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Example from the real world

Machine

Oil
Tank

Pump

consumes

9 gall./time unit

produces

7 gall./time unit

- Initial filling of the tank
- Machine should never break down
- Oil tank should never be empty
- Oil tank should never overflow



Weighted Timed Systems with Constraints on Weights

Consumer
Resource

Producer

consumes

depending on
time and mode

produces

depending on
time and mode

- Initial value ι of resource
- System should never terminate
- Value of resource should never be less than 0
- Value of resource should never exceed upper bound b
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s1 s2 s3

x = 1, x := 0

w = 11
2

(s1, 0, 1
1

2
)

1
2−→ (s2,

1

2
, 0)

1
3−→ (s3,

5

6
, 2)

1
6−→ (s1, 0, 1)

1
3−→ (s2,

1

3
, 0)

1
3−→ ...

Is there is an infinite 11
2
-run such that the value of w is always within [0, 2]?
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Two-Counter Machines
spacespcaecpsasdce

A two-counter machine is a finite sequence M = (I1, ..., In) of instructions of the
form (where i ∈ {1, 2}, j, k,m ∈ {1, ..., n}):

increment Ij :Ci := Ci + 1; go to Ik
zero test/decrement Ij : if Ci = 0 then go to Ik else Ci :=Ci − 1; go to Im
stop Ij : stop

A configuration of M is a triple γ ∈ {I1, ..., In} × N× N.
A computation of M is a sequence (γi)i≥0, where γ0 = (I1, 0, 0) and γi+1 is the
result of executing Ii on γi.

platzhalterhehehehehThe Infinite Computation Problem

Input:plsz A two-counter machine M.
Question: ∃ infinite computation of M ?



How to Encode a Two-Counter Machine
spacespcaecpsasdce

Weighted timed automaton AM(2, 2)
Two-counter machine M

encoded by
- initial weight value (4, 0)
- upper bound (5, 5)

∃ infinite computation of M
⇔

∃ infinite (4, 0)-run in AM such that w ∈ [0, 5] and w′ ∈ [0, 5].

The counters C1 and C2 are encoded by the weight variable w:

w = 5− 1

2c13c2

The interval-bounds and clock constraints are used to control the value of w.
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2c13c2
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δ
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How to Encode a Two-Counter Machine
spacespcaecpsasdce

For each instruction Ij of M, we construct a corresponding Aj

e.g., increment Ij :C1 := C1 + 1; go to Ik : spacespcaecpsasdce

spacespcaecpsasdce

. . .
5− 1

2c13c2
5− 1

2c1+13c2
x := 0

x = 0

Aj Ak

The second clock and weight variable are needed for encoding the instruction
zero test/decrement Ij : if Ci = 0 then go to Ik else Ci :=Ci − 1; go to Im



First Main Result
spacespcaecpsasdce

Weighted timed automaton AM(2, 2)
Two-counter machine M

encoded by
- initial weight value (4, 0)
- upper bound (5, 5)

∃ infinite computation of M
⇔

∃ infinite (4, 0)-run in AM such that w ∈ [0, 5] and w′ ∈ [0, 5].

Theorem: The interval-bound problem for weighted timed automata with
Theorem:okk two clocks, two weight variables, and without edge weights
Theorem:okkkis undecidable.
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The Interval-Bound Problem for Discrete-Time

Weighted Discrete-Timed Automata: All time delays are in N.

Q: On the Interval-Bound Problem for Weighted Timed Automata. LATA 2011.
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Theorem: automata is PSPACE-complete.



The Interval-Bound Problem for Discrete-Time

Weighted Discrete-Timed Automata: All time delays are in N.

Q: On the Interval-Bound Problem for Weighted Timed Automata. LATA 2011.

Input: placA weighted discrete-timed automaton A(m,n) with
placeholders- m clock variables,
placeholders- n weight variables,
placeholders- initial weight value ι ∈ Qn,
placeholders- upper bound b ∈ Nn.
Question: ∃ infinite ι-run in A such that wi ∈ [0, bi] for each i ∈ {1, ..., n} ?

Theorem: The interval-bound problem for weighted discrete-timed mm em
Theorem: automata is PSPACE-complete.



The Interval-Bound Problem for Discrete-Time

Weighted Discrete-Timed Automata: All time delays are in N.

Q: On the Interval-Bound Problem for Weighted Timed Automata. LATA 2011.

Input: placA weighted discrete-timed automaton A(m,n) with
placeholders- m clock variables,
placeholders- n weight variables,
placeholders- initial weight value ι ∈ Qn,
placeholders- upper bound b ∈ Nn.
Question: ∃ infinite ι-run in A such that wi ∈ [0, bi] for each i ∈ {1, ..., n} ?

Theorem: The interval-bound problem for weighted discrete-timed mm em
Theorem: automata is PSPACE-complete.



Discrete-Timed Automaton(2)
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The recurrent reachability problem is PSPACE-complete if n ≥ 3.
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How to Encode a Weighted Discrete -Timed Automaton

Weighted D -T Automaton A(m,n) Discrete -Timed Automaton
- initial weight value ι ∈ Nn

encoded by
A′(m+n+c)

- upper bound b ∈ Nn

∃ infinite ι-run in A such that wi ∈ [0, b(i)] for each i ∈ {1, ..., n}
⇔

∃ infinite Büchi-accepting run of A′

teA weight variable w of A is encoded by clock variable w′ in A′.
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How to Encode a Weight Variable

3

s1 s2

w = α

constr

reset w = α+ 3δ

s′1 s′2

w′ = α
d = 0
x = β

constr

resetw′ = α+ δ
d = δ
x = β + δ

- read out value of d
- add value of d to value of w′

- maintain value of x

w′ = α+ 3δ

x = β + δ
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teproblem for discrete-timed automata.
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Summary and Open Problems

∃ infinite run.
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wi ∈ [0, b] ? ?
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undecidable undecidable

∃ infinite run.
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without
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A(1, 2)

without
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? undecidable

Bouyer et al.: Infinite Runs in Weighted Timed Automata with Energy Constraints. FORMATS 2008.
Bouyer et al.: Timed Automata with Observers under Energy Constraints. HSCC 2010.
Q: On the Interval-Bound Problem for Weighted Timed Automata. LATA 2011.
Bouyer-Decitre, Markey. April 2011. Unpublished.


