on the query answering algorithm, as shown
in the next chapter.

6.3. RELATION WITH OTHER WORKS 112

The problem of enhancing the query language for Abox KBs has also been attacked
in the context of the system CARIN (see Levy and Rousset [1996a]). This DL based
system integrates a DL with a query language which is essentially (recursive) Datal og.
Their combination provides avery powerful query language which subsumes conjunc-
tive queries;® however, its applicability is limited by the fact that combining recursive
Datal og with an expressive DL |eads to undecidability (see Levy and Rousset [1996bh]).
In addition, the technique for query answering uses an ad hoc algorithm which is not
easily portable across different DL reasoners.

Onthesametrack asthe CARIN approach, aproposal has been made to use backward-
chaining for evaluating conjunctive queries based on query expansion (see Rousset
[1999]). The problem with this approach is the extreme restriction on the expressive-
ness of the DL language (ALN with empty terminologies). The advantage of this
technique is that the query answer is built bottom-up, leading to much better perfor-
mance. The downsideisthat the the procedure relies on the fact that the underlying DL
has the property of having some sort of “minimal model” against which the query can
be evaluated. Assoon that the DL expressivity isenriched by constructors enabling the
representation of digunctive information the underpinning idea behind the technique
cannot no longer be applied.

In the next chapter we give a formal description of the technique outlined in this
chapter. Formal proofs are provided for supporting the correctness and completeness
of the described technique.

9Using non—recursive Datalog yields to a language which is essentially equivalent to the one pre-
sented in Calvanese et al. [2000].

Chapter 7

Answering conjunctive gueriesin SHf

7.1 Query language

The query language we consider is an adaptation of the basic conjunctive query lan-
guage as defined in the database setting (see Abiteboul et al. [1995], Chandra and
Merlin[1977]). The main differencein the DL caseliesinthefact that in DL there are
only relations of arity one (concepts) or two (roles). Individual names can be viewed
as the constants in the database case.

In the following we adopt the same notation as the one for the conjunctive calculus
as described in [Abiteboul et al., 1995, section 4.2].

7.1.1 Syntax

Definition 7.1. Let CL be the set of valid concept expressions build over aset CN of
atomic concept names, and a set RN of role names. We assume a set O of individual
names, and adistinct set V of variables. Theset QL(CL) of conjunctive formulae over
CL isthe set of all formulae defined by the following abstract syntax:

o o:C|(x,y)yRiMN...MR, |z =0|x=1y|
1A @y | 1V pa | T

where C' is a concept expression in CL, Ry, ..., R, are role namesin RN, o isan
individual namein O), and z, y are variable namesin V.

The atomic formulae of the form z:C, (z,y):Ry M ...MR,, x = o, and z =
y are caled terms. We distinguish the terms into concept terms (z:C'), role terms

113

7.1. QUERY LANGUAGE 114

({(z,y):R; M ...MR,), and equality terms.

Given a formula of QL(CL) we use the natural definition of free variables as
those not bound by an existential quantifier. We indicate the set of free variables of
a given formula ¢ as free(y). For the sake of simplicity we introduce the notation
dr125 . .. 2, @S equivaent to the formula 3z, (Fza(. .. (Fz,p) .. .)).

Given the conjunctive set of formulae QL(CL) we define a query as a formula
containing free variables. Intuitively, the free variables correspond to the “results’ of
the query. We distinguish a special form of query when the formula does not contain
any free variable.

Definition 7.2. A conjunctive query over aDL CL isan expression

{z1,...,2, | p}

where ¢ is a conjunctive formula (¢ € QL(CL)), and z4,...,x, are caled dis-
tinguished variables and are exactly the free variable names of ¢ ({z1,...,2z,} =
free(¢)). Among the conjunctive querieswe distinguish the bool ean conjunctive queries
as those without free variables.

7.1.2 Semantics

The semantics of the conjunctive formulae is given in the same way as for the DL by
means of interpretations composed by a domain and an interpretation function (see
Chapter 2).

Definition 7.3. Let Z = (A, -¥) be an interpretation over the set of individual names
O, role names RA/, and concept names CN. Given aformulay € QL(CL), and a
mapping ¢ from the names in free(y) to the domain A, we say that the interpretation
Z models p w.r.t. ¢ (Z =, @) when:

T E=y xC iff (z) € CT

Ty (ry):Rin . 0R, iff (V(z),v(y) € RA'N...NR,"
ITkEpr=o0 iff ¢(z) = o”

Ikpyz=y iff o (2) = ¥(y)

Ty o1 Ao iff Z =y o1 andZ =y ¢

Ty o1V iff Z =y o1 0rZ =y o

T =y Jzp iff thereise € AT st. o' = z/e]andZ |y ¢

7.2. COMPLETENESSOF QUASI TRANSITIVE SHRUB INTERPRETATIONS115

Where the notation [z /e] represents the mapping ¢ extended by the pair (z,e) if
x is not in the domain of ¢, otherwise the original value for z is replaced by e (i.e.
Ylz/e] = {(x,e)} U{(y,€) € ¥ |y # x}). With the smplified notation Jz;. ..z, e,
wesay that 7 k=, Jx,25 ... 2,y iff thereis an extension ¢’ of ¢ with a mapping for
al thevariablenames x4, . . ., z,, suchthat Z =y ¢.

When there is at least a mapping > such that Z =, ¢, then the interpretation Z
models .

We can use the above defined semantics for specifying the meaning of answering
aquery w.r.t. a given knowledge base .. We start from boolean queries; then we are
going to extend the definition to general queries.

Definition 7.4. Let X beaDL knowledge base, and ¢ aconjunctiveformulain QL(CL)
without free variables. We say that 3 answers (implies) ¢ (writtenas ¥ = o) iff any
interpretation satisfying > models ¢: i.e. for any interpretation Z, Z = X implies
T = .

The definition of logical implication for boolean queries provides the basis for
the formal semantics of query answering. Analogously to the database setting, the
answer to aquery isaset of tuples of individual names (see Reiter [1984]). Each tuple
corresponds to an instantiation of the conjunctive query into a boolean query where
the free variables are bound to the corresponding namesin the tuple. In other words, a
tuple (o4, ..., 0,) belongs to the answer of the query {z1,...,z, | ¢} w.rt. thekb X
iff o ...ap(ti =01 A Az =0, A).

It is obvious from the definition that query answering can be reduced to logical im-
plication by repeated application of boolean queries with different tuples of individual
names substituted for variables. Of course the naive evaluation of such aretrieval could
be prohibitively expensive, but would clearly be amenable to optimisation (see Sec-
tion 7.5 for more details). However, from now on we concentrate on boolean queries
by showing how to decide if a query formulawithout free variablesis alogical impli-
cation of a given knowledge base.

7.2 Completeness of quas transitive shrub interpreta-
tions

As anticipated in Section 6.2.2 we need to show that cycles can be enforced only by
means of Abox assertions (see Proposition 7.15 and Proposition 7.16). For this purpose

7.2. COMPLETENESSOF QUASI TRANSITIVE SHRUB INTERPRETATIONS116

we are going to use a result of completeness similar to the one aready presented in
Chapter 3. Canonical transitive shrub interpretations providesaformal characterisation
of this “tree-like” structure of the parts of an interpretation which are not constrained
by Abox assertions.

Note that we cannot just reuse the completeness result presented in Section 3.13
because the problem of logical implication is different from the one of kb satisfiability.
In many logics these two problems can be trivially reduced to each other (for example
using negation), but in our case the fact that the query language is different from the
assertional language prevents us from taking this simple shortcut.

Our goal isto show that for providing the evidence that a given knowledge base im-
plies aformula, we do not need to consider any arbitrary interpretation but only quas
transitive shrubs. For this purpose we are going to use the very same transformation
for interpretations defined in Section 3.2.1.

Theorem 7.5. Let X be a SHf knowledge base, and ¢ a conjunctive formula in
QL(CL) without free variables. Then ¥ = ¢ iff ¥ = ¢ wir.t. canonical quasi transi-
tive shrub interpretations.

Proof. The “only if” direction istrivial because quas transitive shrub interpretations
are interpretations as well.

For the “if” direction let us assume that > = ¢ w.r.t. canonical quasi transitive
shrub interpretations. Let Z = (A, -7) be an arbitrary interpretation satisfying ¥ (i.e.
7 = Y); we have to show that Z models ¢ as well (Definition 7.3).

Let Z+ = (AZ",.T") be the transitive closure of the unravelled interpretation of
Z; in addition, the mapping & maps elements of AZ" to A (See Definition 3.7 and
Definition 3.8). Since we assumed that > = ¢ w.r.t. canonical quasi transitive shrub
interpretations, then 7+ models ¢ (f* isacanonical quas transitive interpretation by
Proposition 3.11).

Let ¢) be an arbitrary mapping ¢ : V — AZ": the mapping ' is a mapping from
V to A defined by ¢' = {(v,d(u)) | (v,u) € ¥}. We are going to show by induction
on the structure of the formula o that if Z+ =y e thenZ =y ¢. Notethat since Z
satisfies T, then Z+ satisfies the properties in Proposition 3.9 (see Proposition 3.10).

First let us consider the basic cases.

z:C I+ =y z:C thenyy(z) € CT7, and ¢/ (z) = 6(xp(x)) € CZ by (3.9d); therefore
I):w/ IC

7.3. ANSWERING BOOLEAN QUERIES 117

(x,y)y:RyM...NMR, If 7+ =y (T, y)y:Ri M. N R, then (¢Y(z),¢¥(y)) € R? for
P= 1, mand (o), (5) = (3(6(2)), 5(6(y)) € BE by (396); therefore
TEy (x,y):RiN...MR,.

r=0lfTt £, z = otheny(z) = of ", and ¢/(z) = 5(1b(x)) = oF by (3.9a);
thereforeZ =, = = o.

v=y 1T+ 2y o = ytheny(z) = y(y), and ' () = §(¥(z)) = 5(P(y)) = ¥/ (y);
thereforeZ =, = = v.

Asinductive hypothesis|et us assumethat, for an arbitrary mappingw : V — AT,
if 7+ F. ¢ thenZ =, ¢ (and the same holds for ¢4, ¢5). We are going to show that
the very same property holds for the formulae o1 A ¢, 1 V @9, and Jzp.

01 Ao IFTH =y 1 A o then I+ =y 1 and I+ =y 2. By inductive hypothesis
T =y prandT =y o) thereforeZ =y o1 A o

Y1V pa |f:/Z\'+):w 1V thean’):w ©1 orfJ’):w V9. |f.,/Z\'+):w ©1 thenZ):W ©1
by inductive hypothesis; therefore Z |=, ¢ V ¢,. Analogously, we come to the
very same result if we assume that Z+ =y @2

o IFTF =y 3z thereisan element v of AT" suchthat 7+ E. ewithw = o[z /u].
For the inductive hypothesisZ =, ¢, wherew' = {(v,0(u)) | (v,u) € w}.
It is easy to show that w' = ¢'[x/§(u)]: if (v,e) € ', then either v = z and
e = 0(u), therefore (v, e) € ¢'[x/0(u)]; of (v,w) € w withd(w) = e, therefore
(v,e) € Y'[xz/6(u)] because w = [z/u]. Analogusly, it can be shown that if
(v,e) € Y'[x/d(u)] then (v,e) € W'
Thismeansthat Z = (,/50u) ¥, therefore T =y Iz

By Definition 7.3 thereisamapping ¢ : V — AT* such that 7+ =y ¢. Wejust
shown that thereisamapping ' : V — A suchthat Z =, ¢. ThereforefromZ = ¢
for the arbitrariness of Z we can conclude that X = . O

7.3 Answering boolean queries

We are going to present a technique which enables us to decide whether a query for-
mula without free variables is logical consequence of a given knowledge base. Our

7.3. ANSWERING BOOLEAN QUERIES 118

algorithm cannot answer arbitrary query formulae but only a restricted class repre-
sentable in anormal form we are going to define. This normal form is general enough
for answering the kind of querieswe are focusing on: conjunctive queries and disjunc-
tions of conjunctive queries.

First we are going to present the normal form, then we show how connected and
unconnected conjunctive queries can be verified by using the normal form.! Finally,
we show how disunctions of conjunctive queries can be verified by a slightly more
sophisticated reduction to the normal form.

7.3.1 Query normal form

We consider a digunctive normal form
z(Fz101 V...V ITh0,) (7.2)

where each ; is a conjunction of terms of the form of =:C, (x,y):R1 M ...M R,
x =oandxz =y (i.e. it does not contain any digunction or existential quantification).
In addition, we require that its free variables are exactly 7; and z, and all the variables
in each ; are connected. As the normal form suggests, we differentiate a special
variable z whose purpose is “joining” all the different diguncts, which otherwise do
not share any variable.

It iseasy to realise that thisnormal form isnot general enough to cover al thevalid
query formulae as described in Section 7.1.1. The simple formula 3zy({x,y):R V
(x,y):S) for example cannot be transformed into the normal form. However, conjunc-
tive queries (i.e. not containing any disunction) or digunctions of conjunctive queries
(not sharing any variable) can be transformed into the normal form by renaming of
variables.?

The reduction to boolean queries shown in Section 7.1.2 can generate queries that
apparently cannot be transformed inthe normal form; e.g. thequery {x1, x| ¢1 V @2},
once instantiated into a boolean query, becomes 3z 2 (x1 = 01 Axa = 03 A (1 V 2)
for some individual names o, and o,. However, variables being identified with an indi-
vidual name can be distributed among the digjuncts without altering the semantics, be-
cause the uniqueness of theindividual name ensuresthat they will beidentified with the

LIntuitively, being connected meansthat there is a path constituted by the role terms connecting each
pair of variables (we provide amore formal definition at the end of next section).

2Actually the transformation is a little more involved in the case of non connected or disjunctive
queries, as described in the next sections.

7.3. ANSWERING BOOLEAN QUERIES 119

same element of the domain. Therefore the formulain the example can be transformed
into the equivalent 3z x5 (21 = 01 A xa = 03 A1) V Jx129(11 = 01 A T2 = 03 A 3),
which isadisunction of conjunctive queries.

For a better explanation of the algorithm we use an alternative equivalent represen-
tation of the formula (7.1) by using a set of sets of query terms. The idea behind this
aternative representation is that since all the variables are existentially quantified we
do not really need to specify the quantification operator for binding a variable name.
Therefore we drop the quantification at the beginning of each ¢; and we use the set
of termsin it instead of the formulaitself; i.e. the formula3z(3z7¢; V ... V IT,0,)
is represented by {¢1,...,¢,}|., where ¢, is the set of al the conjunctsin ¢;. The
notation {. ..} |, specifiesthat = isthe specia variable joining the diguncts.

Given the one-to-one mapping between the set and explicit forms of the query for-
mula, we use the same notation for describing the notion that an interpretation models
aformula (see Definition 7.3). Given the formula {¢,,. .., ¢,} |. we say that an in-
terpretation Z models the formulaw.r.t amapping ¢ (Z =y {¢1,- .., ¢n}|.) iff there
is an element (digunct) ¢; such that the domain of v includes al the variablesin ¢,
and for each term ¢ in ¢;, 7 |=,, t. It is easy to see that, for the class of queries rep-
resentable in the given normal form, the two notions of model for a formula coincide.
To simplify the notation, when there is no ambiguity we are going to write formulae
having asingle element (digunct) inthetheformZ =, ¢ instead of Z =, {¢} |..

The set representation enables us to provide aformal definition of the property of
connectedness for a formula. First we introduce the notion of a path connecting two
variables.

Definition 7.6. A path connects two variables and it is defined in the following recur-
siveway:

e theset {(x,y):R; M...M R,} isapath connecting = to y;

e if the set ¢ isapath connecting = to y, the set ' isapath connecting y to z, and
© N ' isempty, then ¢ U ¢’ isapath connecting z to z;3

e if pisapathfrom x to y, then it isapath connecting y to = aswell.

A cycleis apath connecting avariable to itself. A set of terms contains a path (cycle)
if asubset of itisapath (cycle).

3We require the digjointness of the two paths because we want to prevent cases like p = ¢’ =
{{z,y):R} from being wrongly classified as paths starting and ending with the same variable.

7.3. ANSWERING BOOLEAN QUERIES 120

By using the previous definition we can now provide a formal characterisation of
a connected formula. A query formula in the normal form is connected iff in every
element (digunct) there is a path between any pair of variables.

7.3.2 Conjunctive queries

Since nested existential quantifiers can easily be prepended to the formulaby renaming
of the variables, a connected conjunctive boolean query is trivially in query normal
containing a single element. In this section we consider boolean queriesin the form

Elxl(l). . .ajm(l)(p(l) VAN Elajl(k). R o (k)go(k),

where the formulae oV, ..., ¢*) are connected and do not contain any existential
quantifier nor digunctions. Without loss of generality we can assume that all the vari-
able names are distinct in each formula.

It isintuitively the fact that, since formulae do not interact one to each other, such
queries may be answered by considering oneformulaat atime. Thisisindeed the case,
and we are going to show it formally in the following paragraphs.

Since we can prove a more general result about unconnected conjunction, which
will be used in the next section, we are going to relax the constraint on the form of the
query. Let us consider the query answering problem

Y3 W 2, VWA AT B g, B R, (%)

k

where there is not any restriction on the form of oM, .. ., %) other than the fact that
they do not share any free variables. We are going to show that the query answering
problem (x) is verified iff © = 32,@. . .2, @ for eachi = 1,..., k. The uncon-
nected conjunctive queries we are considering in this section are a particular case of

Sincethe“only if” direction (i.e. =) istrivially satisfied by definition, we are going
to concentrate on the other direction. Let us assumethat the variable names are distinct
in each formula32,@. . .z, D@ and ¥ | 32,9, . .z, DO foreachi = 1,.. ., k.
Let Z be an arbitrary interpretation satisfying 3 (Z | X); we have to show that 7
models the query formulain (x) aswell.

Since ¥ E 32,9, . .1, D foreachi = 1,...,k, then T |= 32,@. . .2, Dpl;
therefore there are k mappings 1, . . ., ¢y, for the variable names such that Z =, (®.

7.3. ANSWERING BOOLEAN QUERIES 121

Let us consider the formula

1)

AR O L

2, Wz, B (DAL A®)

which isequivalent to the original query formulain (x), because the variable names are
distinct. Since the variable names are distinct, making the union of the mappings does
not alter the variables relevant for each single formula ¢¥; therefore, the mapping
Y =P U. ..Uy issuchthat Z models (™M A ... Ap®)) w.r.t. ¢. Therefore Z models
the query formulain (x) aswell.

7.3.3 Digunction of conjunctive queries

The last class of queries we consider is the digunction of conjunctive queries. In this
class, the query formulais a diguntion of formulae like ¢, V ... V ¢,, where each ¢,
isintheform

Ja, .. .xnl(l)gp(l) Ao ATz, B k)

k

and the formulae ¢, .. ., »*) are conjunctive queries; i.e. do not contain any ex-
istential quantifier nor digunctions. A digunctive query answering problem can be
formulated as

Y):(@171/\.../\%717”1)
V...

V (ki A A k)

where each ¢; ; is a connected conjunctive formula. We can assume without loss
of generdlity that al the existential quantifiers appear at the beginning of each sub-
formula ¢; ;. First the query formulais transformed into the conjunctive normal form
by using the distributive property of boolean constructors (i.e. (A A B) V C'isequive
lentto (AV C) A (B V C)). Inthisway we obtain an equivalent query formula where
the conjunctions appear at the top level, like

by): (‘pl,l(l,l) V...V (pkal(l,k))
AL (%)

A\ (gol,l(m) V...V gokal(r,k'))'

7.3. ANSWERING BOOLEAN QUERIES 122

By using the result shown in Section 7.3.2 we can consider each conjunct (gpl,l(m \Y%
LV %,l(i,k)) independently from the rest of the formula. Therefore, we need to show
how to answer to a query in the form

YE@ V...V

where ¢4, . . ., p are connected conjunctive formulae. Theformulap; Vv ...V ¢, has
a close resemblance with the query normal form described in Section 7.3.1. What is
missing isacommon “joining” variable connecting the diguncts (i.e. the variable z in
Formula(7.1)).

Theideaisto transform the query into the normal form by choosing arbitrarily one
variable from each digunct and “promoting” it as the joining variable name. In the
next Proposition we are going to show that this approach is indeed correct and allows
us to solve the query answering problem.

Proposition 7.7. Let > be a knowledge baseand 3z,¢; V...V 2,0, aquery formula
such that 9z, ¢4, . . ., 32, are connected conjunctive query formulae not containing
the variable name z; then ¥ = 32191 V... V 3z, Iff & = J2(pi[21/2] V...V

orl2r/2]).*

Proof. Let usassumethat ¥ = 3211 V ...V Jz,p, and let 7 be an interpretation
satisfying ¥. By assumptionZ = 3zy¢1 V ... V Jz,py; therefore there is a mapping
Y suchthat 7 k=, 21401 V ...V 3z,¢,. By definition there is one of the disunct
Jzpp such that 7 |=y Jzppp; therefore T =, ¢y, Where o' = 1)[z,/e] for some
e € AT, Let " be amapping such that ¢ = v[2/v'(z)]. The mapping ¢" satisfies
T =y pilze/ 2] because ¢, doesnot contain thevariable z, SOZ =y (¢1]21/2] V...V
vrlz1/7]), therefore I =y 3z(p1[21/2] V ... V wilzi/2]) by definition. This means
that Z = 3z(p1[21/2] V... V vi|zk/2]). By the arbitrariness of the choice of Z we can
concludethat X |= 3z (1 [21/2] V... V @rlzr/2]).

For the other direction, let us assume that ¥ = 3z(p1[z1/2] V ... V prlzr/2]),
and Z be an interpretation satisfying >. By assumption there is a mapping v such
that 7 =y J2(p1[21/2] V... V @i[2/2]); therefore there is a digunct ¢,[z,/z] and
amapping ¢’ = ¢[z/e], for somee € AT, suchthat 7T =y ¢4fze/2]. Let " be a
new mapping such that)" = [z, /1'(z)]. Since z, is not appearing as a free variable
in polze/2], then Z =y (olze/2])[2/ 2. In addition, since z is not appearing in ¢y,

4The formula [z /y] indicates the formulay in which all the free occurrences of the variable z, =
itself is substituted by y.

7.4. ANSWERING QUERIESIN NORMAL FORM 123

(welze/2))[2/ 2] = e O L =y 3z, (the only differences between +» and ¢ are the
mapping of variables z and z;). ThereforeZ =, 3z1¢1 V...V 3z, and consequently
7 = 3z101 V...V 32,0, By the arbitrariness of the choice of Z we can conclude that
Y E3Jzp V...V 3zepk. O

7.4 Answering queriesin normal form

In this section we describe the actual algorithm for answering queries in the normal
form described in Section 7.3.1. The algorithm is described in terms of a set of non-
deterministic rules which transform the initial implication by modifying the query for-
mulae and possibly the KB on the left hand side. The goal of the rulesis producing an
implication test of theform ¥ = 3z(z:Cy U ... U 2:C,,); when such aform is reached
the rules are no longer applied. Such a simple implication can be verified by checking
whether the knowledge base ¥, extended withtheaxiom {T C (=C; M ... 1 =C,)} is
unsatisfiable. In fact, the formula 3z(z:C) isimplied by the KB X iff in every inter-
pretation satisfying X the extension of the concept C' is non-empty. We can rephrase
the question by verifying whether there is an interpretation in which the extension is
empty (i.e. the negation of the concept itself is equal to the whole domain).

We require that the algorithm is correct, complete, and terminating. We are going
to build these transformation rules according to these requirements. In the next sections
we prove that thisis actually the case.

7.4.1 Query transformation rules

Rulestransform query problemsof theform X = {¢4, ..., ¢, } |. into“simpler” prob-
lems of the sameform. An element ¢; isselected such that it matches the preconditions
of one or more rules. One of the matching rulesis selected according to a strategy, and
the query is transformed as described in the rule. The procedure is repeated until no
elements of the query formula satisfy the preconditions of any rule. At this point the
resulting query formulawill be of the form

{{z:C1}, ..., {zCL}} .

which is eguivalent to the formula3z(z:Cy U ... U C),).

SSimpler in the sense that the query after the application of a rule is closer to the target formula

{{z:C1}, ..., {zCh}} ..

7.4. ANSWERING QUERIESIN NORMAL FORM 124

In general, rules substitute the element (digunct) satisfying the precondition with
anew digunct, and possibly they modify the KB ¥ in the left hand side:

DS (o ¢1 . ,{}gs.,;_;}|z

In some cases, the selected element ¢ may be substituted by more than one elements
..., ¢ but since this transformation is performed by the last two rules only, we
maintain the ssimpler single element substitution for the rest of the rules.

Before presenting the rules we need to introduce some notation which is going to
simplify the following exposition. As introduced in Chapter 6, we are considering
knowledge bases as sets of Thox and Abox assertions instead of a pair of sets. This
simplifiesthe notation, when new axioms are added to the KB (see nominal elimination
rule).

A further simplification is made to the role syntax in the role terms, which are
represented in a set like notation instead of aconjunction; i.e. the expression R 1. . .71
R, isrepresented by M{Ry,..., R,}. In cases where the actua elements of the sets
are not used, the set will be indicated by a calligraphic character like R or S; i.e. the
conjunction isMR (see for exampletherole collapsing rule).

New concept names are introduced in some of the rules; we assume that these new
names do not appear in the knowledge base to which the rule is applied. Some of these
new names are uniquely associated to individual names and are called representative
concepts, they are denoted as P,, where o is the associated individual name (see the
nominal elimination rule for an example). It isimportant to note that the representative
concepts are unique w.r.t. each individual name. Therefore, if the assertion o:P, is
aready in X, then the knowledge base 3’ = ¥ U {o: P, } is not modified. New concept
names, different from the representative concept, can be introduced by appropriate
rules (e.g. the simple inverse rolling up rule); they are unique w.r.t. the actual rule
application.

Finally, in some of the rules the presence a concept term of the form y:C' may be
required among the other conditions (e.g. the rolling up ones). If such term isnot in
the formula, we assume an implicit y: T (see the simplerolling up rule).

7.4. ANSWERING QUERIESIN NORMAL FORM 125

The ordering in which the rules are presented is not arbitrary, since the strategy
for their application gives the precedence according to this order. This assumption is
essential for some of the proofs we are going to show.

1. Equality eimination: if {xr =y} C ¢ (or {y =z} C ¢), x,y are variable
names, x # z, and ¢[x/y] indicates the set ¢ in which al the variables = are
substituted by y; then

Iy
¢ = olz/y]\ {y =y}

Note that y = y isused because = has been substituted by y in ¢[x/y].

2. Conjunction dimination: if {x:C}, z:Cy} C ¢, then
=X
¢ ={x:(CrNC}YU (¢ \ {:Cy, 2:C5}).
3. Rolecollapsing: if {(z1,z2):MR, (x1,x9):MS} C ¢ then

=X
¢ = {{x1,z2):N(RUS)}
U (o \ {{z1,22):MR, (x1,29):NS}).

4. Contradiction elimination: if {x = 01,2 = 02} C ¢, and o, is different from
0, then

=3
¢ ={z1}.

5. Nominal eimination: if {z = o} C ¢ andthereisnoterm of theform (z,, z9):MR
in ¢; then

S =Y U{o:P}
¢ ={zP} U (p\ {2z =0})

Where P, isthe representative concept name associated to the individual o.

7.4. ANSWERING QUERIESIN NORMAL FORM 126

6. Roleeimination: if {(xy,z9):M{Ry,...,R,}} C ¢, n > 1, and there are two
indexes/, j st. R; =< Ry; then

=X
¢' = {(z1, 22)N({ Ry, ..., B} \ {Re})}
U (o \ {{(z1,20):N{Ry,...,R}}).

7. Shortcut dimination: If

{zg, 21): MRy, ..., (Tp 1, Tn): MRy, (T, xp):M{ Ry, ..., R }} C 0,

andthereisanindex ¢ < k and atransitiverole S suchthat S < R,, andin every
set of rolesR;, thereisat least arole S; such that S; < S; then

Y =3

(o, 2y ({ Ry, ..., RI\{RDY ifk>1,0r
¢ = U (o \ {{zo, zn): M { Ry, ..., Ri}})

o\ {(wo,): Ry } if k= 1.

8. Simpleroalling up: if {{z,y):R,y:C} C ¢,y # 2,° and ¢ does not contain any
other term involving y; then

Y=
¢ = {z:3R.C} U (¢ \ {(z,y):R,y:C}).

9. Simple inverse rolling up: if {{(y,z):R,y:C} C ¢, y # z, and ¢ does not
contain any other term involving y; then

Y = XU {C CVR.Py ¢}
¢ ={x:Pr-c} U (o \ {{y,z):R,y:C}).

Where Px- isanew concept name not appearing in 3.

10. Functional rolling up: if {(z,y):N{Ry,...,R.},y:C} C ¢, n > 1,y # z,

5We are going to use the symbol =, instead of =, to denote syntactic equivalence for avoiding
confusion with the use of = in query terms (see section 7.1.1).

7.4. ANSWERING QUERIESIN NORMAL FORM 127

11.

12.

13.

thereisalabel L st. {Ry,...,R,} C L,” and ¢ does not contain any other term
involving y; then

=3
¢ ={z:(3R,.C M 3IR,. T N...M3R,.T)}
U o\ {{z,y):N{Ry,...,R.},y:C}).

Functional inverse rolling up: if {(y,z):N{Ry,...,R,},y:C} C ¢, n > 1,
y # z, thereisalabel L st. {Ry,...,R,} C L, and ¢ does not contain any
other term involving y; then

=X
¢ ={y:(CM3IR,. TN...M3R,.T),{y,z):R1}
U (o \{{y,)" {Ri,..., R}, y:C}).

Nominal rolling up: if {y = o, (z,y):"{Ry,..., R, },y:C} C ¢,y # z,and ¢
does not contain any other term involving y; then
Y =YU{o:P,}
¢ ={z:(3R,.(CN P,)MN3R,.P,MN...MN3R,.P,)}
U (d) \ {y =0, <.’L‘, y>|_| {R17) Rn}7 yC})

Where P, isthe representative concept name associated to the individual o.

Nominal inverserolling up: if {y = o, (y,z):N{Ry,..., R, },y:C} C ¢,y #
z, and ¢ does not contain any other term involving y; then

¥ =¥ U {0, (CNP,) C(VR.Pp,—,M...NMVYR,. P -,)}
¢ = {x:(Pley M...m PRn’y)}
U@\ {y=o,(y,z):N{Ry,...,R,},y:C}).

Where P, is the representative concept hame associated to the individua o, and
Pr~ys - .-, Pg, -, aenew concept names not appearing in .

"The set of labels of agiven KB are defined in Definition 3.4.

7.4. ANSWERING QUERIESIN NORMAL FORM 128

14. Cyclebreaking: if {y = o, (x,y):N{Ry,...,R,}} C ¢,andin

@O\ (=, y):M{ Ry, ..., Bu}})

thereisapath from z to y (see Definition 7.6), or = = y; then

Y=Y U{o:P,}
¢ = {z:(3R,.P,MN...MN3R,.P,)}
U\ {{z, y):N{Ry,..., Ru}}).

Where P, isthe representative concept name associated to the individual o.

15. Simple cycle breaking: if {y = o, (z,y):N{Ry,...,R,}} C ¢, and n > 1,
then

Y =XYU{o:P,}
¢ = {{z,y):Ry,x:(3R,.P, 1 ...MN3R,.P,)}
U(o\ {{z,y):M{Ry,...,Ru}}).

Where P, isthe representative concept name associated to the individual 0.8

16. Inverse cycle breaking: if {y = o, (y,2):M{Ry,...,R,}} C ¢, andin (¢ \
{{y,z):M{Ry,..., R,}}) thereisapath from z to y, or z = y; then

Y =S U {0:P,, P, C (VR,.Pp-, ... NVR,.Py -)}
¢, = {x:(PRl_y ... n PRn_y)} U (¢ \ {(y,x>:|_| {Rh - 7Rn}})

Where P, is the representative concept name associated to the individual o, and
P~y -, Pg, -, @€ new concept names not appearing in X..

17. Simple nominal introduction: if {(z,y):M{Ry,...,R,}} C ¢, n > 1, there
isnot any label L such that {R,,...,R,} C L, and thereis not any term like
y=oing¢,andoy,..., o0, aretheindividual names appearing in X; then & new
diguncts are added to the query formulain place of ¢:

E):{¢U{y:01}7"'7¢U{yzok}7¢17"'a¢n}|z

8The term (z,y):R; is|eft in the query for avoiding the problem of breaking the connectedness of
the formula.

7.4. ANSWERING QUERIESIN NORMAL FORM 129

where ¢, ..., ¢, arethe original diguncts.

18. Cyclic nominal introduction: if ¢ contains a cycle involving the variable v,
none of the variables y; involved in the cycle appear in aterm like y; = o in ¢,
and oy, . .., 0 ae the individual names appearing in ¥, then new diguncts are
added to the query formulain place of ¢:

E):{QSU{y:OI},...,QZsU{y:Ok},
eq(l)U¢7"'7€q(l)U¢7¢17---7¢n}|z

where ¢, . .., ¢, aretheorigina disuncts, and eq), .. ., eqV) are dl the possi-
ble combinations of equality terms among pairs of variable namesy;, y, involved
inthe cycle; i.e. eq®) = {y; = y;}.

7.4.2 Noteson transformation rules

In this section we explain in detail the rationale behind the rules introduced in Sec-
tion 7.4.1; we provide the intuition on their correctness, while the formal proofsarein
the following sections.

The underlying idea is that a conjunctive formula, represented by a set of terms,
can be visualised as agraph. The nodes of the graph are the variable names, |abeled by
the set of concept terms applying to the variable node. Nodes are connected by edges
representing the role terms. In addition, equality terms are explicitly attached to the
appropriate node. For example, the query expression

{z:A, (z,x): RO F,z = 0,{z,y):5, (y,y):S}

is represented as the graph
{4}

A formulain normal form isa set of conjunctive formulae sharing a common variable;
by the graph analogy it corresponds to a set of graphs “hooked” on the joining variable

7.4. ANSWERING QUERIESIN NORMAL FORM 130

(the z in Formula (7.1)). Each graph corresponds to one of the elementsin the normal
form.

Note the similarity between the graph representation of aquery and of an interpre-
tation (see Chapter 2). The main difference isthat, in the case of interpretations, nodes
are elements of the domain and are labelled by concept names only (in interpretation
graphs, edges are labelled by sets of names, but thisis just a different notation for the
conjunction constructor). The parallel between the two representations enables us to
view query answering under the different perspective of graph matching. Infact, given
an interpretation and a conjunctive query, we can see the question of whether the in-
terpretation satisfies the query as a problem of verifying if the graph corresponding to
the query can be matched against the graph representing the interpretation. The pres-
ence of digunctioninthe query language slightly blursthis perspective; however, since
we restrict ourselves to digunctions of conjunctive queries we can consider the non-
deterministic matching with one of the graphs in the digunctive formula. The graph
matching perspective is very useful for understanding the rationale behind the algo-
rithm. In particular, it enables us to build and explain examples® in a very intuitive
way.

The purpose of the transformation rules is to collapse each graph contained in a
digunctive formula into a graph composed of a single node and without any edges.
The rules are grouped according to the kind of transformation they perform on the

graph.

Normalisation rules

Due to the role conjunction constructor, more than one formula may correspond to the
very same graph; e.g. both the formulae {(z,z): R F'} and {(z, z):R, (z, x):F'} are
represented by the very same graph. Moreover, there are valid formulae that do not
fit nicely with the graph idea; e.g. formulae having multiple concept or equality terms
applied to the very same variable name (like {z:A, z:B} or {x = y,y = o}). For this
reason, thefirst five rules are designed to transform the formulain anormal form which
correspond univocally to a graph representation. We call these five rules normalisation
rules.

The equality elimination rule eliminates equality termsby renaming the appropriate
variables. Note that the ruleiswritten in such away that it never eliminates the joining

9And counterexamplesaswell. Most of the problems discovered in the devel opment of the algorithm
have been spotted by using the graph matching anal ogy.

7.4. ANSWERING QUERIESIN NORMAL FORM 131

variable z (for thisreason, both the z = y and y = x cases must be considered).

The conjunction elimination and role collapsing rules serve the same purpose of
gathering together concept (role) terms applying to the vary same variable (pair of
variables) by means of the DL conjunction constructor.

The contradiction elimination rule takes care of formulae which cannot be satisfied
by any interpretation because of two individual names. In fact, by the unique name
assumption two different individual names cannot be interpreted by the very same
element of the domain. The contradictory formulais substituted by the simpler {z: L}
which has no models either. The choice of the substituting formula is driven by the
fact that the resulting formula must contain the connecting variable z, and should be
connected (see the definition of normal form in Section 7.3.1). An aternative choice
would have been the elimination of the element (i.e. the digunct ¢ issimply eliminated
from the query). However, this choice has been ruled out to avoid the necessity of
taking into account cases in which the formula contains a single disunct (e.g. like
{{z =a,z=0b}}).

The last normalisation rule, the nominal elimination rule, is needed for transform-
ing aformulain which the “linking” variableisidentified with an individual name (we
will come back to this case later on, when we described the rest of the rules). It iseasy
to see that the number of times the normalisation rules can be sequentially applied to
the same disjunct is bounded by the number of terms plus one (because of the nominal
elimination rule).

Role elimination rules

The role elimination and shortcut elimination rules remove redundant edges from the
graph. Thisis necessary because parts of the graph that may appear as a cycle (or as
multiple edges connecting two nodes) may not really be cycles. If these“false” cycles
are not correctly handled then the nominal introduction rules would be incompl ete (see
the proofs in Proposition 7.15 and Proposition 7.16). The following example shows
why the absence of the role elimination rule would cause problems.

Example7.1

Let us consider for example the query (a, z):R M S against the knowledge base 3 =
{SC R,a:(35.T)}. Clearly, eachinterpretation satisfying ¥ isamodel for (a, z): R 1 S;
therefore ¥ = 3z ({a,z):RM S) (i.e. ¥ = {{(a,x):RM S}}). On the other hand, the
formula{(a,z):R M S} is acandidate for the simple nominal introduction rule, which
transforms the query into ¥ = Jz({a, z): RN S A = = a). However, this new query

7.4. ANSWERING QUERIESIN NORMAL FORM 132

formulais not implied by >. The problem is that, even though the query graph shows
two entering edges into the node x, the fact that S isincluded in R impliesthat an edge
labeled S isaways an edge R aswell.

The shortcut elimination rule is conceptually similar, but it covers the cases in
which the transitivity restriction forces the existence of edges not explicitly appearing
in the query formulaitself.

In figure 7.4.2 these “phantom” edges are depicted as dotted lines. Solid lines
denote explicit edges, while dashed lines represent implied edges. Finally, undirected
edges represent arbitrary connection with the rest of the graph.

Figure 7.1: Prerequisites for shortcut elimination rule.

Since the proposed technique works only when in cycles there are no transitives
role (or roles including transitive ones). The shortcut elimination rule can transform a
query which is apparently not covered by the algorithm into a suitable one.

Rolling up rules

The next three pairs of rules (rolling up and itsinverse version) are the core of the graph
collapsing procedure. They act on “leaves’ of the graph,’® eliminating the leaf node
and the edge(s) connecting it to the parent node. We call them “rolling up” because the
information about the removed node and edge(s) is incorporated into the parent node
viaa concept term.

The simple rolling up rule is the more intuitive one; and the easiest way of under-
standing it isto consider the first order translation of the DL constructor 3R.C', which
is{z | y(R(xz,y) A C(y))} (see Borgida[1994]). The translation correspond exactly
to the part of the query {(z, y): R, y:C'} involved in therule.

19The condition of being leavesis enforced by the requirement “. .. ¢ does not contain any other term
involvingy”.

7.4. ANSWERING QUERIESIN NORMAL FORM 133

¢ ¢'
/- IR.C 3|://

X

0,

Y

Figure 7.2: Application of simplerolling up rule.

Note that any reference of the fact that the edge was connecting = to y islost in the
application of the rule; therefore the rule can be applied only if there are not any other
termsinvolving y itself (i.e. y isaleaf node). Rolling up a non-eaf node may produce
awrong aswer to the query as shown in the following example.

Example 7.2
To show why this can cause problems, let us consider the smple query

{(w, 2):R, (z,y):5}}

and thekb ¥ = {a:(3R.TMN3S.T)}. Clearly, ¥ does not imply the given query
because there is a model satisfying ¥ and not having a path with the two roles in
sequence (e.g. the interpretation o = 1, R = {(1,2)}, and ST = {(1,3)} satisfies
¥)). However, if the simplerolling up rule is applied to theterm (w, x): R, the resulting
query formulais {{w:(3R.T), (z,y):S}}. It iseasy to realise that the latter query is
a logical implication of ¥ (i.e. identifying both w and = with a); therefore the rule
application would not be correct.

The smple rolling up rule is applied only if there is a single edge connecting the
leaf node; e.g. the rule cannot be a applied to the term to theterm (z, y): R S. Again,
thereason liesin thelossof information which would hidethefact that thereisonly one
confluent node (i.e.). However, there are cases in which this uniquenessis redundant
because there are other contraints that guarantee it. This is the rationale behind the
functional rolling up and nominal rolling up rules.

Let us consider the case when the leaf node y is connected to the “father” node
by aset of roles (i.e. (x,y):R; M ...MN R,) al being subroles of a common functional
role F' (see Figure 7.3 (a)). Variable y can be duplicated n — 1 times, because the
common functional role F' forces y and its copies to be interpreted as the very same
value (Figure 7.3 (b)). All the generated nodes can then be rolled up as described for

7.4. ANSWERING QUERIESIN NORMAL FORM 134

the smplerolling up rule.

) (b) (c)
58T

Figure 7.3: Functional rolling up rule.

The nominal rolling up rule worksin the sameway (Figure 7.4); but in this case the
uniquenessis guaranteed by the equality term. Note that the basic rolling up procedure
cannot be used directly in this case because there is an equality term (i.e. y = o).
To cover these cases we use the representative concept of the individual name in-
volved. As introduced in Section 6.2.1, the representative concept is used in place
of the DL one- of constructor. In fact, using the one- of constructor, the terms
{y =o0,{(x,y):R; M ...MR,,y:C} (when y is aleaf node) can be substituted by the
single term assertion z:(3R,.(C M { o }) M3IR,.{ 0o } N ...M3R,.{ 0 }). The nomi-
nal rolling up rule uses the concept P, in place of the concept expression { o }. In
addition, an assertion which ensure that the individual is an instance of its representa-
tive concept is added to the knowledge base (e.g., 0: P,) if itisnot already there.

@ (b) (©)
L P L
1%:5 o Rl/ﬁ/zx\‘\R" x(HRl.(Cl‘lP)
Cy R, y< oy e N3Ry.P,
I TR [
° S N ° EEIRn.PO)

Figure 7.4: Nominal rolling up rule.

Since our underlying language does not allow the use of the inverse role construc-
tor, al the rolling up rules have their inverse counterpart. Thisis necessary because
we cannot guarantee that the graph can be collapsed by following the direction of the
edges. In fact, is quite easy to come up with an example of graph in which all nodes
have both entering and exiting edges. The ideais not dissimilar to the one already ex-
ploited for the representative concept: the introduction of a new concept representing
the existance of the appropriate edge and node.

7.4. ANSWERING QUERIESIN NORMAL FORM 135

Consider the basic ssimple inverse rolling up rule for a digunct having the terms
(y,x):R,y:C (node y isaleaf). If the underlying DL logic provided the inverse role
constructor, the pair of term could have been substituted by the single concept term
2:3R~1.C inthe same way asthe simplerolling up rule. In order to overcome the defi-
ciency of the logic we are going to substitute the expression with a new concept name
(Pgr- ¢). Thetechniqueissimilar to the one used for reducing the satisfiability problem
of Converse PDL to the very same problem in PDL (see De Giacomo [1996]). In our
case we are not interested in enriching the language with the inverse role constructor,
but only in representing a particular “shape” in the interpretations. Therefore, we can
localise the scope of the newly introduced concept name to the given expression C' by
using theaxiom C' C VR. Pr- (see Proposition 7.18).

The nominal inverse rolling up rule is essentially a combination of the simple in-
verse rolling up rule, combined with the duplicating arguments we already presented
in the case of the nominal rolling up rule. The functional inverse rolling up rule takes
a different approach, exploiting the functional restriction on the role names. Consider
the transformation shown in Figure 7.5, which is exactly the same pattern as seen in
the functional rolling up rule (see Figure 7.3).

a b c
R S
1 X9
c % . Z | }/
Y y\ : y
R, *n (CM3R,. T
Figure 7.5: Functional inverserollingup rule, '+ " 3R, T)
Inthis case we duplicate the variable z; the new nodes zo, . . ., z,, canthen berolled

up by using the same arguments as the ssimple rolling up rule. The resulting structure
shown in Figure 7.5 (c) is then suitable for the application of a simple inverse rolling
up rule in a subsequent step.

The rolling up rules eliminate nodes and edges from the graph, but we should
make sure that the two conditions, maintaining the joining variable z and maintaining
the connectedness, are still satisfied by the resulting graph. The second condition is
guaranteed by the fact that rules only operate on leaves, while the first oneis explicitly
stated on each rule (with the condition y Z z). However, this latter requirement for
the rules clashes with the necessity of eliminating the equality terms as well as the

7.4. ANSWERING QUERIESIN NORMAL FORM 136

role terms. In fact, equalities with individual names are eliminated by the rolling up
procedure (by the nominal rolling up and nominal inverse rolling up rules; but they
never apply to the joining variable z. For this reason we have the nominal elimination
rule which appliesto z only. Note that this rule must be applied only when there are
no role terms in the conjunctive formula, otherwise the fact that z must be identified
with a particular individual name would be | ost.

Cyclesin query formulae

Until this point we have shown the rules which handle tree-like structures; in fact,
when the graph is a tree we can simply roll it up starting from the leaves.!! When the
query graph contains cycles we need a means for “breaking” these cycles and rolling
up the graph using the rules described above. This means is provided by the cycle
breaking rules toghether with the nominal introduction rules.

Let usfirst examine the three cycle breaking rules, starting from the cycle breaking
and inverse cycle breaking rules. They work using the very same principle which has
been exploited for the nominal rolling up rules. Thefact that the variable y isidentified
with an individual name allows us to introduce a new variable forced to have the very
same interpretation as y (because the new variable is identified with the very same
individual name). In addition, the path still connecting the two variables guarantees
the connectedness of the resulting graph (see Figure 7.6). The inverse cycle breaking
rule is similar, the only difference being the direction of the edges connecting the two
variables. The two rules aso cover the case in which the two variables coincide; in
that case the graph contains aloop centered on the variable.

@ L ey L el
o 1., 1. ..
N w o), " >,
~ ~ ~

I
))

Q
Figure 7.6: Cycle breaking rule.

Thesimplecycle breaking ruleissimilar, in principle, to the cycle breaking rule; but
it does not assume that removing the edges will leave the graph connected; therefore,

UThisis not completely precise because, even in tree-like graphs, we may still need to use the simple
nominal introduction rule.

7.4. ANSWERING QUERIESIN NORMAL FORM 137

one of the role names (R,) is left unchanged in order to maintain the connectedness.
At afirst sight, simple cycle breaking looks redundant because of the nominal rolling
up rule. However, the rule is necessary when the rolling up is contrary to the direction
of the edges (for example when y = z, or the leaf node is x) because the nominal
inverse rolling up rule covers only cases in which the starting node is identified with
an individual name.

The rule is part of the ones handling cycles because, although the role term (i.e.
(x,y):N{Ry,..., R,}) isnot necessarily part of acycle (according to Definition 7.6)
when role names appearing in arole term are unrelated (see the role labels in Defini-
tion 3.4), the term itself can be considered a sort of a cycle. In fact, we can traverse
one of the edges in one direction and a different edge in the other direction, coming
back to the very same variable. Thisis not true for the “false cycles’ as explained in
the normalisation rules.

In the query there can be cycles (even the “cycles’ composed by a single term)
composed by variables only; i.e. in which none of the variables are identified with an
individual name by an equality term. In these cases we cannot use the cycle breaking
rules, and one of the nominal introduction rules must be used.

These two rules exploit the completeness of the quas transitive shrub interpreta-
tions (Section 3.1), since the properties of these interpretations guarantee that cycles
can only be enforced by assertions about the individual names. Consider the simple
nominal introduction rule applied to aterm (x,y):R; M ...M R,. The idea consists
in identifying the second variable (y) with one of the individual nhames. The choice
cannot smply be nondeterministic, as shown in Example 7.3; therefore we must be
ableto try al the possibilities at once. Thisis the reason why maintaining a connect-
ing variable (the z variable in Section 7.3.1) across al the digunctsis essential for the
completeness of the algorithm.

The problem with the nondeterministic approach is that once the (nondeterminis-
tic) choice is made, it must be the correct choice for all the possible interpretations
satisfying the knowledge base. In fact, we are going to show an example of knowledge
base in which for some interpretations a variable must be identified with one individ-
ual, while for others a different individual must be chosen. Trying all the possibilities
at once alows all the different cases to be covered.

Example 7.3

7.4. ANSWERING QUERIESIN NORMAL FORM 138

L et us consider the knowledge base
Y = {{a,b):R, (b,a):R, {a,b):S, (b,a):S,a:(ALVS.A)} .
Y forces two different cycles with the same role names:
{(a,b):R, (b, a):S}

and
{(b,a):R,{a,b):S};

in addition, the assertion a:(A L V.S.A) forces either a or b to be an instance of A in
every model. Therefore the query formula3zy(z:A A (x, y):R A (y, z):S) isalogical
conseguence of X. On the other hand, we cannot nondeterministically choose one of
the two individual names to be identified with = (or). In fact, in this way all the
possible choices will lead to query formulae which are not logical consequences of Y.

When a true cycle is present in the query, the cyclic nominal introduction rule is
used; its rationale relies on the very same arguments as for the ssmple nominal in-
troduction rule. However, in this case we must be more careful in order to avoid a
different kind of “false cycle’, as shown in the next example.

Example 7.4
Let us consider the formula ¢ = {(z,z1):R, (2, 22):R, (x1,y):S, (z2,y):S} having a
diamond shape:

T

and the knowledge base X = {a:3R'.(3R.(35.T))}. By interpreting both variables x,
and z, asthe very same element, it iseasy to seethat ¥ = {¢}. In addition, the graph
is cyclic and there are no applicable rules other than the cyclic nominal introduction
one.

Suppose that we are going to apply the rule to the variable z (choosing a different
variable would not make any real difference), without adding all the possible combi-
nations of equality terms among the variables in the query. In this case we obtain the

7.4. ANSWERING QUERIESIN NORMAL FORM 139

new formula

QSI = {Z =a, <Z, .Z’1>:R, <Z, 1’2>3R, <Z’1, y>:Sv <Z’2, y>:S},

because a is the only individual namein 3. It is easy to seethat {¢'} is not alogical
conseguence of X (i.e. X}~ ¢').

Applying the rule as it is defined, we obtain several diguncts and the formula
{z1 = 29, (2, 21):R, (2, 22): R, (x1,y):S, (x2,y):S} among them. Thisdigunct issim-
plified into the formula {(z, z2):R, (x9, y):S} by the equality elimination rule, and
subsequently rolled up into the formula ¢” = {z:(3R.(35.T))}. Itiseasy to see that
thequery {...,¢",...} isalogical consequence of 3.

As shown by the example above, the cases of false cycles are covered by the intro-
duction of the equalities in the cyclic nominal introduction rule. If two (or more) of
the variable namesin a cycle must be interpreted as the very some element, there is at
least one of the diguncts which has the required equality terms explicitly stated.

7.4.3 Limitation of thetechnique

Unfortunately the presented technique works only under some restrictions on the form
of the queries and/or terminologies. We have two main sources of problems, namely
the trangitivity restrictions and the interaction between functionality and the role hier-
archy. Thisissymptomatic of the fact that the restriction on role interpretation compli-
cates the structure of the models as shown in Chapter 3. In the following two section
we are going to describe the limitations of the query answering algorithm.

Functionality and hierarchy

Ashighlighted by the Definition 3.6 of acanonical interpretation, we can assumethat if
apair isintheinterpretation of two different roles these two roles must be in acommon
label (let usignore Abox assertions). However, the contrary is not necessarly true; i.e.
interpretations of roles do not have to coincide if two roles are in the very same |abel.
For the application of the simple nominal introduction rule it is essential to know
whether avariable must beidentified with an individual in the presence of two variables
connected by morethan one edge (i.e. thenodey withatermlike (x, y): Ry M ... 1 R,).
Trivial cases are covered by the role elimination rule, since the inclusion relation be-
tween two roles guarantees that every pair in theincluded role must be in the including

7.4. ANSWERING QUERIESIN NORMAL FORM 140

role as well. However, the interaction between functional restrictions and role hierar-
chy may cause more subtle “terminological” coreferences.

For example, in the case in which two unrelated (via <) roles have acommon func-
tional super—role. Let R, and R, be the two roles both included in a functional role
F; in an arbitrary interpretation Z satisfying the restrictions on the roles, whenever
thereisapair (u,v) in R,* and apair (u, w) in Ry* then v = w because they must be
both in the interpretation of F'. Note that thisis different from saying that whenever a
pair isin one of the two rolesit must be in the second as well (asin the case if inclu-
sion). This property allows us to “roll up” terms like (z, y): R, M Ry into something
likez:(3R,.T M 3R,.T) without loosing the information that the two successors must
be the same element.

The cases shown until now have in common the fact that the “terminological”
coreference can be discovered by looking at the relation among the role names. Un-
fortunately there are cases in which the role structure is not enough and the single
interpretation makes the difference.

Example 7.5

Let Fi, F5 betwo unrelated functional rolesand R, S, T three different rolesst. R <
F,S < F,S X F,and T < F, (assuming that the the converse elations do not
hold). Given an arbitrary interpretation Z, and two pairs (u,v) in R and (u,w) in
TZ, whether or not v and w must be the same actually depends on the existance of an
S—successor of u.

If there is an element v’ st. (u,u') € S7, then by using the same arguments as in
the previous case we can show that v = «' and v’ = w; therefore v = w. Otherwise,
nothingisforcing v and w to be the same. Here we have a“terminological” coreference
that does not depend on the roles structure alone.

How this affects the presented algorithm can be shown by a simple example. Let
us consider the following three Aboxes sharing the same role terminology described
above

{{a,b):R,a:3T. T, (a,b):T} (7.59)
{{a,b):R,a:3T.T,a:35.T} (7.5b)
{(a,b):R,a:3T.T}. (7.50)

We want to decide whether the formula (a, z): R M T isalogical consequence of the

7.4. ANSWERING QUERIESIN NORMAL FORM 141

assertions. 2

Itiseasy to redlise that the given formulais alogical consequence of both the first
two Aboxes (7.5a) and (7.5b), but not of the third one. In fact, an interpretation 7
where {(1,2)} = RT = %, {(1,3)} = T* = F,%, a* = 1, and b* = 2), satisfiesthe
Abox assertionsin (7.5¢) but not the formula3z({a, z): R T).

The problem in devising an algorithm to discern the different cases comes down to
figuring out whether the variable x should or should not be identified with one of thein-
dividualsof the Abox. For the Abox (7.538) we can use atransformation rulelike simple
nominal introduction which adds, (amongst others) thedisunct {(a, z): R T, x = b}.
However, thisis not sufficient to detect the case of the Abox (7.5b); this last case can
be covered by a rule like functional rolling up, which transforms the formula into
a:(3R. T MN3T.T).

On the other end, if the latter transformation is indiscriminatevily used, the Abox
(7.5c) would be wrongly recognised as satisfying (a, z): R M T'. In this particular case,
the right trasformation should be something that takes into account the necessity of an
S—successor for a, liketheterm a:(3R. T N 3IT. T N 3S.T).

The last example suggests that a combination of the two mentioned rules can be
used to detect these tricky cases of interaction between role hierarcy and functional
restrictions. However, we still have to generalise thisintuition to the general case, and
for the time being we are forced to restrict the expressivity of the role terminol ogy.

Roughly speaking, we forbid cases like the described one by ensuring that for any
pair of roles in a single label either they are included one in the other, or they share
a common functional super—role. As shown in the proof of Proposition 7.14, this
restriction is enough to prove correctness and completeness of the functional rolling
up rules.

Trangitivity and cycles

The kind of queries we are able to answer using this technique must not contain any
cycle which includes atransitive role name.* The problem with cyclesincluding tran-
sitive roles is that there may be variables in the cycle that are not identified with one
of the individual names in the knowledge base. The reason is that transitivity pro-
videsaway of creating shortcutsfor arbitrarily long directed paths. Let us consider for

2With an abuse of notation we used theindividual « instead of avariablefor simplifying the formula.
BIn fact, the requirement can be less restrictive, as highlighted by the proof of Proposition 7.16.
However, this formulation is much simpler and clearer.

7.4. ANSWERING QUERIESIN NORMAL FORM 142

example a knowledge base forcing interpretations having a structure like:

{R} |
)ﬂ’(Ry

where a, b, ¢ represent elements of the domain corresponding to individual names
and the dot an “anonymous’ element. When the role name R is transitive the dotted
shortcuts are presents whenever the non—dotted structure is present (for example by
means of an assertion like c:3R.T). Therefore there is always a cycle which includes
an element not corresponding to an individual name (the “anonymous’ element). The
scenario can be complicated by the role hierarchy, since these transitive shortcuts can
be forced into non trasitive roles as well .14

7.4.4 Example of query answering

For a better undersanding of the algorithm we show the rule application process on a
concrete example. Let ¥ = {RC F, (a,0):R, (a,b):S, a:A, b:3S.T } be a knowledge
base and we like to know whether the answer to the boolean query

Jzzy(z: AN (z,2): ROF Az =0A{(2,y):S A (y,y):S)

IS positive or negative. We can guess that the answer must be negative (i.e. > does not
imply the given formula). The reason for this is that the constraint 6:35.T does not
force aloop on b but only the existence of a element related with b by role S (it may
be b itself, a, o, or even afourth one not specified).

Since the query formulais conjuntive and connected, it is already in normal form.
We choose = asthejoining variable:

{{zA, (z,2): RO F,x = 0,(z,y):S, (y,y):S}} |..-

14We have the conjecture that the problem can be solved by introducing more disjunctswith the cyclic
nominal introduction rule. The ideais that, since the underlying DL does not provide the inverse role
constructor, at least one of the variablesin acycle must be coreferenced with one of theindividual names
in the KB. However, this hypothesisis still being investigated.

7.4. ANSWERING QUERIESIN NORMAL FORM 143

To simplify the exposition we start from a knowledge base ¥’ already containing the
assertionsfor the representative concepts (i.e. X' = Y U{a:P,, 0:P,, b:P,}). Inthisway
the knowledge base will be unmodified by the rules we are going to use. Initally the
query formula contains a single graph, to which are applied first the role elimination,
followed by the nominal rolling up rules:

Q\ IN. 2

At this point we can only apply the cyclic nominal introduction rule to the loop in-
volving the variable 3. The rule generates three different isomorphic graphs where
the variable y isidentified with each one of the three different individual names in the
knowledge base. The query now is composed of the three graphs:

AN3R.P,
2z

AMN3dR.P, AMN3dR.P, AMN3dR.P,
z z z
S S/ S
= ¢ Y 4‘0 =

Since the graphs have the same shape, they are transformed in the very same way; with
the only difference of the representative concept used for the variable y.First, the cycle
breaking rule is applied to the loop on y, then the nominal rolling up rule concludes
the collapsing:

0

A3 A3 AN3R.P,
MNdR.P, MdR.FP,
. . ., N3S(P,N3SF,)

S
=
y
@ 35.P,

7.4. ANSWERING QUERIESIN NORMAL FORM 144

The query formula we are now going to verify is composed by three digunctsin the
formof {z:(AMN3R.P,M3S.(P'M3S.P"))}; where P’ issubstituted by P,, P, or P,.
Since the variable z is the same we can collapse the disunction into a single concept
expression by using the LI constructor.

z((ANM3R.P,M3S.(P,N3S.F,))
U(AN3IR.P,N3S.(P,N3S.F))
U(AN3R.P,N3S.(P,N3S.P,)))

By using simple transformations on the concept expressions we obtain the query an-
swering problem

¥ & 32(z:(AN3R.P, N (3S.(P,M3S.P,) L
3S.(P,M3S.R,) U3S.(P,M3S.R,)))),

which can be verified by checking whether the knowledge base

YU{TE—-(AN3R.P,N (3S.(P,N3S.P,) LU
35.(P,M3S.R,) L3S.(P,M3S.P,)))}

is unsatisfiable. We can push the negation down into the concept expression to obtain
the kb

YU{TC(-AUVR.-P,U
VS.((-P, UVS.—P,) N (=P, UVS.—P) 1 (=P, UVS.=F,)))}

This kb is indeed satisfiable, and this can be verified by using a KB satisfiability al-
gorithm. However, here we demonstrate its satisfiability by exhibiting an example of
interpretation satisfying the constraints. Let us consider the following interpretation Z:

{Fo}

(AR} /*f/"ﬂ/
\{“\HSH,,

{P}

Interpretation Z has been constructed in such away that it satisfies all the constraintsin

7.4. ANSWERING QUERIESIN NORMAL FORM 145

Y}, and all the assertions for the representative concepts. To satisfy the added inclusion
assertion derived from the query formula, every element of the domain must be in the
interpretation of the concept. The elements o, b, and b’ satisfy the constraint because
they are not in A (therefore they are in (—A)%). The element a obviously is not in
(—=A)Z, nor in (VR.—P,)*; therefore we should verify that b isin (=P, LU VS.—P,) M
(=P, uVS.—P) N (=P, uVS.~P,))*. Clearly, thisisthe case becauseitisin (- P,)?,
in(=P,)%, andin (VS.—P;)%.1°

Since the transformed KB is satisfiable, the conclusion is that the query formulais
not alogical consequence of the KB X..

745 Termination

Transformation rules are applied by following a simple “ordering” strategy: if more
than arule can be applied to the same digunct, then thefirst one (in the order they have
been presented) is applied.

Given this strategy the rule application process terminates; i.e. the transformation
always |leads to aformula where no rules are applicable, and the resulting formula has
theform X = {{z:C1},...,{=:C,}} |..

The proof of terminationisdivided in three parts. First we show that the application
of any rule maintains the connectivity of the query formula. Secondly, we show that
the variable 2 is never eliminated; finally, we prove that in a finite number of steps
we are going to obtain a query formula without role terms. If an element (digunct) of
the query is connected, contains the variable z, and does not contain any role term it
must be in the form {z:C1, ..., 2:C,} (possibly containing a term in the form z = o
as well). From that is collapsed into {z:C'} by the conjunction elimination rule (and
nominal eliminationruleif = = o is present).

Proposition 7.8. Let X = {¢1,..., ¢, } |, beaquerywhereall theelements ¢, .. ., ¢,
areconnected, and ¥’ = {¢',,..., ¢’} |. betheresulting query after the application
of one of therules. Then all thedisuncts¢’,, .. ., ¢, are connected.

Proof. Given the assumption that each one of the starting disuncts is connected, we
have to show that the connectivity is maintained by the rules which remove role terms.

BNote that, the interpretation Z provides also an example of interpretation satisfying ¥, but not
modelling the query formula. Therefore an aternative way of showing that the formulais not alogical
conseguence of the KB X.

7.4. ANSWERING QUERIESIN NORMAL FORM 146

e Equality elimination: even if al the occurrences of variable = are renamed to
y, the digunct is still connected because no role terms are removed.

e Rolecollapsing: tworoletermsare eliminated between z; and x5, but anew role
term is inserted connecting the very same variables. Therefore if the digunct
was connected before the rule application, then it is still connected after the
application.

e Contradiction elimination: the new disunct ¢’ = {z:_L} istrivialy connected.

e Roledimination: sincen > 1, then the role term is substituted with a different
role term between the very same variables.

e Shortcut elimination: even if arole term between variables z, and z,, iS re-
moved, there still is a path connecting the two of them by hypothesis.

e Simplerolling up: theterm (x, y): R is removed from ¢; but since the variable
y no longer appearsin ¢', then if the digunct ¢ is connected, so must be the new

¢'.
e Simpleinverserolling up: this caseis analogous to the previous one.

e Functional rolling up: again, this case is analogous to the simple rolling up.

e Functional inverserolling up: arole term connecting variables y and z isre-
moved from ¢; but a new role term connecting the very same variables is added.

e Nominal rolling up: this caseis analogous to simple rolling up.
e Nominal inverserolling up: this case is analogous to ssimplerolling up.

e Cycle breaking, inverse cycle breaking: a role term connecting x and y is
removed from ¢; however, in the remaining formulathere is a path connecting
and y by hypothesis (or y = x). Therefore ¢’ is still connected.

e Simplecyclebreaking: aroleterm connecting x and y still remainsin ¢’, so the
connectedness is maintained.

7.4. ANSWERING QUERIESIN NORMAL FORM 147

Proposition 7.9. Let ¥ = {¢1,...,¢,} |, be a query answering problem where the
variable z appearsin all the diguncts ¢, and X' = {¢',,..., ¢, } |. betheresulting
query after the application of one of the rules. Then the variable » appearsin all the
disuncts ¢',.

Proof. Analogously to the previous proposition we consider the rules that might delete
terms.

e Equality eimination: z isnever renamed by definition.

e Conjunction elimination: the variable = is till in ¢' because of the fact that a
new concept term is added.

¢ Rolecollapsing: both x; and z, are still keptin ¢'.

e Nominal elimination: thisrule does not affect z by definition.

e Contradiction elimination: variable z isstill in ¢' by definition.

e Nominal elimination: a concept term containing z is still in the digunct ¢’.

e Roleelimination, shortcut elimination: both z; (xy) and x5 (z,,) are still in ¢'.

e Simplerollingup, smpleinverserollingup, functional rolling up, functional
inverserolling up, nominal inverserolling up, and nominal rolling up: these
rules do not remove =z by definition.

e Cycle breaking, simple cycle breaking, and inverse cycle breaking: even
thought a role term containing ¥ is removed, in ¢’ there is at least an equality
term containing y.

O

Proposition 7.10. Let 3 = {¢1, ..., d,} |. be a query where all the diguncts ¢, are
connected, and z isappearing in all of them. Then, there is a strategy for applying the
rules such that a new query ¥’ = {{z:C,},...,{#2:Cy}}|. containing only concept
terms can be obtained in a finite number of application of the rules.

Proof. The idea behind the proof is showing that we only eliminate role terms by
using the rules, but never introduce new ones; therefore we obtain a query without role
terms. Moreover each digunct is connected and containsthe variable z as shownin the

7.4. ANSWERING QUERIESIN NORMAL FORM 148

previous propositions; therefore, if the query does not contain any role term, then each
digiunct must contain only termslike z = o or z:C'. Elements containing only concept
terms can be normalised into the form {z:C"'} by using the nominal elimination and
conjunction elimination rules.

Given a set of terms ¢, we define the number of edges of ¢ as the total number of
different role names connecting each pair of variable namesin role terms. Formally,
this can be defined as the cardinality of the set

{z,y):R | (x,y):RyN...MR, € p, R=R;}.

Note that the rules never increase this number per disunct, at most they multiply the
number of digunctsin the query (the nominal introduction rules). Given a query for-
mula{¢s, ..., ¢,}|., weconsider the number of edges of the formulaas the maximum
among the number of edges of each digunct ¢;. We are going to show that this number
decrease in afinite number of applications of the rules.

A given digunct in the query can be transformed (by the substitutions performed by
therules) into aforminwhich no rules are applicable or only the nominal introduction
rules are applicable, in a number of stepswhich islinear w.r.t. the size of the digunct
itself.

L et us consider the query answering problem ¥ |= {¢4, ..., ¢, } |.; we can assume
that none of the normalisation rules can be applied to any of the ¢; (if it is not the
case this can be achieved in anumber of stepslinear w.r.t.thesum ., f¢;, where
f¢; denotes the cardinality of the set ¢;). If the number of edges of {¢y,...,d,}]|, IS
greater than 0O, there should be a subset of the diguncts having that number of edges.
We are going to take one of those disjuncts and show that the number of edges of
diguncts “derived” from the chosen one can be decreased in afinite number of steps.
In addition we are going to show that we can limit the number of “derivable” dis-
juncts. We can apply this arguments to al the “maximal” diguncts in the original
query; therefore in a finite number of steps we obtain a new query answering problem
with asmaller number of edges.

First we must specify precisely what we intend by the fact that a digunct is “de-
rived” from another one in the query. As we described in Section 7.4.1, most of the
rules take one of the diguncts ¢ from the query and replace it with a modified version
¢' of it; we say that ¢’ is“derived” from ¢. The case of nominal introduction rulesis
different; the digunct ¢ is substituted by a finite number of new diguncts, and all these
are said to be derived from ¢.

7.4. ANSWERING QUERIESIN NORMAL FORM 149

Let ¢ be one of the digunctsin the query {¢1,...,¢,}|.. Clearly al the derived
disjuncts have anumber of edgeswhich isless or equal than the one of ¢. We assumed
that none of the normalisation rulesis applicable; in addition none of the role elimina-
tion rules is applicable as well, otherwise we aready obtained a derived disjunct with
asmaller number of edges.

First we must show that, under these assumptions, when there is at least a role
termin ¢ one of the nominal introduction rulesis applicable. We distinguish two cases
according to the fact that there is or there is not any cyclein ¢.

e If thereisno cyclein ¢, then thereisaroleterm (x,y):R; M... M R; being the
last term of apath not terminating with z; i.e. either thereisnot any different role
term containing y and y # z, or thereis not any different role term containing x
andz # z.

Let us assume that in ¢ there is not any different role term containing y # z.
Since none of the normalisation rule are applicable, there can be only two other
terms containing y: y = o for some individual name o and y:C. If y = o'is
in ¢, then the nominal rolling up would be applicable; which is not the case
by assumption, therefore y = oisnotin¢. If [= 1 (i.e. (z,y):R;), then the
simple rolling up would be applicable, so ! > 1. Finally, there is not any label
L st. {Ry,...,R,} C L, otherwise the functional rolling up rule would be
applicable. Therefore the simple nominal introduction rile is applicable because
all the preconditions are met.

Let usassume that in ¢ thereis not any different role term containing x # z. As
before we can exclude the case in which / = 1 and al the roles are included in
asingle label (otherwise the smple inverse rolling up or the Functional inverse
rolling up rule would be applicable). In the same way we should exclude the
case in which either aterm likez = o or y = o’ arein ¢, otherwise the inverse
cycle breaking or simple cycle breaking rule would be applicable. Therefore the
simple nominal introduction rule is again applicable.

e If there are cyclesin ¢, let us consider each role term (z, y):R; M ... M R, in-
volved in at least a cycle. Since neither the cycle breaking nor the inverse cycle
breaking rules are applicable, then there are no termslikez = o or y = oin ¢;
therefore the cyclic nominal introduction rule is applicable.

Now we consider the cases in which the nominal introduction rules must be ap-
plied. We show that in a finite number of steps a new query is obtained where all the

7.4. ANSWERING QUERIESIN NORMAL FORM 150

disiuncts derived from ¢ have a number of edges less than that of ¢ (i.e. arule which
eliminates edgesis applied). We proceed by induction on the number of variables, not
identified with any individual name (by a term like x = o), which are involved in at
least acycleorinatermlike (z,y):R; M ...M R, where{R,, ..., R} arenotincluded
inasinglelabel.

e First let us consider the case in which there is only one variable y satisfying the
above conditions. Then, either the simple nominal introduction ruleis applicable
or there is aloop on y and the cyclic nominal introduction is applied. In both
casesthe digunctsintroduced in place of ¢ are of theform ¢ U{y = o;} (because
adding an equality term between the same variable does not make any sense). In
the case of the simple nominal introduction rule either the nominal rolling up
or ssimple cycle breaking rules are then applicable. If the cyclic nominal intro-
duction rule has been applied, then there is the possibility of applying the cycle
breaking rule aswell. Anyway, in al three cases the rules eliminate one or more
edge from the derived disjunct ¢ U {y = o;}.

e If thereisno cycle, then there must be aterm like (x, y):R; M ... M R;, and we
can apply the very same arguments we used in the basic case. So let us assume
that there is a cycle involving more than one variable (not identified with any
individual name) and one of the nominal introduction rules is applied to one of
these variables yy. We consider the two cases separately.

Simple nominal introduction Let us consider one of the disuncts ¢’ = ¢ U
{y = o;} inserted in place of ¢. Let (z,y):R, M...M R, betherole term
matching the rule application. In this case the nominal rolling up rule is
not applicable because y is part of acycle, but one of the cycle breaking or
simple cycle breaking rules can be applied to any of the resulting digjuncts,
diminushing their number of edges.

Cyclic nominal introduction Since the cycle is longer than 1, either there is
aroleterm (z,y):R, M... MR, or (y,z):R, M...M R, in the path, with
x # y. Inaddition, the derived disuncts are either intheform ¢ U {y = o;}
or eq” U ¢, where eq”) isa set of equalities between variables.
Let us consider the digunct ¢’ = ¢ U {y = 0;}. Aswe mentioned, either
(x,y):RyM...NRyor (y,x):Ry M...MN R, areinthe path.
If (x,y):R;M...MN R, isin the path then the preconditions of the cycle
breaking rule are satisfied (and none of the preceding ones); thereforeinthe

7.4. ANSWERING QUERIESIN NORMAL FORM 151

next step the (unique) disunct derived from ¢ will have a smaller number
of edges. Let us now consider the case in which (y, z):R, M ... M R, isin
the path. The cycle breaking rule is not applicable because by assumption
¢' does not contain any term like z = o, and the same istrue for the simple
cycle breaking rule. However, the inverse cycle breaking ruleis applicable,
whichisarole elimination rule.

Let us consider a digunct in the form ¢’ = e¢® U ¢, where e¢® is a
set of equalities between variables. The query answering problem can be
transformed into a new problem in which ¢’ is substituted by a single new
digunct at each step, by applying the normalisation or role elimination
rules. In a number of steps which islinear w.r.t. the size of ¢' we obtain a
single disunct ¢” derived from ¢’ to which only the nominal introduction
rules are applicable (or none of the rules).

Note that the number of variablesinvolvedinacyclein ¢” isdecreased be-
cause of thefact that two of them have been explicitly made equal by aterm
xr1 = x5 (S0 one of them has been eliminated by the nominal elimination
rule). Therefore, we can use the inductive hypothesis and conclude that in
afinite number of stepswe obtain aformulain which al the diguncts that
are derived from ¢"” have a number of edges smaller than ¢’ (and conse-
quently than ¢). The arguments are valid for all the disuncts ¢’ = eq U ¢
derived from ¢.

Wor st case complexity analysis

The complexity® of the actua rolling up procedure is polynomial in the size of the
query formula. This can be seen by considering the graph corresponding to each dis-
junct; the rolling up eliminates the leaves of the graph (after a linear normalisation
by the first five rules). Even if new assertions are added to the knowledge base, these
are linearly bounded by the sum of the number of edges of each graph representing a
digunct in the query formula.

Unfortunately, the nominal introduction rules multiply the number of diguncts
(graphs) in the query. As the reader can guess from the last section, the number of

1611 this section, we use the word complexity intending the worst case complexity.

7.4. ANSWERING QUERIESIN NORMAL FORM 152

newly introduced disjuncts can be exponential in the size of theinitial problem.’” The
worst case is related to the cyclical nominal introduction rule, because the other rule
introduce a lesser number of elements (the equalities are not introduced). Therefore,
the worst case complexity can be calculated by analysing the cyclical nominal intro-
duction rule.

The proof for termination (see Proposition 7.10) providesthe hints for the analysis
of the complexity. The point of the proof to look at is where the inductive arguments
are used for the cases in which the cyclical nominal introduction rule can possibly be
applied recursively. At each application of this rule one of the variablesinvolved in a
cycleis “eliminated” from the derived new disjuncts.’® Therefore, if at the next step
the cyclical nominal introduction rule is applied again, the number of equalitiesto be
introduced will be smaller than the one at the previous step.

The complexity is of the order of the number of graphs that can be generated by
recursive application of the nominal introduction rules. This number can be calculated
by considering the tree whose root is a disjunct and the nodes the new el ements gener-
ated by successive applications of the rule from the root element. The number of all the
generated graphs is equal to the number of leaves in this tree; so we need to estimate
the maximum number of successors for each node.

By looking at the rule we can estimate the number of successors of each node by
considering the sum of the number of individual names in the knowledge base (we
denote this number by £0), with the number of equalities that can be generated by
the number of variablesin the cycle (we can consider this number as the total number
of variables). Although the number of variables can be tightened to a more precise
lower value, we assumethat it is equal to the size of the single disunct (we denote this
number as n). The number of equalities generated from n variables can be calculated
by considering a square matrix of size n where each row (column) is marked by a
variable. Each element of this matrix denotes an equality between the correspondent
two variables. We do not need the whole matrix because we are not interested in the
principal diagonal (termslike x = x), and we need only half of the matrix (there is not
point in having both = = y and y =); therefore the number of equalitiesis "=

The maximum number of successor of the root are 1O + @ at the next level
we have (10 + @)(ﬁ(’) + W), and so on until the number of variablesis

YUnfortunately it is not only on the size of the formula because of the identification of the variables
with the individual names in the knowledge base.

180r it isidentified with an individual, which is the same from the perspective of the cyclical nominal
introduction rule.

7.4. ANSWERING QUERIESIN NORMAL FORM 153

equal to one;
(10 + ”(”2_ Do+ 1= 1)2(" =2y o+ 2(22)\i0
ntiEes.

Therefore, the number of disjunctsis bounded by the formula (1O + n?)". The size of
each digunct is bounded by the size of the original formula, and in addition the rolling
up procedure can add to the knowledge base as many new assertions as the number of
inverserolling up rule applications. This does not alter the order, whichisstill O(N V)
w.r.t. the size of the query problem.

At the end of the collapsing procedure the agorithm uses the knowledge base sa-
tisfiability procedure whose complexity is EXPTIME (see Chapter 4). Note that we
dready estimated that the size of theinput formulais of the order of O(N ™), therefore
the worst case complexity for the whole problem is double exponential time (2EXP-
TIME).

This is more than intractable, the question at this point is—can we do better than
that? The answer can only be found by the reduction of adifferent problem knownto be
2EXPTIME-hard to our query answering problem. However, there is good evidence
that this is the intrinsic complexity of the problem, since it is the same order as the
results presented in Calvanese et al. [1998a] for a similar problem. Although the DL
presented in that paper is more expressive than the one we are presenting here, we
already know that the complexity of the satisfiability problem is the same for both the
logics. The reader may object that in the same work they do not show hardness results,
however the nondeterministic nature of the problem suggests that the addition of an
exponentia step to the basic satisfiability problem cannot be avoided.

7.4.6 Correctnessand completeness

The correctness and completeness of arule are defined in the usual way. A ruleis cor-
rect if apositive answer to the query problemisstill positivefor the new query problem
generated by theruleitself; i.e if ¥ = {¢, ¢1,..., ¢} | thenX = {1, ..., dn} .
A rule is complete if negative answers are preserved; i.e. if X' = {¢',01,..., 00} |2
then = |= {6, 1, ..., du} |.).

For rules that do not modify the KB on the left hand side (X = ¥’) the pattern of
the proof is “simple” because the set of interpretations satisfying the KB before and

7.4. ANSWERING QUERIESIN NORMAL FORM 154

after the rule application does not change. On the other hand, when arule modifiesthe
KB the set of satisfying interpretationsis reduced because new constraints are added to
the KB. In this case we must pay attention to the introduction of new concept names;
in particular regarding the representative concept. In fact, a representative concept
is an effective way of representing a single element only if the reasoning mechanism
is unable to distinguish the case where the interpretation of a representative concept
contains more than one element from the case in which it contains a single element.
Therefore we want to show a completeness result for the class of interpretations in
which the representative concepts are restricted to contain a single element (this is
anal ogous to the completeness of a class of models as seen in Section 7.2).

We call an interpretation nominal representative (n.r.) if the interpretation func-
tion maps each representative concept into the set containing only the interpretation
of the corresponding individual name (i.e. P,” = {o”}). Using the definition of n.r.
interpretations we introduce the notion of nominal safe queries, as those completely
characterised by n.r. interpretations. A query answering problem X &= ¢ is nominal
safewhen ¥ = ¢ w.r.t. n.r. interpretations implies that > = ¢ (note that the converse
istrivialy true).

We have to show that the manipulations of the query answering problem done by
the rules keep the result nominal safe. Otherwise, the use of representative concepts
will can produce wrong answers. Theinitial query answering problem istrivially nom-
inal safe because no representative concepts appear neither in the knowledge base nor
in query itself.®

Some of the proofs we provide rely on the fact that the query problem remains
nominal safe after the application of any rule; thisis an additional requirement to the
completeness and correctness. Let 2 = ¢ be the query answering problem matching
arule, and ' = ¢’ the problem resulting from the application of the rule itself. We
want to show that:

1. theruleiscomplete: X' = ' impliesY = ¢;
2. theruleiscorrect: ¥ = ¢ implies¥’ = ¢;

3. theresulting problem X' |= ¢ isnominal safe: ¥/ = ¢’ w.r.t. n.r. interpretations
impliesY’ = ¢'.

B An interpretation satisfying the KB can just be extend by adding the representative concepts, and
mapping them to the set containing the element of the domain corresponding to the appropriate individ-
ual (i.e. starting from the interpretation Z, we make anew Z' from Z by adding P2’ = {o” } for every
individual name o).

7.4. ANSWERING QUERIESIN NORMAL FORM 155

If we start from the assumption that . = ¢ isnominal safe, we can simplify the proofs
by showing that the two conditions

¥ E ¢ w.rt. n.r. interpretationsimplies
| | (7.33)
¥ = o W.rt. n.r. interpretations, and

Y E pimpliesY = ¢ (7.3b)

hold for every rule. Note that the second condition is just the correctness as defined
above; the real difference is the first restricted version of completeness. Firstly, we
show that the two conditions are sufficient when the problem ¥ |= ¢ isnominal safe.

1. Completeness: if X' | ¢ then X' = ¢’ w.rt. nr. interpretations. We can
then use the Condition (7.3a) to conclude that > = ¢ w.r.t. n.r. interpretations.
In addition ¥ = ¢ isnominal safe by hypothesis, therefore ¥ = ¢ w.r.t. n.r.
interpretationsimpliesthat X = .

2. Correctness: it isexactly the Condition (7.3b).

3. Safeness: if X' = ¢ w.r.t. n.r. interpretations, then ¥ = ¢ w.r.t. n.r. interprete-
tions by Condition (7.33). In addition, ¥ = ¢ w.r.t. n.r. interpretations implies
that 3 = ¢ because the problem is nominal safe by assumption. Therefore, we
can use Condition (7.3b) to conclude that 3’ = '.

In the following propositions we assume that the query problem before the applica-
tion of the rulesis nominal safe, and by completeness we intend the Condition (7.39)
instead of the classical definition. The proofs are organised by rules, first the rules
which do not modify the knowledge base, and then the ones which do modify it.

The pattern of all the proofsis similar, so we are going to introduce it to help the
reader in following the proofs. Therulestransformtheproblem® = {¢, ¢+, ..., dn}.
into the new problem X/ |= {¢, ..., ¢}, ¢1, ..., dn}|., Where the element ¢ is substi-
tuted by one or more elements ¢, . .., ¢,. Let us consider completeness (correctness
issimilar), and arule that substitute the element with a single new e ement.

We have to show that assuming ¥’ = {¢', ¢1,..., dn}|., itisthe case that ¥ =
{&,1,...,0n}|.. We choose an arbitrary n.r. interpretation Z satisfying ¥ and we
show that it models the formula {¢, ¢+, ..., ¢,}|. (see Definition 7.3). If necessary
for arule modifying the kb, we first extend Z to a new interpretation Z' satisfying >'.
In general, this new interpretation is equal to the original one with mappings for the
newly introduced concept names; we can then easily go back to Z by discarding the

7.4. ANSWERING QUERIESIN NORMAL FORM 156

appropriate mapping. SinceZ’ satisfiesY', thenZ’ = {¢', ¢4, ..., ¢, }|. by hypothesis;
so thereisamapping ¢ suchthat 7' =y, ¢’ or 7' =y {1, ..., ¢n}|.. Inthelatter case,
we havethat 7' =, {¢, ¢1,...,¢,}|. aswell, and in general it is easy to show that
ifZ' =y {¢1,...,0n}l thenT =y {¢1,...,0n}].. Thisis because either the new
names in Z' do not appear in any of the formulae ¢4, ..., ¢,, or they are already in
T (representative concept) and Z' = Z. Therefore in the actual proof we show that if
7' =y ¢' thenthereisamapping ¢’ suchthat 7 =, ¢.

Rulesthat do not modify the KB

Proposition 7.11. The equality elimination, conjunction elimination, rolecollapsing,
role elimination, and shortcut elimination rules are complete and correct.

Proof. Correctness and completeness of these rules are trivially verified by the fact
that for every interpretation Z and mapping ¢, Z =, ¢ iff Z =, ¢'; therefore Z |=
{¢a ¢1a SR ¢n}|z iff Z): {¢/, ¢1a SRR ¢n}|z

Let us consider the shortcut elimination rule as an example. Since the two query
formulae differ only for the disuncts ¢ and ¢', we just need to show that Z |=,, ¢ iff
T k=, ¢ for an arbitrary mapping 1.

IfZ =y o thenZ |=y (xo, xn):M{Ry,..., Ry}, therefore

T =y (wo, wp):N({ Ry, ..., R} \ {Re})

aswell. Therest of thetermsin ¢’ are the same of those in ¢, therefore 7 |=,, ¢’ as
well.

Let usassumethat Z =, ¢, weneed to show that 7 |=,, (zg, z,):M{ Ry, ..., Ry}
We consider the case in which k£ > 1, the other is not really different. SinceZ =, ¢/,
then Z =, (vo,zn):M({R1,..., Re} \ {Re}); therefore we must verify that 7 =,
(xg, T,):Ry. But thisis true because

{<IL'0, fL’l>i|—|R1, Ceey <.2Un,1, .ZL'n>§|_|Rn} g ¢I

therefore in every set of roles R;, thereis at least arole S; such that S; < S, which
meansthat Z =, (x;, z;41):5 fori =1,...,n— 1. For thetransitivity restriction on S
T =y (w0, x,):S, therefore Z =, (%o, ,): R, because S < Ry. O

Proposition 7.12. The contradiction elimination rule is correct and complete.

7.4. ANSWERING QUERIESIN NORMAL FORM 157

Proof. If {x = 01,2 = 02} C ¢, and o, isdifferent from oo, then thereisno interpreta-
tion satisfying ¢. Thevery sameappliesto¢’ = {z: L}. If X = {¢, ¢1,..., dn} |, then
an arbitrary interpretation satisfying X must model {¢1, ..., ¢,}|. (without the dis-
junct ¢); thereforeit models {¢', ¢1, ..., ¢, } |.. Theother directionisanalogous. [

Proposition 7.13. The simplerolling up ruleis correct and complete.

Proof. Let 3 = {¢, ¢1,...,d,}|. be the query before the application of the simple
rolling up rule, such that ¢ satisfies the rule conditions, and X = {¢’, ¢1, ..., ¢n}|. IS
the resulting query.

completeness Let 7 be a n.r. interpretation satisfying . We assume that ¥ =
{¢',01,...,¢n}|. so there is a mapping ¢ such that 7 =, {¢', d1, ..., 0n}].. If
Ty ¢pifori=1,....,nthenZ =y {¢,¢1,..., 0.}, aswell; so, we are going to
show that if Z |=,, ¢', then thereisamapping ¢’ St. Z =y ¢.

If Z &, ¢ thenZ =, 2:3R.C, therefore there is an element u € A? st.
(Y(z),u) € RiF andu € CT. The mapping ' = v[y/u] in which y is mapped to
u satisfies the required property that Z =, (z,y):RandZ =y y:C. Therest of terms
in ¢ are satisfied because y does not appear in any other term, therefore Z (=, ¢.

Correctness Let 7 be an interpretation satisfying X2; for reasons analogous to those
in the completeness proof, we are going to show that if Z =, ¢ thenZ =, ¢'.

fZ =, othen =, (z,y):Rand T =, y:C, itiseasy to seethat thisimplies that
7 =y x:3R.C (the element ¢ (y) isthe “witness’ for the property). For the remaining
terms in ¢, since they are in ¢ as well they are modeled by 7 w.r.t. v; therefore

Iy ¢ O

Proposition 7.14. If therole hierarchy issuch that for every unrelated pair of roles® in
the same label thereisa functional role that includes both of them, then the functional
rolling up and functional inverse rolling up rules are correct and compl ete.

Proof. The proof for these two rules are very similar to the previous one for the simple
rolling up rule. In particular, the correctness part is amost identical and is left to the
intuition of the reader. So we are going to concentrate on the compl eteness.

Let ¥ = {¢,¢1,...,0,}|. be the query before the application of the functional
rolling up rule, such that ¢ satisfies the rule conditions, and ¥ = {¢’, ¢4, ..., ¢n}|. IS
the resulting query.

2They are not included one in each other.

7.4. ANSWERING QUERIESIN NORMAL FORM 158

completeness Again, the structure is the same as the previous completeness for the
simplerolling up rule. The crucia point here is that although we “split” the role con-
junction into several existential assertions, the interpretations are such that all the suc-
cessors must be the very same element.

The point we need to show isthat, in any interpretation satisfying X, if an element
is related to two elements via two different role names being in the very same label
and not being included one in the other, then the two related elements must coincide.
Formally, let Z be an interpretation satisfying ¥. Let u be an element of AZ, and R,
R, two role names in the same label st. neither R, < Ry nor Ry < R;. Then, if
(u,v1) € Ry* and (u, v) € Ry", vy = vy,

Note that this is not true if Ry < R, because this implies that R, C R,” but
not the converse. The intuition behind the proof isthat if the two roles are not related,
then there must be an interaction with a functional role that forces the collapsing of
successors of « (i.e. thereisafunctional role F'st. Ry < F and Ry < F).

If R, and R, belongsto the very same label, then either Ry < R, or Ry < Ry (by
Definition 3.4b); let us assumethat R; < R,. We prove the claim by induction on the
definition of < (Definition 3.4a).

Thetwo basic cases Ry < R, and R, < R; areruled out by assumption, so there
must be a functional role F' such that R, < F and R, < F. This means that both
(u,v1) and (u, v) arein FZ, and v; = v, because 7 satisfies the functional restriction
on F'.

The property we have just shown applies to the functional (inverse) rolling up rule
because we assumed that the role elimination rule is not applicable. Therefore, if the
set of rolenames {R,, ..., R, } isincluded in a label and there is more than one role
init, they must be unrelated.

O

Proposition 7.15. The simple nominal introduction ruleis correct and complete.

Proof. We assume that the query before the applicationruleisX = {¢, ¢1, ..., dn}.,
¢ satisfies the conditions of simple nominal introduction rule, and none of the rules
with a higher priority can be applied to ¢.

completeness Let 7 be a canonical (w.r.t.) quas transitive shrub interpretation
satisfying ¥, which is n.r. as well. We assumethat ¥ = {¢p U {y=o01},...,0 U

{y =0}, d1,...,0n}|., SOthereisamappingy suchthat Z =, {¢pU{y = 0:1},...,¢U
{y =0k}, é1,...,¢n}|.. By definition there is one of the digunctssuchthat 7 =, ¢

7.4. ANSWERING QUERIESIN NORMAL FORM 159

for eachterm ¢ containedinit. Moreover, each of thedigunctsin {¢U{y = 0:},..., ¢U
{y =or},d1,..., 0.}, includes at least one of the diguncts in {¢, ¢1,...,dn} |2
thereforeZ =, {9, ¢1,..., 00} |, aswell.

Correctness Let Z be acanonical (w.r.t. ¥) quas transitive shrub interpretation sat-
isfying . We assumethat ¥ = {¢, ¢1,...,é,} |., SO thereis amapping ¢ such that
T Ey {¢,61,...,0n}].. We proceed by contradiction by assuming that Ib&¢{¢ U

{y201}7“‘7¢U{y:Ok}7¢17"'7¢n}|z-
If Z =, ¢; forsomei =1,...,n,then

I):,‘/}{QSU{y:01},...,¢U{y:0k}7¢17"'7¢n}|z

as well; so we must assume only that Z = ¢. If ¢(y) € OZ, thereis a contradiction
with the assumption that none of thediguncts ¢ U {y = o,} issatisfied. If ¢ (y) ¢ OF,
and since we assumed than n > 1, then (¢(z),v(y)) € RiF N R n...Nn R,
Therefore, by (3.6b) thereisalabel L st. {R;,...,R,} C L, whichisin contradiction
with the conditions for the applicability of the rule itself.

Given the fact that we exhausted al the possibilities, finding only contradictions,
we must reject the given assumption that

I%"/;{¢U{y:01}7"'7¢U{y:0k}7¢17"'7¢n}|z-

Therefore we conclude that

I):{¢U{y:01}7"'7¢U{yzak}a¢17"'7¢n}|z-
0]

Proposition 7.16. If the rolesinvolved in the cycle are not transitive and do not have
any transitive sub-role, then the cyclic nominal introduction ruleis correct and com-
plete.

Proof. We assume that the query before therule applicationisX = {¢, ¢1, ..., dn}.,
¢ satisfies the conditions of cyclic nominal introduction rule, and none of the ruleswith

7.4. ANSWERING QUERIESIN NORMAL FORM 160

an higher priority can be applied to ¢. The query after the application of theruleis

SE{ou{y=oa},....0U{y= o},
€q(1)U¢,...,6q(l)U¢,¢1,...,¢n}|z. (*)

completeness We assume that (x) is satisfied. Let Z be a canonical (w.r.t. X) quasi
transitive shrub interpretation satisfying 32, which isn.r. Z modelsthe query formulain
(x) by hypotheses; therefore thereisamapping) such that Z model sthe query formula
w.r.t. ¢». By definition there should be one of the diguncts such that Z is a model for
it w.r.t. ». However, al the digunctsin (x) are supersets of at least one digunct in
{¢, 1, ...,0n}|,. ThereforeZ models {¢, ¢4, ..., ¢n}|. W.rt. ¢ aswell.

Correctness We must show that if ¥ = {¢, ¢1, ..., dn}., then (x) is satisfied. Let
7 be acanonical (w.r.t. 3) quas transitive shrub interpretation satisfying . By hy-
pothesis Z = {¢, ¢1,...,¢n}|., therefore there is a mapping ¢ such that Z =,
{b,¢1,...,0,}. We proceed by contradiction assuming that Z does not model the
query formulain (x) w.r.t. .

By definition either Z =, {¢} or Z |=,, {¢;} fori =1,...,n (sinceno ¢; contains
an existential quantifier, we can assume that ¢ is a mapping for all the variables). If it
isthe latter case, then Z models the query formulain (x) w.r.t. b aswell, leading to a
contradiction; therefore we must assumethat Z =, {¢}.

Note that, since Z is not a model for (x), then the mapping ¢» must not satisfy
any term ¢t in {y = o | 0o € O} orin |J; eq"¥), otherwise Z would be a mode for the
corresponding disiunct ¢ U {t} in (x). Therefore

o (y) ¢ OF;
o (1) # (xo) for any pair of variables x, x5 occurring in acycle with y.

Let usconsider acycle¢’ C ¢ involving thevariabley in ¢. Obviously Z =, {¢'};
we are going to show that thisisin contradiction with the assumptions we made.

Before analysing the cases we show a property that will be used in the rest of the
proof. Given the assumptions, it is the case that for each term (x;, 20): Ry M ... M R,
in ¢ either {v(z1),¢(z2)} C OF or ¢(xy) = (z;)e for some element e (see
Definition 3.2). If ¢(z5) € OF and (¥(z1), % () € R, then ¢(z;) € OF as
well by (3.2c). Let us assume that ¢(z,) ¢ OF, then ¢)(z;) = ue for some -
ement e of A and u of A? (See Definition 3.2). By (3.2d) either u = (z;) or

7.4. ANSWERING QUERIESIN NORMAL FORM 161

{(¥(z1),u), (u,p(22))} C RyE. Thefirst caseis exactly the result we want to prove;
therefore we assume that {(¢(z1), u), (u, 1 (z2))} € Ry, and we show that thisis a
contradiction. Since Z is canonical, then we can use the property (3.6a) to infer that
thereisatransitiverole S < R;. Thisisin contradiction with the fact that we assumed
that none of the role names involved in any cyclein ¢ is transitive or has a transitive
subrole.

We consider three cases according to the length n of the cycle (cardinality of ¢').

n=1

n > 2

If the cycle contains asingleterm then it must belike (y, y):R; M ... M R,. This
means that (¢(y), ¢ (y)) € R, which isimpossible by Lemma 3.3 because we
assumed that ¢ (y) ¢ O

If the cycle contains two terms, then they must be of the form
{{y,z):Ri ... M Ry, (x,y):S1 M ..M Sk}.

Thisisbecauseif thereisnot any variabledifferent from y, then thereisasmaller
cycle. On the other hand, with more than two different variables and two role
terms, having a cycle isimpossible. Moreover, we assumed that no other rules
can be applied to ¢, therefore there cannot be any equality like z = y in ¢;
nor can the variables x and y appear in the same order in the two role termsin
¢ (i.e like (y,z):Ry M ...MR,, and (y,z):S; M ...MN Sg), otherwise the role
collapsing rule would be applicable. Since ¢)(y) ¢ O we already proved that
¥(y) = Y(x)e and ¥ (z) = ¥ (y)e', which is acontradiction.

Let x; and z, be the two “neighbour” variables of y (i.e. there is a role term
connecting y and z; and adifferent term connecting y and x,). Thetwo variables
must be different, otherwise there will be acycle of length 2. We can distinguish
four cases according to the ordering of the variablesin the terms; let us consider
each one of them.

— Let us assume that the two terms are
<y, .I'1>IR1 M...Mn Rna and <y,$2>251 M...Mn Sk

We showed that ¢)(x1) = ¢ (y)e,, and ¢ (zs) = ¥ (y)e,, fOr somee,,, eg,;
therefore () isnot in O%. This appliesto the next variable = connected
to xq: ether ¢(x1) = ¢(x)ey, Or Y(x) = (x1)e,. Thefirst caseisruled

7.4. ANSWERING QUERIESIN NORMAL FORM 162

out because () cannot be equal to ¢(y) (we assumed this at the begin-
ning); therefore ¢ (z) = v (z)e,. The same arguments can be carried on
for al the subsequent variables in the cycle, and thisis clearly in contra-
diction with the fact that, for the last variable z,, it must be the case that

h(w2) = ¥ (y)eq,.

— Let us assume that the two terms are
<y,$1>2R1 M...Mn Rna and <$2,y>251 M...Mn Sk

Therefore ¢(z1) = ¢ (y)ey, and ¢(y) = ¢ (z2)e, for somee,,, e,. Using
the same argument of the previous case we can show that every variablein
the cycle hasthe property of beingintheform ¢ (z) = ¥ (y)e;. . .exe,. This
isin contradiction with the fact that ¢ (y) = 1(x2)e,.

— Let us assume that the two terms are
(x1,y):Ry M ...MNR,, and (y, z):S1 M...MSk.

Therefore ¢ (z2) = ¥(y)eq, and ¢(y) = ¢ (x;)e, for somee,,, e,. Using
the arguments of the previous case starting from x5 instead of x; we get a
similar contradiction.

— Let us assume that the two terms are
(x1,y):RiM...MR,, and (x,y):S; M ...M Sk.
Therefore ¢ (y) = ¢(x1)e, and ¢(y) = ¥ (z3)e, for somee,. Thisisin
contradiction with the fact that) (x,) and ¢)(x2) must be different.

At this point we exhausted all the possibilities, finding only contradictions. There-
fore we must reject the original assumption that Z does not model (x) w.r.t. ¢». Given
the arbitrariness of the choice of interpretation Z we conclude that (x) issatisfied. [

Rulesthat modify the KB

Proposition 7.17. The nominal elimination ruleis correct and complete.

Proof. Let © = {¢, ¢1,...,d,}|. be the query before the application of the nominal
elimination rule, such that ¢ satisfies the rule conditions, and X' = {¢', ¢1, ..., ¢n}l.
isthe resulting query.

7.4. ANSWERING QUERIESIN NORMAL FORM 163

completeness We assume that X' = {¢, ¢1,. .., ¢n}|, Wrt. nr. interpretations.
Let Z be an.r. canonical (w.r.t. ¥) quas transitive shrub interpretation satisfying X.
We have to show that Z = {¢, ¢1, ..., ¢, }|.. We can distinguish the case in which
{0:P,} C ¥ from the casein which it isnot.

o If {o:P,} C X thenX’ = %; therefore there is a mapping ¢» such that Z =,
{&', b1, ..., 0}, by the assumption that &' = {¢, ¢1,..., dn}|.. ASseenin
the previous proofs we concentrate in the case in which Z |=,, ¢; we just need
to show that 7 =, =z = o. Since we assumed that 7 isn.r., then P,” = {0}
because {0:P,} C X. Therefore ¢)(z) = o because Z =, z:P,, which proves
thatZ =, z = o.

e If {0:P,} ¢ X then the concept name P, does not appear in X, because the
assertion o: P, is added to the left hand side whenever the representative concept
P, isintroduced in the query formula. We define a new interpretation Z' by
adding (or redefining) the mapping P,” = {0”} t0Z.2 7' |= ¥ because X does
not contain any referenceto P,; s0Z' = X U {0:P,}. By assumption thereis a
mapping ¢ suchthat 7' |=,, {¢', ¢1, ..., ¢, }|.. Let usconsider the caseinwhich
T |=4 ¢ asinthe previous case ¢)(z) = oF = o*. In addition we can use the
very same mapping) with Z, therefore Z =, z = o; thisshowsthat Z =, ¢.

Correctness We assumethat ¥ = {¢, ¢1,...,6,}|.. Let Z be a canonical (w.r.t.
¥) quas transitive shrub interpretation satisfying ¥'. We have to show that 7 |=
{&, b1, ..., 0n}|.- Again we distinguish the two cases according to whether o:P, is
aready in . However, in both cases Z |= X because ¥ C Y'; therefore there is a
mapping ¢ such that Z |=y, {¢, ¢1, ..., ¢n}|.. Wejust need to show that if Z =, ¢,
thenZ =, ¢', by showingthat 7 =, z:P,. However, thisistrivially verified because
T =y z = o (by the assumption that Z =, ¢), and o* € P,” because T = ¥'.

0]

Proposition 7.18. The simpleinverserolling up ruleis correct and complete.

Proof. Let Y = {¢, é1,. .., ¢ }|. bethe query before the application of the smplein-
verserolling up rule, such that ¢ satisfiestherule conditions, and X’ = {¢', ¢1, ..., ¢n}l.
isthe resulting query.

21The domain of the interpretation function -Z contains o by definition; therefore the value o is
defined.

7.4. ANSWERING QUERIESIN NORMAL FORM 164

completeness We assumethat X' = {¢', ¢1, ..., ¢, }|. W.r.t. n.r. interpretations. Let
Z be an.r. canonical (w.r.t. ¥) quas transitive shrub interpretation satisfying 3. We
build a new n.r. interpretation Z' equal to Z with the addition/substitution of the inter-
pretation for the new concept name Pg- such that

Pp- ot = {ue AT |(v,u) € RTandv e C*}.

Note that since Px- does not appear either in X or in {¢, ¢1,..., ¢, }|., Z' still sat-
isfiesY, and if 7 = {&, d1,..., 0}, thenZ = {d, ¢1,...,¢n}],. Itiseasy to see
that 7' satisfies C CVR.Pg- ¢;i.e. CT C {u € AT | (v,u) € RT andv € C*} (note
that CT' = C7 because Pj- does not appear in C). Therefore 7’ satisfies ¥/, and by
assumption thereisamapping ¢ such that Z' =y, {¢', ¢1,. .., ¢n}|.. Wejust need to
show that if 7' =, ¢/, then thereisamapping ¢/’ st. I =y ¢.

Let us assume that 7' k=, ¢/, then ¢)(z) € Pr- " ; therefore there is an element
v of AT such that (v, (z)) € RY andv € CT'. We define + as 1[y/v]; note that
sill 7' =y ¢’ because y does not appear in ¢’ by hypothesis. By construction Z’ =,
(y,z)y:Rand I’ =y y:C; therefore I’ =, ¢.

Correctness We assumethat X = {¢, ¢1,...,d,}|.. Let Z be a canonical (w.r.t.
Y) quas transitive shrub interpretation satisfying ¥’'. Obvioudly 7 satisfies ¥ as
well because it is a subset of X'; therefore there is a mapping + such that 7 =,
{¢, b1, ..., 0n}|.. Weneedto show thet if 7 |=,, ¢, thenT =, ¢'.

Let usassumethat Z =, ¢, then ¢(y) € C7; therefore ¢ (y) € VR.Pgr- ¢ because
T satisfies . In addition, (v/(y), ¢ (x)) € R* because I =, ¢; therefore ¢(z) €
Pr- ", whichmeansthat 7 =, ¢'. O

Proposition 7.19. The nominal rolling up ruleis correct and complete.

Proof. Let X = {¢, é1,..., ¢, }|. be the query before the application of the nominal
rolling up rule, such that ¢ satisfiesthe rule conditions, and X' = {¢', ¢1,. .., ¢n}l. IS
the resulting query.

completeness We assumethat X' = {¢, ¢1, ..., ¢, }|. W.r.t. n.r. interpretations. Let
7 be an.r. canonical (w.r.t.) quas transitive shrub interpretation satisfying . We
build a new interpretation Z' by adding (or redefining) the mapping P,* = {oI } to
Z. Theinterpretation Z' is ill n.r. In addition, if o:P, isaready in X, thenZ' = 7
(see the proof of Proposition 7.17). If on the other hand o: P, isnot in X, it iseasy to

7.4. ANSWERING QUERIESIN NORMAL FORM 165

seethat if Z' = {¢p, d1,...,on}]. thenZ = {6, ¢1, ..., ¢, }|, aswell because P, does
not appear either in X or in {¢, ¢1,..., ¢, }|.. Theinterpretation Z' trivialy satisfies
¥'; therefore thereisamapping ¢ suchthat Z' =, {¢', ¢1,. .., ¢n}|.. Wejust need to
show thet if 7' =, ¢/, then thereisamapping ' st. T =, ¢.

LetusassumethatZ' =, ¢'. SinceZ’ =y, x:(3R,.(C N P,) N...MN3R,.(CNEB,)),
then ¢ (x) € (3R,.(C' 1 P,))*; therefore there is an element u of AT = A” such that
((z),u) € Ry = RF, u € CT = CT (because either C' does not include P, or
PY = PY) andu € P*. Notethat P," = {0}, therefore u = oF = o”'. The
very same arguments, applied to (z) € (3R;.P,)* fori =2,...,n, alow usto con-
clude that (¢(z),u) € R;X. We define ¢ as [y /u]. By construction Z =, y = o,
Iy yC,andZ =y (r,y):Ry MN...M Ry,; thereforeZ' =, ¢.

Correctness We assumethat X = {¢, ¢1,...,d,}|.. Let Z be a canonical (w.r.t.
Y') quas transitive shrub interpretation satisfying ¥'. Obviously 7 satisfies > as
well because it is a subset of X'; therefore there is a mapping + such that 7 =,
{¢, b1,..., 0n}|.. Weneedto show that if Z =, ¢ thenZ =, ¢/

Let us assumethat Z =, ¢, therefore there is an element) (y) of AT such that
P(y) = o" (becauseT =y y = o), ¥(y) € C7 (becauseT =y y:C), and (¥ (x), ¥ (y)) €
R N...R," (becauseT =, (x,y):Ri M ...M R,). Inaddition, v (y) € P,* because
7 satisfies X' (0:P, isin X'). Therefore ¢(y) € (IR,.(CNP,) M IR,.P, M ... T
3R,.P)and T =y ¢ O

Proposition 7.20. The cycle breaking and simple cycle breaking rulesare correct and
compl ete.

Proof. Let Y = {¢, é1,. .., ¢, }|. bethe query before the application of the rule, such
that ¢ satisfies the rule conditions, and &/ = {¢', ¢4, ..., ¢, }|. isthe resulting query
after the application of one of the two rules.

completeness We proceed asin the previous Proposition 7.19. Let Z bean.r. canoni-
cal (w.r.t. X)) quasi transitive shrub interpretation satisfying ¥, and Z' defined as Z with
the mapping P,”" = {o”}. Asin the previous proposition, Z' is still n.r. and it satisfies
¥'. Therefore by hypothesis there is a mapping ¢ suchthat 7' =, {¢', ¢1,..., ¢n}l..
As before we assume that 7' |=,, ¢'. We are going to show that Z |=,, ¢ aswell. Note
that in the application of both the rulesthe variables z and y are still in ¢’ (in the cycle
breaking rule either because of the path or because © = y); therefore both «(z) and
¥(y) are defined.

7.4. ANSWERING QUERIESIN NORMAL FORM 166

L et usconsider thesimplecyclebreaking rule; sinceZ’ =, ¢/, then (¢(x), ¥ (y)) €
RY = R/* andtherearen — 1 lementses, . . ., e, of AT = AT suchthat e; € P~
and ((z),e;) € RY = R;*. SinceT isnr, thene, = ... = e, = (y), S0
(v(z),(y)) € Ri* N...N R,"; therefore T =, (v,y):R, M ...MR,. Thecycle
breaking rule is the same.

Correctness The proof is exactly the same as for proposition 7.19 for the nominal
rolling up rule. O

Proposition 7.21. The nominal inverserolling up ruleis correct and complete.

Proof. Let & = {¢, ¢1,...,d,}|. be the query before the application of the nominal
inverserolling up rule, suchthat ¢ satisfiestheruleconditions, and X’ = {¢', ¢1, ..., du}.
isthe resulting query.

completeness We assume that ¥’ = {¢, ¢1,..., ¢n}|. Wrt nr. interpretations.
Let Z be an.r. canonical (w.r.t. ¥) quas transitive shrub interpretation satisfying .
Again, we proceed as in Proposition 7.19 and Proposition 7.18 by considering Z' as
equal to Z with the mapping P,” = {0}, and for eachi = 1,...,n Pp-,* =
{ue AT | (o%,u) € R} if oF € CT or Pp-,* = () otherwise. This interpretar
tion is dtill n.r.; in addition, it satisfies > because al the P, -, do not appear in %,
and either P, appears in © and P,Y = P, because Z is n.r., or P, does not ap-
pear in . The interpretation Z' satisfies the assertion o: P, by definition; now we
are going to show that it satisfies (C' 1 P,) C (VR,.Pg,—, N ... NVR,.Py -,) &
well. Note that CT' = C7? because either P, does not syntactically appear in C' or
PY = P, therefore either (C' 1 P,)T = {o¥'} or (C'1 P,)¥ = 0. In the first
case, let us consider the role name R; for somei = i,....n. If e € A issuch that
(¥ e) € R thene € {u e AT | (oF,u) € R'}; therefore e € Py, -~ by defini-
tion, and o*' € (VR;.Ppg,-,)* because of the arbitrariness of e. Given the fact that this
istrueforali =1,...,nthen (CNP,)* C (VRy.Py-,M...NVR,.Py -,)* . Inthe
casethat (C' 11 P,)* = () theinclusion constraint istrivially satisfied. This shows that
T’ satisfies Y. By assumption thereisamapping ¢ suchthat Z' =, {¢', ¢1, ..., ¢n}|..
We need to show that if we assumeZ’ =, ¢', then thereisamapping ' st. Z =, ¢.

Since we assumed that 7' |=,, ¢/, then ¢(z) € (Pg,-, M ... M Py, -,)* . Therefore
(oF,9(z)) € RY = R fordli=1,...,nand oF € CT = C7 because Py, -,*
is not empty. The new mapping ¢' = ¢[y/o”] is clearly such that Z =, ¢ because y
does not appear in other termsin ¢ by hypothesis.

7.4. ANSWERING QUERIESIN NORMAL FORM 167

Correctness Weassumethat 3 = {¢, ¢y, ..., ¢, }|.. Let Z beacanonical (w.r.t. ')
quasi transitive shrub interpretation satisfying >'. Obviously 7 satisfies ¥ as well be-
causeisasubset of 3'; thereforethereisamapping ¢ suchthat Z =y, {9, ¢1,..., dn}l..
We need to show that if we assumethat Z =, ¢ thenT =, ¢'.

Since I =y ¢, then ¢(y) = of, ¢(y) € C%, and (4(y),9(x)) € R for ll
i=1,...,n. Inaddition, 1(y) € (VRy.Pg,-,M...MVYR,.Py -,)" because T satisfies
the inclusion (C'1 P,) C (VR,.Pg,-, M ...MVR,.P, -,), and ¢(y) € (C N P,)~.
Thereforeforal i = 1, ..., n wehavethecombination (¢(y), ¢ (x)) € R;F and(y) €
(VR;.Pg,-,)*, which implies that ¢(z) € Py-,*. This alows us to conclude that
Ty O

Proposition 7.22. The inverse cycle breaking ruleis correct and compl ete.

Proof. LetY = {¢, ¢4, ..., ¢, }|. bethe query before the application of theinverse cy-
cle breaking rule, such that ¢ satisfiesthe rule conditions, and X/ = {¢', ¢1, ..., dn}l.
isthe resulting query.

completeness Let usassumethat X' = {¢, ¢1,. .., ¢, }|. W.rt. n.r. interpretations,
and let Z be an.r. canonical (w.r.t.) quas transitive shrub interpretation satisfying
Y. We proceed as in proposition 7.21 by considering Z' as equal to Z with the map-
ping P, = {o*}, andforeachi = 1,...,n Py-," = {ue AT | (o%,u) € R’ }.
Again, interpretation Z' is still n.r. and satisfies . Using the same arguments as for
Proposition 7.21 we can show that 7' satisfies ¥’ as well. By assumption there is a
mapping mapping ¢ suchthat 7' k=, {¢', ¢1, ..., ¢, }|.. We are going to show that if
weassumeZ’ =, ¢, then T =, ¢ (note that both the variables « and y maching the
precondition are till in ¢').

Since we assumed that Z' =, ¢/, then ¢(z) € (Pg,-, 1 ...M Py)%, s0
(o, ¢(x)) € RY = RTfordli = 1,...,n. Inaddition, 1)(y) = o’ because
y = oisdill in ¢'; therefore Z =, (y,z):RyN...MR, (i.e. T =, ¢ because
¢ C ¢ U{(y,x): R M... 1T Ry}).

Correctness Weassumethat 3 = {¢, ¢1, ..., ¢, }|.. Let Z beacanonical (w.r.t. ')
quasi transitive shrub interpretation satisfying '. Obviously 7 satisfies - as well be-
causeisasubset of 3'; thereforethereisamapping ¢ suchthat Z =y, {¢, ¢1,. .., dn}l..
We need to show that if we assumethat Z =, ¢, thenT =, ¢'.

SinceZ |, ¢ theny(y) = of, and (v(y), ¢ (z)) € R forali=1,...,n. Inad-
dition, sincet(y) = o’ € P,” wederivethat ¢(y) € (VR;.Py,-,)* forali=1,...,n,

7.5. SPEEDING UP THE ANSWER 168

because 7 satisfies the inclusion P, C (VR,.P -, M ... MVR,.Py -,). This means
that /() € Pp,-," forali=1,... n;therefore T =, z:(Pg,-,M...M Py -,) (i.e
T =y ¢). O

7.5 Speeding up the answer

The major problem for the performances of the query algorithm lies in the nondeter-
ministic substitution of the variables with the individual names. Note this is true for
both the transformation of a“retrieval” query into a boolean query (see Section 7.1.2),
and the actual boolean query answering (see Section 7.4). Therefore, reducing the
number variable substitutions to perform, and the number of individuals which take
part in each substitution is the way to go for a better performing algorithm.

The variables which need to be substituted by individual names cannot be reduced
in the phase of transformation of a query into a boolean query, but there are a lot of
possibilitiesin the application of the transformation rules.

Example 7.6
Let us consider acyclical query like

{{z,y):Ry, (y, 2):Ro, (2, x):R3, (x,x):S}.

This query contains two cycles. one involving the variables z, y, and z, and a second
congtituted by the loop in = (i.e. (x, z):S). The cyclic nominal introduction rule can
be applied to any of the tree variables. However, if it is applied to =, both the cycles
are “eliminated” at once; while applying the rule to either y or z leavesthe loop in z
in each one of the newly generated digjuncts.

Note that, in this example, choosing = reduces the size of the transformed query of
alogarithmic factor.

For reducing the number of candidate individualsfor a variable name, we are con-
sidering two different techniques. The first one relies on the concept terms contained
in the query, while the second on the structure of role terms.

They both rely on the observation that if asubset of thetermsin adisunct are never
satisfied, then neither the digunct will be satisfied. Therefore, if in a query contains a
concept term like z:C, and the variable x must be substituted by an individual name, we
can just consider the subset of individual nameswhich can be instance of C' (verifiable
by instance checking tests like ¥ = a:—C', see Section 2.2). Note that for variable

7.5. SPEEDING UP THE ANSWER 169

name different from thejoining variable z (see Section 7.3.1) we can even consider the
more restricted set of individual names which are instance of C'.

We can make an anal ogous consideration for role terms, with the difference that the
kind of role assertionsin a SHf KB are not very expressive. In particular, they do not
allow to express incomplete information as the concept assertions do. Using concept
assertions we can states something like a:C' LI D which leave a degree of uncertainty
about the properties of a.?? This is impossible to do for role assertions, which are
usually limited to simple statementslike (a, b): R. Thislimited expressivity for rolesis
shared by most of the DL s studied and/or implemented.

This limitation can be used in order to restrict the number of candidate individu-
as. Let us consider for example a term like (x, y): R, where the variable y must be
substituted by an individual name. In DL like S#f we can restrict to names which
appear explicitly in assertions like (a, b): R as second element of the pair.?® Note that
this argument is no longer valid for DLs providing the inverse role constructor; on the
other hand we are confident that effective optimisations can be devised in most of the
Cases.

We did not investigate these ideas yet, and all these optimisations must be carefully
verified in order to avoid incomplete or incorrect answers. This will be subject of our
future work.

2Note that the incomplete information may be stated in more subtle ways and/or implied by the
terminology.

2Note that the role hierarchy must be taken into account aswell, therefore considering role assertions
with sub—rolesof R aswell.

Chapter 8
| mplementation and testing

The main goal of our DL system implementation is not the delivery of a complete and
robust system, but the development of a prototype to be used as test bed for verifying
the validity of our approach and for suggesting new directions to investigate.

Thefirst objective was the analysis of the overall performances of the system com-
pared to other state of the art DL reasoners. This point isimportant because we know
that the naive implementation of the tableaux—ike method for DL s leads to unaccept-
able performance (see Horrocks [1997]). Modern DL systems, on the other hand,
adopt a series of optimization techniques which provide exceptional results (see Hor-
rocks and Patel-Schneider [1999], Haardlev and Moller [1999, 2000c]). Unsurpris-
ingly, these techniques provide better resultsif the algorithm has control over the whole
reasoning process. In our case, on the other hand, we have a sharp separation between
the precompletion phase (dealing with Abox assertions) and the invocation of the ter-
minological reasoner. The other goal of the experimentation was to understand the
impact of different optimisation techniques applied at the Abox precompletion level.

The focus of this chapter is not to describe the actual software artifact we have
developed, but rather on the underlying ideas and techniques used.

8.1 Description of the system

The DL system has been written in Common Lisp because it is an excellent language
for symbolic manipulation, and it enables the programmer to easily extend and modify
the code to experiment with different approaches.

Most available DL systems have been written using Lisp, mainly for the above
mentioned reasons, but also because we are dealing with highly intractable algorithms;

170

8.2. OPTIMISING THE ALGORITHM 171

therefore, twiddling with a low level programming language for gaining an order of
magnitude (which is not that easy against modern Lisp compilers) is pointless without
first investigating higher level optimisations, which can lead to gains of several order
of magnitude.

Interaction with the system is performed by means of Lisp function and macros
designed to be conform to the KRSS standard (see KRSS), as well as compatible with
the syntax used by the FaCT system (see Horrocks [1997]).

The terminological reasoner used is FaCT. Since it iswritten in Common Lisp as
well, itsintegration in the code as alibrary was very easy, and a natural choice since it
isthe system used in our research group. However, in principle, any DL terminol ogical
reasoner can be integrated as alibrary.

8.2 Optimisingthealgorithm

The experience with previous DL systems shows that the direct implementation of the
tableaux—based satisfiability algorithms provides very poor performance, unaccept-
able for any real application. Even if the experiments with other DL systems have
been mainly at the terminological level, we can try to extract some lessons from those
experiences (see Haarslev and Moller [1999], Horrocks and Patel-Schneider [1999)).

One of the advantages of the precompletion technique is that the precompletion
phase is completely separated from the terminol ogical reasoning, so optimisation tech-
niques implemented at the two levels do not interact adversely. The terminological
reasoner we are using (i.e. FaCT) is already optimised, therefore we focus on the opti-
misation we can perform during the precompl etion.

Among the answers we are looking for from the experiments is whether optimisa-
tions made at the precompletion level make areal difference, and which ones produce
the best results. Given the fact that during the precompletion no new individuals are
created, the source of complexity must be related to the nondeterminismin the Li—rule.

8.2.1 Evaluation strategy

According to the formal description of the algorithm in Chapter 5, the order in which
the rules are selected is irrelevant to the correctness and completeness of the algo-
rithm.! However, for specifying the actua algorithm we decided to consider al the

!Note that with S#f thisis no longer true for terminological reasoning. The differenceisthe absence
of the 3—rulein the generation of precompletions.

8.2. OPTIMISING THE ALGORITHM 172

constraints associated to a given individual before moving to a different individual.
Note that there is always the possibility that constraints associated with different in-
dividuals cause the addition of new constraints for the individual which has been pre-
viously considered. In this case, eventually the individual in question will be selected
again.

Intuitively, this strategy may give good results when there is not a strong interde-
pendency between individuals(i.e. role assertions). On the other hand, it may cause an
unnecessary overhead if there are “easy” contradictions in individuals not yet consid-
ered.

8.2.2 Axiom absorption and lazy expansion

General axioms are one of the major sources of nondeterminism; in fact, in every
axiom C' C D is hidden the digunctive formula D LI =C applied to every individual
name. One the most effective ways of reducing the effects of axioms is the so called
absor ption technique used in conjunction with lazy expansion of concept names (see
Horrocks and Tobies [2000]).

Roughly speaking, the idea behind this technique is to transform a general axiom
into the special form A C C' where A is aconcept name. Then the axiom is treated as
a sort of definition for the name A and ignored until a concept constraint of the form
0:A is examined; at this point the “definition” C' of A is added to the label of o (i.e.
the new constraint o:C'). This basic idea can be extended to negated concept names as
well; i.e. having definitions of the form =A C C'. However, their combination must
be used carefully to avoid incorrect results. We implemented the absorption algorithm
described in Horrocks and Tobies [2000].

8.2.3 Lexical normalisation

Concept expressions are normalised and encoded according to the transformation rules
described in Horrocks and Patel-Schneider [1999]. In the normal form, concept expres-
sions can be concept names, conjunctions of normal form concepts, universal quantifi-
cation constructors, and the negation of a normal form. Conjunctions are represented
as sets, so the order of the conjuncts does not affect the syntactic equivalence of dif-
ferent expressions; in addition, nested conjunctions are flattened (e.g. expressionslike
((Cy mCy) N D) aretransformed into (Cy M Cy M D)).

Normal form expressions are uniquely associated with an identifier which is used

8.2. OPTIMISING THE ALGORITHM 173

Concept expression Normal form

1 T

Ciu...uC, =(M{=Cy,...,~Ch})
dR.C —(VR.—C)
cin...nac, n{C,...,Cn}
n{n{C,...,Cn},D1,..., Dy} 1{Cy,...,Cn,Dy,..., Dy}
n{C} C

VR.T T

n{T,Cy,...,Cy} n{C,...,Cp}
I_I{—|—|—,Cl,...,0n} -1
n{c,-C,Cy,...,C,} T

Table 8.1: Lexical normalisation rules

in place of the complex expression itself. A table is used to relate the normalised
expressions to their respective identifiers. In this way, every time an expression is
encountered a second time during the parsing, the very same identifier is used to rep-
resent it. This mechanism enables the possibility of detecting trivial inconsistencies at
an early stage, without the necessity of expanding the concept expressions.

For example, let us consider the expression (3R.(C' U D) MVR.(=C 1 —D)). The
parser is recursively invoked over its subexpressions, first the expression 3R.(C LI D)
is transformed into the negation of an universal quantification —(VR.M {—~C,—D}).
During the transformation each subexpression is associated to an identifier, and the
identifier table will contain the mappings id, — M {~C,—-D}, and id, — VYR.id;.?
During the parsing of the second top level conjunct YR.(—C' M —D) the parsed subex-
pressions are recognised as stored in the table and substituted by their identifiers. So
the resulting normal form ism {—ids, id, } which isimmediately normalised as —T.

8.2.4 Backjumping

Inherent unsatisfiability concealed in sub-problems can lead to large amounts of un-
productive backtracking search known as thrashing.

Example 8.1

2Therewill also beidentifiersfor the other subexpressions, but these are sufficient to show our point.

8.2. OPTIMISING THE ALGORITHM 174

Consider the set of constraints

a:(CyUDy),...,a:(CyUDy),a:VSVYR.—C,
b:3R.(C'M D), (a,b):S ’

which may cause the exploration of 2" alternative combinations of constraints on a
deriving from the concepts (C, U D,),. .., (C, U D,), while the true cause for the
failureisrelated totheindividual b. For example, thiswill happenif therule application
strategy forces the evaluation of all the constraints associated with an individual before
considering a different individual.

This problem is addressed by adapting aform of dependency directed backtracking
called backjumping, which has been used in solving constraint satisfiability problems
(see Baker [1995]). Backjumping works by |abeling concept constraints with a depen-
dency set indicating the branching points on which they depend. A concept constraint
a:C' depends on a branching point if a:C was added to the label by the Li—rule gener-
ating the branching point or if a:C' was generated by a different rule and the concept
constraintsinvolved in the rule depends on the branching point.3

For example, the constraints {a:VR.C, (a, b):R} generate the new constraint b:C
by means of the V—rule. The constraint b:C' inherits the very same dependency set as
the constraint a:VR.C'.

When aclash isdiscovered, the dependency sets of the clashing concept constraints
can be used to identify the most recent branching point where exploring the other
branch might alleviate the cause of the clash. The algorithm can then jump back over
intervening branching points without exploring alternative branches.

In more detail, when a clash is detected the union of the dependency sets of the
clashing concepts is taken, and backtracking is performed. During backtracking, each
branching point encountered is checked against the dependency set to seeif it isa
member. If it isnot in the dependency set, then the other branch isignored and back-
tracking continues. If the branching point isin the dependency set, and the other branch
has not been explored, then backtracking stops and the algorithm proceeds with the ex-
ploration of the second branch. If both branches have already been explored, then the
dependency sets from the two branches are unioned and backtracking continues.

Note that when a contradiction is discovered by the verification of a label, there
isno way for our algorithm of knowing the source of the contradiction; therefore, is

3Since new role assertions are never introduced, the dependency is only related to concept expres-
sions.

8.2. OPTIMISING THE ALGORITHM 175

returned the union of the dependency set of all constraints of the label. As we are
going to show in Section 8.2.6, we can modify the algorithm in order to make the
backjumping more effective.

With respect to the given example, the precompletion algorithm generates the first
precompl etion

a:(CiUDy),...,a:(Cp, U Dy),a:YSVR.-C,
a:Cy,...,a:C, ,
b:3R.(C N D), b:VNR.-C, (a,b):S

by choosing the first concept for each constraint containing the disjunction, and ap-
plying the V—rule to the constraints a:¥S.VR.—~C and (a,b):S. In this process, the
algorithm generates n different branching points, and every constraint a:C'y, .. ., a:C),
islabelled with a different branching point. The constraints associated with b have no
branching point associated with them (this indicate a dependency with the top level),
so when the terminological reasoner discoversthe inconsistency of the label associated
with b there is no reason to explore the alternative options a:D,,, . . ., a:D;.

8.2.5 Abox partitioning

Analysing the precompletion algorithm, it is easy to realise that individuals can in-
fluence each other only by means of role assertions. In addition, these assertions are
“static”, in the sense that they do not change during the precompletion process. This
guarantees that unconnected parts of the Abox can be precompleted independently.
Thewhole KB is satisfiable iff each connected component isindependently satisfiable.

This property makes little difference in case of KB satisfiability, since the only ad-
vantage is on the memory occupation.* However, it can be a significant improvement
in case of the instance checking problem (i.e. verifying whether an individual is mem-
ber of a concept in every model of the KB, see 2.2). In fact, this problem is usually
reduced to KB (un)satisfiability: givenaKB (7, .A), an individual a, and a concept C,
(T, A) E a:C iff theKB (T, AU {a:=C'}) is unsatisfiable. Knowing that the initial
KB (T, A) is satisfiable (this is usually the case) alows us to verify the satisfiability
of the KB by considering only the assertions about individuals “connected” with the
name in question (the individual). The rest of the Abox can be ignored.

“4Even though one can use the property for loading into the main memory only the part of the Abox
relevant for the current precompletion (see for example Elhaik and Rousset [1998]).

8.2. OPTIMISING THE ALGORITHM 176

8.2.6 Usingtheterminological reasoner

According to the described agorithms the terminological reasoner is used only when
aprecompletion is generated. However, it can be used in different phases of the algo-
rithm in a more sophisticated way. The starting assumption is that the terminological
reasoner is more efficient than the precompletion phase; therefore it can be used not
only for verifying the consistency of a precompletion but also for guiding the algo-
rithm. In addition, isreasonable to expect that the Abox is much bigger than the Thox.

Result caching As pointed out in Donini et a. [1996a], caching the satisfiability
resultsfor the tested concept expressionsis essential for maintaining the complexity of
the actual algorithm in the EXPTIME theoretical complexity. In addition, in our case it
can allow usto avoid the overhead of converting a concept expression from the internal
representation to a format suitable for the terminological reasoner.

As described in Section 8.2.3, the system keeps a table of al the normalised con-
cept expressions the system comes across during the precompletion. When the ter-
minological reasoner isinvoked for checking the satisfiability of a concept expression
(the conjunction of one or more concepts in a label), the result is stored in the table
aswell. If aconcept expression, having a cached satisfiability value, must be checked
again, its cached value is returned without invoking the terminological reasoner again.

Early inconsistency detection The first alternative use of the terminological rea-
soner is as an early inconsistency detector. Thisis based on the observation that if the
constraints applied to an individual are inconsistent they will be inconsistent in any
generated precompletion. Therefore the label of an individual can be verified even
before an actual precompletion isgenerated. If an individual isfound having an incon-
sistent label, the algorithm stops expl oring the current search branch and backtracksto
the appropriate saved state of the precompletion process.

Taking this approach too far can be damaging if the terminological reasoner is
called too often. We decided to use the focusing/un-focusing of the precompletion
process on anindividual asatrigger for thelabel verification. Thelabel isverified when
all the constraints associated to an individual have been considered, before considering
adifferent individual. If during subsequent precompletion of the rest of the KB no new
constraints are added to an individual which as been already precompleted, thereisno
reason to verify itslabel again.

8.2. OPTIMISING THE ALGORITHM 177

Modal verification Backjumping is an essentia technique for pruning the search
space, however it works properly only if we have precise knowledge of the constraints
which generate a clash. Our problem is that in case of a clash detected by the termi-
nological reasoner, we cannot get the information about the constraints responsible for
the clash. We could assume that any concept in the label can be the cause of the clash,
but this would make the backjumping technique much less effective.

For example, thelabel {C, -D,35.C,3R.C,VR.D} isinconsistent if the terminol-
ogy containsan axiom like C' = —D. However, the inconsistency can only be detected
by the terminological reasoner. Once the unsatisfiability of the label is discovered, the
system cannot tell which element of the label caused the inconsistency; in principle it
can even be among the set {C, —D}.

We can improve the agorithm observing that if during the precompletion a clash
has not been detected, the only possible cause for an inconsistency must be associated
with an “anonymous’ element whose existence is enforced by an existential quantifi-
cation. This is because the tree-like model property of the logic guarantees that no
constraints can be “pushed back” from these “anonymous’ elements, and contradic-
tions generated in the propositional part of the labels (e.g. like C' and —~(C") are detected
during the precompl etion process.

When there is the necessity of verifying the satisfiability of a label, the standard
algorithm builds a new concept by conjoining al the concepts in the label. With the
modal verification technique, the only concepts considered are the universal and exis-
tential quantifications(i.e. AR.C' and VR.C'). Thealgorithm selectsthe smallest subsets
of the label which can be independently verified without compromising the compl ete-
ness of the algorithm. In the previous example the terminological reasoner is used to
verify the two concepts (3R.C' M VR.D) and {35.C'} independently.

The basicideafor selecting these subsetsisto consider each existential conceptina
different subset, and adding the universal restrictions which can apply to it (i.e. having
the same or a more genera role name). However, this simple approach does not work
with S7Hf, because of the interaction between functional role and role hierachy. In
fact, two (or more) of those “anonymous’ elements may be forced to co-refer by a
common functional super-role (see Section 3.1.1, and Example 7.5). For example,
alabel containing the two concepts JR.C' and 35.—-C), is not satisfiable if there is a
functional role F' such that R < F and S < F. This contradiction would not be
detected by considering the two existential concepts separately.

8.2. OPTIMISING THE ALGORITHM 178

The solutionfor thisproblemisto check existential concepts whose role share com-
mon functional super—roles together. This must be extended to “chains’ of roles like
R=<F,,S=<F,S<F,andT < F; aswell (see Example 7.5). Universa concepts
alone do not generate contradictions without the actual existence of a successor; i.e.
two concepts like VR.C' and VR.—C' are not contradictory, unless they are combined
with an corresponding existential concept (or Abox assertion). Therefore they do not
need to be verified by themselves (they are considered by means of exitential concepts,
or of the corresponding precompletion rule).

Using this technique, in case of unsatisfiability we can narrow the set of involved
constraints. Therefore it can be extremely useful in conjunction with backjumping,
because it enables a more precise identification of the backtrack point responsible for
the clash.

Example 8.2
L et us consider the following variation of Example 8.1

a:(Cy U Dy),...,a:(Cy U Dy),
a:VR.~C, a:3R.(C' 1 D) '

In this case backjumping alone would not provide any improvement because the gen-
erated precompl etion

a:(Cy U Dy),...,a:(Cy U Dy),
a:Cy,...,a:C))
a:YR.—-C,a:AR.(C 11 D)

is associated with the single individua a. Therefore, the terminological reasoner is
invoked with the concept

(CyuDy)n...n(C,UD,)ynCyN...NC,NVYR.~CN3IR.(CN D),

and the algorithm is unable to detect which constraints are the cause of the unsatisfia-
bility.

By checking the modal part only, the terminological reasoner isinvoked with the
concept VR.-C 1 3R.(C' 1 D). When the unsatisfiability is reported, the algorithm
knowsthat the clash is generated by one of thetwo constraintsa:VR.—C', a:3R.(C 11 D)
and the backjumping is more effective.

8.2. OPTIMISING THE ALGORITHM 179

I nstance checking by subsumption The terminological reasoner can sometimes be
used to avoid precompletion in case of instance checking, by using an approximation
of the Most Specific Concept technique (see Era and Donini [1992]). The idea is to
build a concept expression which is guaranteed to contain the individual, and is as
specific as possible. Thetrivial way of doing it is by conjoining all the conceptsin the
label of the individual, but the role constraints can be considered as well to narrow the
expression by using existential quantification.

For example, from the set of constraints {a:C, (a, b): R, b:D} we know that the in-
dividual « must be containedin the expression (C3R. D). Thisprocess can be carried
on for different levels of role assertions (e.g. b can be related to athird individual ¢ or
even to « itself); we decided to build the MSC by stopping when a cycle is detected.

Now, let us assume that we calculated the MSC associated to the element « and
we cal it MSC,. If we are interested in verifying whether the individual « isin the
extension of the concept C' in every interpretation, we can first check if M SC, is
subsumed by C' or by —C' before performing any precompletion. In fact, if MSC, is
subsumed by C' then @ isan instance of C', whileif it is subsumed by —-C' we know for
sure that & cannot be an instance of C' in any interpretation satisfying the KB.

8.2.7 Other techniques

Query caching If aninstance checking like (7, A) = a:C is verified, the assertion
a:C' is a logical consequence of the KB; therefore the new KB (7, AU {a:C}) is
equivalent to the original one. In addition, the proof for the original instance checking
problem can be rather involved.

The idea behind the instance checking is to add the results of positive instance
checking problems as new assertions in the KB. This can be useful in cases in which
the same query isissued again, or when a contradiction can be detected earlier because
of the new assertions.

Semantic branching Semantic branching is atechnique for exploring digoint bran-
ches of the search space, when a nondeterministic rule must be applied (see Horrocks
and Patel-Schneider [1999]). When a constraint containing a digunction constructor
(i.e.a:Cy U ... U C),) must be expanded, the Li—ule selectsthefirst digunct and addsiit
to the constraint system (i.e. a:C';). If the new constraint causes a contradiction, the al-
gorithm backtracks and the second digunct C'; is choosen. The process continues until
either a satisfiable precompletion isfound, or all the possibilities have been exhausted.

8.3. EXPERIMENTS 180

This method is called syntactic branching, because it follows the syntactic order of the
disiuncts in the concept expression. However, the options are not necessarily digoint,
so there is nothing to prevent the recurrence of unsatisfiable constraints in different
branches.

We have not implemented semanting branching in the way it is described in Hor-
rocks and Patel-Schneider [1999]. This is because it requires a completely different
backtracking mechanism, and we wanted a technique which could be easily activated
or deactivated. What we do instead, is a modified version of the syntactic branching
where every time a new digunct is tried, the conjunction of the negation of previous
failed choices are added as well. For example, if the first option a:C fails, the new
constraints a:Cs and a:—C aretried. If the second choice failsaswell, the third option
is a:C5 with the constraint a:(—C4 M —C5), and so on util the last option. The ideais
that the negated concept inserted would cause contradictions to be detected at an early
stage, pruning the useless part of the search space.

Unfortunately, thisimplementation is far from optimal, because it may suffer the
overhead of evaluating the newly introduced constraints; in fact, with the tests we used
the optimisation did not improve the performance of the system (although, it has not
degraded either).

8.3 EXxperiments

The main purpose of the experiments we performed with the system was to verify the
feasability of the approach in terms of performance. We compared our implementation
with Race (see Haarslev and Moller [2000a]) because it is the fastest available Abox
rasoner, and it provides a superset of SHf (it has unqualified number restrictions as
well). The comparison of Race with other DL systems can be found in Franconi et a.
[1998b].

8.3.1 DL benchmark suite

The main problem in performing experiments with an Abox reasoner is the lack of
real data (i.e. KBs). For our experiments we used the synthetic Abox tests of the DL
benchmark suite.® The DL benchmark suite is a collection of tests for DL systems
which has been introduced for the DL’ 98 workshop (see Horrocks and Patel-Schneider

51t is available at the URL http://kogs-www. i nformati k. uni - hanburg. de/
“moel l er/dl - benchmark-suite. htn .

8.3. EXPERIMENTS 181

[1998b]). The test suite was designed according to a structure which has been first
used for the Comparison of Theorem Provers for Modal Logics at Tableaux 98 (see
de Swart [1998]).

The test suite is mainly oriented towards terminological reasoning, because the
tests were originated in the modal logic community. There are 9 classes of tests
(k_branch_n, k_d4.n, k_dum_n, k_grz n, k_lin_n, k_path_n, k_ph_n, k_poly_n, k_t4p_n)
each one containing different instances of problems of increasing difficulty. Each in-
stance is automatically generated according to a schema related to the class, and it
consists of a Thox, an Abox and a set of Abox queries.

Each instance is evaluated by loading the knowledge base (i.e. Tbox and Abox),
then the KB satisfiability is checked and al the Abox queries are evaluated. If the
system is unable to evaluate completely all the queries within a CPU time limit of 500
seconds, the test for the current instance is aborted.

For each class the benchmark starts with the easiest instance (the first) and con-
tinues until al the instances for the class are evaluated, or a timeout interrupts the
evaluation. The number of the latest instance the system has been able to evaluate is
recorded together with the CPU time spent to evaluate it, and a new class of problems
Is considered.

Abox test instances derive from the concepts generated for the Concept Satisfia-
bility Tests (see Horrocks and Patel-Schneider [1998b]). The Thox is generated by
naming all the sub-concepts appearing in the test concept, while the Abox is generated
from the model generated by a satisfiability test over the concept itself.

This approach has the advantage of being well defined, so the results of each Abox
query isknown in advance; thisis crucial for verifying the correctness of the DL sys-
tem. On the other hand, it has several disadvantages that make the tests unsatisfactory
asexamples of realistic problems. Firstly, the originating concepts contain asinglerole
name, and thisisvery unlikely in any real KB. The second problem isthe terminology.
Since al the sub—concepts are recursively named the resulting Tbox is unfoldable (i.e.
acyclic and definitional, see Section 2.1.2), and this means that it can be considered
as an empty terminology. The last problem of the synthetic Abox testsis the fact that
Aboxes are built starting from amodel generated by a tableaux based DL system for a
concept. The kind of models these systems generate are not unstructured, but they are
always tree shaped and mostly fully connected. Obviously they cannot be taken as a
representative sample for generic KBs.

As we are going to show in the next section, the inadequacy of the data tests is

8.3. EXPERIMENTS 182

highlighted by some of the results of our experiments. Unfortunately, these synthetic
Abox tests are the only coherent suite for testing DL systems, so we must make the
most of them. In performing the experiments we were not interested in the absolute
performance, but on the actual behaviour of the system with different optimisation fea-
tures activated. However, the results must be considered in the light of their limitations.
We do not think that the available Abox tests reflect realistic KBs, so they cannot give
an estimate of the size/type of KB our system can handle.

8.3.2 Measurements

Our objective is to etablish a correlation between the performance of the system on
different tests and the behaviour of the optimization techniques. Some of the different
optimisations mentioned in Section 8.2 can be turned on and off by flags, and sev-
eral counters have been placed in crucial parts of the code to obtain a picture of the
behaviour of the system during the evaluation of a tests. For example, we counted
the number of times the knowledge base is precompleted, in contrast with the times
the MSC test is sufficient to answer an instance check. Another counter registers the
number of backjumps which have been performed.

We assumed that each class of tests presents a different pattern, therefore we took
separate measurements for each class. The results are summarised in Table 8.2, Ta-
ble 8.3, and Table 8.4.

Results of the experiments are grouped by the class of tests, and each row shows
the resultsfor the system with a particular set of optimisations. Asareference, thefirst
row of each class showstheresults of the Race system. The following rows contain the
results obtained by our system with different configuration of optimisation techniques.
The results obtained by our system appear in decreasing order of performance, so the
first row contains always the best result, and the last the worse. We chosen this order
because it highlights the impact of the different optimisations on the performance of
the system.

All the experiments have been performed on a machine equipped with a Celeron
450 MHz processor, with 256 Mb of main memory and running Linux with the kernel
version 2.2.17. Both the systems are written in Common Lisp and run using Allegro
Common Lisp version 5.0.1.

We will first explain the meaning of each column in the tables, then we will try to
draw some conclusions from the results of the experiments.

The System field shows the active optimisations with our system (aFaCT) or the

8.3. EXPERIMENTS 183

version of the Race system that has been used. The six different optimisations which
can be activated are®

LABEL-MODAL-CHECK enable the modal verification discussed in Section 8.2.6;

CHECK-BEFORE-PRECOMP enable the verification of the satisfiability of the la-
bel of an individual before starting to precomplete it (the verification at the end
is aways performed);

MSC-CHECKING the Most Specific Concept of an individual is build and used for
the instance checking before the actual precompletion of the Abox;

BACKJUMPING enable the backjumping;
QUERY-CACHING enable query caching (see Section 8.2.7);

SEMANTIC-BRANCHING activate the semantic branching (see Section 8.2.7).

As we said above, the configuration opt6 has all these optimisation switches ac-
tivated, then at each different configuration one of the switches is turned off. So in
the configuration opt5 the MSC-CHECKING is turned off, in opt4 the QUERY-
CACHING, inopt3 the SEMANTIC-BRANCHING, in opt2 the CHECK-BEFORE-
PRECOMP, in optl the LABEL-MODAL-CHECK, and finally in optO the BACK-
JUMPING isturned off aswell.

We could have tried every combination of the six flags, but it would have taken
too much time to run, and a volume of result data rather unmanageable. Therefore we
decided to start with all the optimisation turned on, and disable a feature at each step.
This gives us seven different configuration of optimisations, named from opt6 to optO.
With opt6, all the optimisations are active, while with opt0 they are all switched off.

In the configuration opt5 the MSC-CHECKING isturned off, in opt4 the QUERY-
CACHING, inopt3 the SEMANTIC-BRANCHING, in opt2 the CHECK-BEFORE-
PRECOMP, in optl the LABEL-MODAL-CHECK, and finally in optO the BACK-
JUMPING is turned off as well. The order is based on the our experience with the
system, wefirst eliminated the optionsthat we thought did not impact the performance.
The first flag MSC-CHECKING is an exception, because the use of subsumption to
perform instance checking is not an optimisation which impacts on the behaviour of
the algorithm.

5The remaining techniques we mentioned in the previous section are always active.

8.3. EXPERIMENTS 184

The next two columns Last Instance and Duration show the last instance of the
class that has been solved, and how many seconds of CPU time have been used for
solving that instance. The following fields are the value of the different counters.

All-Instance-Checks shows the total number of instance checks that have been
performed, while Prec-Instance-Checks indicates the number of them which have
been performed by precompletion. Note that unless the MSC-CHECKING is active,
these two counters have the same value.

Backjumping counts the number of times the following options of a backtracking
point have been ignored because of the backjumping optimisation. The counter isin-
cremented at every backatrack point, so for a single failure more than one backtrack
points can be “skipped” (see the example in Section 8.2.4). Therefore its quantitative
value is not very significant; however, the order of magnitude gives an idea of how
much the backjumping is “active”. Its value compared with the number of clashes de-
tected gives an idea of how “deep” the backjumps are (how many backtracking points
areignored in a single backtrack).

Call-Reasoner-Full-Label and Call-Reasoner-Modal-Part count the number of
timesthe terminological reasoner has been invoked to verify the satisfiability of alabel.
Sat-Label on the other hand counts the total number of times the label has been ver-
ified. This number istypically higher than the sum of the two previous ones, because
the satisfiability value of the label could have been cached (counters Cached-Clash-
Label and Cached-Sat-Label), or acontradiction isimmediately detected among the
concepts of the label (Simple-Clash or Bottom-Detect, this latter one detects the
presence of an explicit 1 contraint in the label, usually added by a concept normalisa-
tion.) Finally, the counter Label-Clash shows haw many times the verification of the
satisfiability of alabel returned afailure.

8.3.3 Noteson results

The first thing worth noticing is the fact that most of the instance checking tests can
be solved by terminological reasoning only, without precompleting the KB. This can
be observed by considering the value of the counter Prec-Instance-Checks when
the system has the MSC-CHECKING enabled (configuration opt6). In all classes
except k_d4_n and k_grz_n all the instance checks are solved without precompleting
the Abox, and even in those two classes over 98% of the instance checks are solved

185

8.3. EXPERIMENTS

Arewwins siuswi Ledx3 :z'galoel

0 | 6T6E T 0 YRAYA 99G6 0 3956 0 f44 f44 860 T (O1do) 10e4e ~
0 | ST€ 8¢ 0 0.2 0€S 20S 0 8GET 18 18 €80 Z (z1do) 1oee | &
0 | E¥080T | 96S¥] LG€LL G0T96 ¢18S8 695 66669 81¥ | 81V 61°06T | 8 (s1do) 10ee _w
0 | 20076 06T 0 COEVIT | PE96LT | O vvv6.1T | €T68E 869 | 869 /0°0¢€ | 0T (T3do) 1DEdE =
0 | EvevOT | €616 1¢ | 9Y€00T | T/S6ET | 8TV8TT | 6EETT €/6T¢T | 90L | 90/ T7'€2T | 0T | (#1do) 1Oede
0 | 92977 89€0T TZ | 8TEETT | ¥2.VST | 89YCET | L98TT /8¥82T | 60L | 60L 8'0CT 0T (£1do) 10ede
0 | ¥S.T. €eL 0 L6ES9 8¢G/9 /¥099 8y, G8ST 0 S0TZ | 62227 | 9T | (91do) jDede
T1€€E8E | €T Z'T 9%kl
0 | 09860T | V€ 0 G9189 £9878 0 62878 0 8¢ 8¢ [STAl0] T (O1do) 10e4e | =~
¢ | 08€99 143 0 1874743 0S8¢e 0 ¥18¢€ GG9¢ /0T | 20T 16907 | ¢ (Tido) 10ee | R
Z | 6¥299 Ve 0 ¥S60€ 129¢¢€ G8GCE 0 GST8 /0T | 20T S'T0T Z (21do) 10ede 5
¢ | 90€89T | 68VT 0 98661 09€06 G2/lv8 v £069¢ /0T | 20T GE'18 4 (€1do) 10ee
Z | 86VTI6T | VEST 0 68968 VEYO0T | 80916 68¢v 22982 /0T | 20T 1218 Z (1do) 1Dede
0 | 0ceovT | 8STT 0 YAR%4%°] 29¢el 6089 oT0g ¥911¢ /0T | 20T 9/°'€9 4 (s1do) 10ee
0 | 0880¥T | S68 0 28599 8G6¢/L S17969 811¢ 00T T L0T S0°L Z (91do) 1D0ede
/G6T Z Z'T 9%kl
0 | €6€69 AN 0 CE6GT 161791 0 6/.1v9T 0 18 18 8.0 T (O1do) 10e4e ~
0 | 909T0T | 2T 0 11862 8686¢ 0 9886¢ G881 16T | T6T 182 | ¢ (T3do) 1DEdE m.
0 | TTOE6 ¢l 0 16¢6T CVEBT 0EE6T 0 £2¢evs 16T | T6T 1) 4 (21do) 10e4e 3
0 | S0TO06 o€ 0 LVS8T 1598T G/G8T °1%4 0c2/.¢cs 0 16T €8'6 Z (91do) 10edqe | 7
0 | /G216 9¢ 0 ¢/681 o161 02681 8T GTGES 16T | T6T 19’8 4 (€1do) 10ee >
0 | 790S. 9¢€ 0 99/GT7 GE6ST GT/.SGT 8T S897 16T | T6T 6€'8 Z (1do) 1Dede
0 | STS9. e 0 6V6ST /09T 9/8ST 99T 0ST.LV 16T | T6T 28y 4 (1do) 10ee
: c 6.T°T 908l
£ ¢ PP & & & S
\/vv s_U/ O@ Q/ \§ OVQ J..@@
J@O <P & O &
A.u@ /v@ é\/? v«@ Ny
& &
3

186

8.3. EXPERIMENTS

Arewiwins siuswi Ledx3 :£'gajoel

€ 6209 0S5 0 [€00Y¥T 821VT 0 S/0VT 0€ i i v'6 T (mido) 10ee | ~

¢L0E T€09 0S 0 | ¢/T9T L6¢ST 0 S.12T 0 ovT ovT 126 T (0do) 10eqe m

0 ¥8.lYy 678 0 | ¥9€¢ 886¢€ 8¢S¢ 119 G080T 0 GGPT | ¢8'GET | € (9do) 10ee | 7

ST L6EES 0% 0 | /¢e8e 1v26¢ ¥2/8¢ 0 08299T | T¢6T | TZ6T | VTIT € (zdo) 1oee | 2

0 88/G 6¥8 0 | /0S¥ 6€T9 8¢S¢ 29/¢ S080T LYTE | JYTE | 9T'GET | ¥ (Gydo) 1De-e

0 88.S 6¥8 0 | L0Sv 6ET9 8¢25¢ 29/¢ S080T LYTE | LVTIE | ¥'/2T 14 (11do) 10eqe

0 88/G 6¥8 0 | /0S¥ 6€T9 8¢S¢ 29/¢ S080T LYTE | JVTIE | €8°CCT | ¥ (e1do) 1De-qe
¢1'66T | € Z'1 3%el

0 ZC6ET 9¢ 0 | 60EVT TLEVT 0 SYEVT 0 L Ll €0'8¢ € (;udo) 10e-e =

0 LTTVT 9¢ 0 | T28.1 €88/.7 0 1G8/T 0 L Ll 18'G¢ € (T3do) 1oeqe =1

0 2299 19 0 | 0ESET C99€T GCSET 9. 0 €6 €6 A %4°1 14 (Gdo) 10ege | =

0 SOvEL 19 0 | ¢/8vT 98611 18811 144 0 0 €6 1S'€S v (91do) 1De-qe

0 Z¢SE0L 9 0 | 6E2vT 60EVT €8¢rT 0 78 €6 €6 2e¢s 14 (21do) 10eqe

0 TOTE9 19 0 | §8/¢21 616¢CT 28/¢1 9/ 0 €6 €6 L9'1S v (7do) 1De-e

0 02€09 19 0 | ve€eeT 69€CT [AXAA? 9. 0 €6 €6 8¥°0S 14 (g1do) 10eqe
82°'G6E | ¥ Z'1 3%¢el

¥18/ 66v6¢¢ | 0€ 0 | T69¥6 LEEIST | O €6v8YT | 0 19 19 80°/VT | ¢ (mdo) 10eqe | =~

86€E€ 06T99 LST 0 | €ESLY 28879 0 LCETI 2165 09v 09y ¢eEVIC | 9 (T3do) 10eqe m

0E€CTE | 8S¥6EC | 96T 0 | SYECTT | €8580¢ | /ST//T | O 28¢G89 | 6v9 6¥9 80'G/¢ | L (zado) 1oege | 5

0C€TC | 29619 Z¢866T | 0 | ¥9Svy VEB6ET | 60,08 €28/1 T129/Tv | 889 889 €LESC | L (Gido) 10eqe

€0G8E | €6T/L6T | TES8E | O | T¥OCLTT | CTLTOE | €GS98T | GC18€ 6GT6S. | 999 959 65°27¢ | L (1do) 1De-e

Lv68¢ | L/VEST | 0T86Z | O | S59/8 T€L/LEC | L9T.VT | L0O8TE TE8CES | 8Y9 8¥9 98°€TC | L (€1do) 10eqe

LT96T | EVSCT €ETIT | 0 | 080S¢ 9€/2¢0T | Z//ES Y1CET 8¢1/6¢ | ST 068 8E'¥6 8 (91do) 1De-qe
6V'1€ 0T Z'1 3%¢el

A A
> N & = &£ 50 > & X &2 SN K &
S Q@ & 0O e ? & & S &% A v &
> S A NS N NY e & 2 &
R > AR P P 2 e} ?
& & N S ° P
2 Q X ? SN
N £ A P
S

187

8.3. EXPERIMENTS

Arewiwns siusw 1ledx3 '8 a|gel

0 [092 8VE0SY | 8.EE6 99¢€9T 0T28¢8 0 8782 0 Zs Zs 0 0 (01do) 10ede ~

0 | 9979/ | ¢SS8 T G€20¢ 1986 29599 661EE GC6TT | /L0¢C 10¢ 6S5°¢ T | (g1do) 10e4e .m.V'

0 69068 802¢T T ZS€9¢ yAS 45311 €2¢88 G208S Z6T€EC 29¢ 29¢ 62'¢C T (t1do) 10ede | 5

0 | 6ETS. | €92T1T 1 /2E8E OTVEST | 220¢6 2108 GCGEE | S¢S G2s ozele | z | (qudo) jDede

0| /6218 | TV T 81602 98€06 0 1668 €09 | S¢S G2s TS08T | 2 | (mdo) joede

0 98899 L6€ 0 GTTEC ¢85¢0T G8T20T 0 10995 625 625 19'62T Z (21do) 10eqe

0| 91V 1212 0 (149 6SEL 8T/¢ Y152 09¢ 0 069G | T2'962 | G | (9udo) jDOede
Ov'8TT Z ¢'T {del

0| ¥9 00¢ 0 0 819 962 Z6T1 0 0 880T Ly ¥ | (9do) 10eqe | ~

0 | ¥82 9€C 0 799 Z18¢ 000T 9/GT 96¢ 880T 880T v1'8 14 (qido) 10eqe .m

0 | 960T 8¢ 0 819 9/v¢ CEET 0917 265 880T | 880T | 9. ¥ | (g1do) 1oedqe |

0 | 960T 8¢ 0 819 9/v¢ CEET 0917 Z6S 880T | 880T | 69'% ¥ | (1do) 1Oede >

0 | ¥/CT 9€T 0 8¢S 000¢ 0 98T 26S 880T 880T 9¢ 14 (Tdo) 10ede

0 | 998T 9€T 0 8¢S 000¢ 0 981 0 880T | 880T LV'E ¥ | (o1do) 1oee

0 | ¥.CT 9€T 0 8¢S 000¢ 98T 0 26S 880T 880T cee 14 (21do) 10eqe
€e0ct | v Z'T 9%kl

0 o €8 0 0 0ST T gS 0 0 16€ 8L°GY 9 (91do) 10ede ~

0 | T9€ €8 0 9/, 92¢ T I€T 0 16€ 16€ 8V'9 9 | (gdo) 1oedqe | S

0 19¢€ €8 0 9/, 9¢¢ tA) TET 0 16€ 16€ ¢19 9 (t1do) 10eqe 5

0 | T9E €8 0 9/, 92¢ 14 T€T 0 16€ 16€ 9 9 (qido) 10ede

0 | 6€S (0)74 0 0 S6 SS 0 0 16€ 16€ 19 9 | (21do) 10e4e

0 6ES ov 0 0 S6 0 SS 0 16€ 16€ S1'¢C 9 (Tdo) 10ede

0 | 6€S (0)74 0 0 S6 0 GS 0 16€ 16€ 60°¢ 9 | (odo) 10e4e
LT S ¢'T |del

~
ozzo ® oow.& %&O %&O @9& N %u&& b@@ ,v/\/ﬁu &«OO z&é\/ z&f& &A«O
S N N N S R RN & N &
& <0 & o & ? SR > &
N N Omo& > > Q@ >
& N 3 >
Q & > e
3 PO
-/%\v

8.3. EXPERIMENTS 188

by using the MSC.” Thisis a clear indication that the tests are not adequate for fully
evaluating an Abox reasoner.

Note that using the MSC is not always the best way (in terms of efficiency) of
performing the instance checking. Although, in some cases it provides remarkable
good results (e.g. k_.dum_n and k_t4p_n), in other it actually manifests a significant
loss of performance (e.g. k_poly_n and k_ph_n).

Unsurprisingly, no particular configuration of optimizations is best in all experi-
ments. Different classes of problems seem to require different optimisationsfor better
performance, and this may suggests that a good approach could be an adaptive system
which activates or deactivates some optimizations according to the behaviour of the
system with a given KB.

Having said that, the nondeterminism is definitely the main source of slow down of
the system, and optimisations that are directed at reducing the nondeterminism (such
as backjumping) seem to provide uniformily better results. Thisis clearly indicated
by the fact that the “activeness’ of the backjumping (counter Backjumping) is one
of the few indicators that can be clearly related to the performance (see for example
k_branch_n, but the same pattern can be spotted in other classes). Moreover, as pre-
dicted in Section 8.2.4, the backjumping aone (configuration optl) does not seems
to provide good results without the LABEL-MODAL-CHECK activated aswell. This
is clearly indicated by the ratio of the two counters Call-Reasoner-Full-Label and
Call-Reasoner-Modal-Part w.r.t. the counter Backjumping.

Therest of the counters do not seem to show adirect correlation with performance.
This probably indicates that the optimisations they are monitoring do not significantly
influence the behaviour of the system (at |east with the available Abox tests).

Thelast thing we would like to mention isthe fact that we really did not expect our
system to be faster than the Race system; evenin afew classes. We had thisimpression
because we know that Race is no slower than FaCT as a terminological reasoner, and
it uses the very same engine for both Abox and terminological reasoning. If you look
closely at the precompletion technique, it uses transformation rules which are very
similar to the ones implemented in Race; the difference lies the fact that our system
made a sharp distiction between rulesworking with the Abox (the precompletion rules)
and rulesworking at the terminological level (delegated to the terminological reasoner
FaCT).

"The reader may be puzzled by the fact that the rest of the counters are not equal to zero; this is
explained by the fact that the satisfiability of the KB is verified before performing any instance checking
tests.

8.3. EXPERIMENTS 189

A system without this separation (like Race) has the possibility to maximise the
effect of optimisations like backjumping because it has better information about con-
straints causing contradictions (something we tried to simulate by verifying the modal
part of the label only). We think that with classes like k_branch_n it is this fact that
makes the real difference in performance. In addition, Race is a more mature system
and it has more optimisation techniques implemented (for example model merging,
see Haarslev and Moller [2000a)]).

For these reasons, we did not expect to outperform Race for any test having asmall
and almost fully connected Abox, where partitioning and memory occupation do not
make any difference. Obviously, it could be the case that some of the results exhibited
by our system depend on the peculiar structure of the test problems. However, if this
behaviour is exhibited even with general KBs, it means that there is some unneces-
sary overhead in the hybrid reasoning in Race which can be reduced by separating the
treatment of Abox and “terminological” constraints. This would suggest that the per-
formance of tableaux—based algorithms, such as the one implemented in Race, can be
improved by using an evaluation strategy more similar to the precompletion strategy
(e.g. work on individual first).

Chapter 9
Conclusions

This chapter summarise the results presented in this thesis, and suggests some direc-
tions for future work.

9.1 Thesiscontributions

The aim of our work is to study basic reasoning techniques for DL knowledge bases
with Abox, and to determine whether they can lead to practical tractability. Thisthesis
investigates two reasoning problems, namely KB satisfiability and query answering.

9.11 KB satigfiability

Different techniques have been considered, and we chose to investigate the possibility
of extending the precompletion technique in order to provide an algorithm for the DL
SHI.

By exploiting the tree-like model property of SHf, it has been proved that the tech-
nique leads to a correct and complete algorithm for KB satisfiability. An experimental
DL reasoner based on the studied a gorithm has been devel oped, and some experiments
have been performed to evaluate the behaviour of the system.

The experiments provided evidence of the fact that, even with an optimised termi-
nological reasoner, different optimisation techniques must be used in the precomple-
tion phase in order to obtain acceptable performance. Although we have not provided
formal proofs of correctness and completeness of the optimisations used, we have pro-
vided arguments supporting the fact that their use does not affect the correctness and
completeness of the underlying algorithm.

190

9.2. FUTURE WORK 191

The system developed, athough experimental, exhibits good performance com-
pared to a state of the art DL system. As pointed out in Chapter 8, we think that the
ideas behind the precompletion technique may be used to improve the performance of
tableaux based systems like Race.

9.1.2 Query answering

The language for querying KBs has aways been one of the weakest points of DL
systems; recently, there have been some attempts to find a solution to this inadequacy.
In thisthesis we devel op atechnique for answering conjunctive queries over SHf KBs.

Again, the technique relies on a careful use of the model—theoretic properties of
SHT. A class of interpretations has been identified which is complete w.r.t. the prob-
lem of conjunctive query answering in SHf. The properties of this class have been
used to devise an algorithm for query answering, and for proving its correctness and
compl eteness.

Although the results which have been presented here are specific to the DL SHH,
the technique is general enough to provide query answering agorithms for a wide
range of DLs. In addition, since the problem is reduced to KB satisfiability, the algo-
rithm described can easily be implemented on top of most of the available DL systems.

9.2 Futurework

There are several research directionswhich stem from the work presented in thisthesis.

KB satisfiability On the KB satisfiability front it is natural to ask ourselves whether
the precompletion technique can be extended to more expressive DLs. We think that
thistechnique can easily be adapted to most of the DL s having the tree-model property
(or atree-like property like the one detailed in Chapter 3). For example, the addition of
(qualified) number restrictions should not be too difficult. On the other hand, there are
DL constructors that appear to be much more difficult (or even impossible) to handle
in the precompletion framework as, for example, the inverse role constructor.

The experiments with the developed DL system show that there is still the neces-
sity to produce an adequate test suite for Abox reasoners. The fact that DL systems
providing Abox reasoning are becoming fast enough to be used in applications may
encourage the production of such tests.

9.2. FUTURE WORK 192

Since the experiments show that different techniques must be incorporated in the
basic algorithm to obtain acceptable performance, there is still some theoretical work
to do. We provided arguments supporting the correctness and completeness of the
modified algorithm, but ideally this should be shown by means of formal proofs.

Query answering Concerning the query answering problem, thereisstill along way
to go before having usable systems. Moreover, there are still some restrictions on the
query language for SHf which should be lifted (if possible). Some conjectures about
the solution to these problems have been made, and they will be investigated in the
near future.

Providing acompletenessresult for the complexity of query answering isan impor-
tant task that would provide a useful theoretical tool for evaluating query algorithms.

Before the actual implementation of an experimental system, we think that the pos-
sibility of optimising the nondeterminismin the query transformation must be carefully
considered. In fact, although the algorithm as it is can probably handle small Aboxes,
itisnot suitable for large ones. In addition, the experience with the results obtained by
optimising the terminol ogical and hybrid reasoning encouragesresearch in thispromis-
ing field.

Bibliography

S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Addison-Wesley, 1995.

C. Areces, H. de Nivelle, and M. de Rijke. Prefixed resolution: A resolution method for
modal and description logics. In Proceedings of CADE 99, pages 187201, January
1999.

F. Baader. Augmenting concept languages by transitive closure of roles: An alternative
to terminological cycles. In Proceedings of the 12th International Joint Conference
on Artificial Intelligence, pages 446-451. Morgan Kaufmann, 1991.

F. Baader and B. Hollunder. A terminological knowledge representation system with
complete inference algorithm. In Proceedings of the Wbrkshop on Processing
Declarative Knowledge, pages 67-86, 1991a.

F. Baader and B. Hollunder. KRIs: Knowledge representation and inference system.
S GART Bulletin, 2(3):8-14, 1991b.

F. Baader and U. Sattler. Number restrictions on complex roles in description logics:
A preliminary report. In Luigia Carlucci Aiello, Jon Doyle, and Stuart C. Shapiro,
editors, Proc. of the fifth International Conference on Principles of Knowledge Rep-
resentation and Reasoning, Cambridge, Massachusetts, USA, 1996. Morgan Kauf-
mann.

A. B. Baker. Intelligent Backtracking on Constraint Satisfaction Problems. Experi-
mental and Theoretical Results. PhD thesis, University of Oregon, 1995.

A. Borgida. On the relationship between description logic and predicate logic. In Pro-
ceedings of the Third I nter national Conference on Infor mation and Knowledge Man-
agement (CIKM’94), Gaithersburg, Maryland, November 29 - December 2, 1994,
pages 219-225. ACM, 1994.

193

BIBLIOGRAPHY 194

A. Borgidaand P. F. Patel-Schneider. A semantic and complete algorithm for subsump-
tion in the classic description logic. Journal of Artificial Intelligence Research, 1,
1994.

M. Buchheit, F. M. Donini, and A. Schaerf. Decidable reasoning in terminological
knowledge representation systems. Journal of Artificial Intelligence Research, 1.
109-138, 1993.

D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query contain-
ment under constraints. In Proceedings of the Seventeenth ACM SGACT SGMOD
S GART Symposium on Principles of Database Systems (PODS-98), 1998a.

D. Calvanese, G. De Giacomo, and M. Lenzerini. Answering queries using views over
description logics knowledge bases. In Proceedings of the 16th National Conference
on Artificial Intelligence (AAAI 2000), pages 386391, 2000.

D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptua data
modeling. In Jan Chomicki and Gunter Saake, editors, Logics for Databases and
Information Systems, pages 229-264. Kluwer Academic Publisher, 1998b.

A. K. Chandraand P. M. Merlin. Optimal implementation of conjunctive queriesin
relational data bases. In Conference Record of the Ninth Annual ACM Symposium
on Theory of Computing, pages 77-90, 1977.

G. De Giacomo. Eliminating “converse” from converse pdl. Journal of Logic, Lan-
guage and Information, 5:193-208, 1996.

G. De Giacomo and M. Lenzerini. Boosting the correspondence between description
logics and propositional dynamic logics. In AAAI-PressMIT-Press, editor, Pro-
ceedings of the 12th National Conference on Artificial Intelligence (AAAI’ 94), pages
205-212, 1994.

G. De Giacomo and M. Lenzerini. TBox and ABox reasoning in expressive descrip-
tionlogics. In Proceedings of the Fifth International Conference on the Principles of
Knowl edge Representation and Reasoning (KR-96), pages 316-327. Morgan Kauf-
mann Publishers, 1996.

G. De Giacomo and M. Lenzerini. A uniform framework for concept definitions in
description logics. Journal of Artificial Intelligence Research, 6:87-110, 1997.

BIBLIOGRAPHY 195

G. De Giacomo and F. Massacci. Combining deduction and model checking into
tableaux and algorithms for converse-pdl. Information and Computation, 1998.

H. de Swart, editor. Automated Reasoning with Analytic Tableaux and Related Meth-
ods: International Conference Tableaux’' 98, number 1397 in LNAI, 1998. Springer.

F. Donini, G. De Giacomo, and F. Massacci. EXPTIME tableaux for ALC. In
L. Padgham, E. Franconi, M. Gehrke, D. L. McGuinness, and P. F. Patel-Schneider,
editors, Collected Papers from the International Description Logics Workshop
(DL'96), number WS-96-05 in AAAI Technical Report, pages 107-110. AAAI
Press, Menlo Park, California, 1996a.

F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description logics.
In Foundation of Knowledge Representation, pages 191-236. CSLI-Publications,
1996b.

F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Deduction in concept languages:
From subsumption to instance checking. Journal of Logic and Computation, 4(4):
423-452, 1994.

Francesco M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. Information and Computation, 134(1):1-58, 1997.

Q. Elhaik and M. C. Rousset. Making an abox persistent. In Franconi et al. [1998b].

A. Eraand F. Donini. Most specific concepts for knowledge bases with incomplete
information. In International Conference on Information and Knowledge Manage-
ment, Baltimore, November 1992.

E. Franconi. Description logics for natural language processing. In Working Notes of
the 1994 AAAI Fall Symposiumon Knowledge Representation for Natural Language
Processing in Implemented Systems, 1994.

E. Franconi, G. De Giacomo, |. R. Horrocks, D. L. McGuinness, W. Nutt, P. F. Patel-
Schneider, and C. A. Welty. Report on the 1998 intl. workshop on description logics
(dI’98), 1998a.

Enrico Franconi, G. De Giacomo, Robert M. MacGregor, Werner Nutt, and Christo-
pher A. Welty, editors. Proceeding of the 1998 I nter national Workshop on Descrip-
tion Logics (DL’ 98), 1998b. CEUR Pubblication.

BIBLIOGRAPHY 196

E. Gradel. Why are modal logics so robustly decidable? Bulletin of the European
Association for Theoretical Computer Science, 68:90-103, 1999.

V. Haardev and R. Moller. An empirical evaluation of optimization strategiesfor abox
reasoning in expressive description logics. In Lambrix et al. [1999], pages 115-119.

V. Haarslev and R. Maller. Consistency testing: The race experience. In Proceedings
of TABLEAUX 2000, volume 1847 of Lecture Notes in Computer Science, pages
57—-61. Springer, 2000a.

V. Haarslev and R. Moller. Expressive abox reasoning with number restrictions, role hi-
erarchies, and transitively closed roles. In A.G. Cohn, F. Giunchiglia, and B. Selman,
editors, Proceedings of the Seventh International Conference on Knowledge Repre-
sentation and Reasoning (KR2000), pages 273-284. Morgan Kaufmann, 2000b.

V. Haardev and R. Moller. High performance reasoning with very large knowledge
bases. In Franz Baader and Ulrike Sattler, editors, Proceedings of the 2000 Interna-
tional Workshop on Description Logics (DL2000), pages 143-152, 2000c.

B. Hollunder. Consistency checking reduced to satisfiability of conceptsin terminolog-
ical systems. Annals of Mathematics and Artificial Intelligence, 18:95-131, 1996.

I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD
thesis, University of Manchester, 1997.

I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of the 6th
Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR’ 98),
1998.

I. Horrocks and P. F. Patel-Schneider. Comparing subsumption optimizations. In Fran-
coni et al. [1998Db].

I. Horrocks and P. F. Patel-Schneider. DI system comparison. In Franconi et al.
[1998h].

I. Horrocks and P. F. Patel-Schneider. Optimising description logic subsumption. Jour-
nal of Logic and Computation, 9(3):267—293, 1999.

I. Horrocks and U. Sattler. A description logic with transitive and inverse roles and
role hierarchies. In Franconi et al. [1998b].

BIBLIOGRAPHY 197

I. Horrocks and U. Sattler. A description logic with transitive and inverse roles and
role hierarchies. Journal of Logic and Computation, 9(3):385-410, 1999.

I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies. Query containment using a DLR
ABox. LTCS-Report 99-15, LUFG Theoretical Computer Science, RWTH Aachen,
Germany, 1999a.

I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies. How to decide query containment un-
der constraints using a description logic. In Logic for Programming and Automated
Reasoning (LPAR 2000), volume 1955 of Lecture Notesin Computer Science, pages
326-343. Springer, 2000a.

I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. InH. Ganzinger, D. McAllester, and A. Voronkov, editors, Proceedings of the
6th International Conference on Logic for Programming and Automated Reasoning
(LPAR 99), number 1705 in Lecture Notesin Artificial Intelligence, pages 161-180.
Springer-Verlag, 1999b.

I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the description
logic SHZ Q. In David MacAllester, editor, Proceedings of the 17th International
Conference on Automated Deduction (CADE-17), number 1831 in Lecture NotesIn
Artificial Intelligence, pages 482—496. Springer-Verlag, 2000b.

I. Horrocksand S. Tessaris. A conjunctive query language for description |ogic aboxes.
In National Conference on Artificial Intelligence (AAAI 2000), pages 399-404.
American Association for Artificial Intelligence, 2000.

I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice. In Proceed-
ings of the 7th International Conference on the Principles of Knowledge Represen-
tation and Reasoning (KR 2000), pages 285-296, 2000.

U. Hustadt and R. A. Schmidt. Issues of decidability for description logics in the
framework of resolution. In R. Caferraand G. Salzer, editors, Automated Deduction
in Classical and Non-Classical Logics, volume 1761 of Lecture Notes in Artificial
Intelligence, pages 191-205. Springer, 2000.

KRSS. Description-logic knowledge representation system specification, November
1993.

BIBLIOGRAPHY 198

Patrick Lambrix, Alex Borgida, M. Lenzerini, Ralf Moller, and P. Patel-Schneider, edi-
tors. Proceeding of the 1999 Inter national Wor kshop on Description Logics (DL’ 99),
1999. CEUR Pubblication.

A.Y. Levy and M. C. Rousset. Carin: A representation language combining horn
rules and description logics. In Proceedings of the Twelfth European Conference on
Artificial Intelligence (ECAI-96). John Wiley and Sons, 1996a.

A.Y. Levy and M. C. Rousset. The limits on combining recursive horn rules and
description logics. In Proceedings of the AAAI Thirteenth National Conference on
Artificial Intelligence 1996, 1996b.

C. Lutz and U. Sattler. The complexity of reasoning with boolean modal logic. In
Advances in Modal Logic 2000 (AiML 2000), L eipzig, Germany, 2000.

R. M. MacGregor and D. Brill. Recognition algorithms for the Loom classifier. In
Proceedings of AAAI-92, pages 774—779. AAAI Press, 1992.

B. Nebel. Terminological cycles: Semantics and computational properties. In J. Sowa,
editor, Principles of Semantic Networks. Morgan Kaufmann, 1991.

P. F. Patel-Schneider. DL P system description. In Franconi et al. [1998b], pages 87—89.

R. Reiter. On closed world databases. In H. Gallaire and J. Minker, editors, Logic and
Data Bases, pages 5576, 1977.

R. Reiter. Towardsalogical reconstruction of relational database theory. In Michael L.
Brodie, John Mylopoulos, and Joachim W. Schmidt, editors, On Conceptual Mod-
elling, Perspectives from Artificial Intelligence, Databases, and Programming Lan-
guages, Topicsin Information Systems, pages 191-233. Springer, 1984.

M. C. Rousset. Backward reasoning in aboxes for query answering. In Enrico
Franconi and Michael Kifer, editors, Knowledge Representation meets Databases
(KRDB'99), volume CEUR-WS/VolI-21. CEUR, 1999.

U. Sattler. A concept language extended with different kinds of transitive roles. In
G. Gorz and S. Holldobler, editors, 20. Deutsche Jahrestagung fur Kunstliche In-
telligenz, number 1137 in Lecture Notesin Artificial Intelligence. Springer Verlag,
1996.

BIBLIOGRAPHY 199

A. Schaerf. Reasoning with individuals in concept languages. Data and Knowledge
Engineering, 13(2):141-176, 1994.

K. Schild. A correspondence theory for terminological logics. Preliminary report. In
Proceedings of the 12th International Joint Conference on Artificial Intelligence,
pages 466471, 1991.

M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with comple-
ments. Artificial Intelligence, 48:1-26, 1991.

R. S. Streett. Propositional dynamic logic of looping and converse is elementarily
decidable. Information and Control, 54(1/2):121-141, July/August 1982.

T. Tammet. Using resolution for extending kl-one-type languages. In CIKM ’95,
Proceedings of the 1995 International Conference on Information and Knowledge
Management, November 28 - December 2, 1995, Baltimore, Maryland, USA, pages
326-332. ACM, 1995.

S. Tessarisand G. Gough. Abox reasoning with transitiveroles and axioms. In Lambrix
et al. [1999].

M. Y. Vardi. Why ismodal logic so robustly decidable? Technical Report TR97-274,
Rice University, 1997.

W. A. Woods and J. G. Schmolze. The KL-ONE family. Computer and Mathematics
with Applications, special issue: Semantic Networks in Artificial Intelligence, 23
(2-5):133-177, March-May 1992.

