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Example from the real world

Oil
Tank
Pump an Machine

produces consumes
7 gall./time unit 9 gall./time unit

- Initial filling of the tank

- Machine should never break down
- Oil tank should never be empty

- Oil tank should never overflow




Weighted Timed Systems with Constraints on Weights

Resource
Producer Consumer

produces consumes
depending on depending on

time and mode time and mode

- Initial value ¢ of resource

- System should never terminate

- Value of resource should never be less than 0

- Value of resource should never exceed upper bound b
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Weighted Timed Automaton(1,1)

1

Colr—\
Oolr—t

1
(8170 ]- ) - (827270) (827370)

(83, 6’2) (81,0 1)

Is there is an infinite 12 5-run such that the value of w is always within [0, 2]?
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Two-Counter Machines

A two-counter machine is a finite sequence M = (I, ..., I,,) of instructions of the
form (where i € {1,2}, j,k,m € {1,....,n}):

Increment I;:C; :==C; +1; go to I

zero test/decrement | [;:if C; =0 then go to I else (;:=C; —1; go to I,

stop I;:stop

A configuration of M is a triple v € {[1, ..., I,,} x N x N.

A computation of M is a sequence (7;);>0, Where v = (I1,0,0) and ;41 is the
result of executing I; on ;.

The Infinite Computation Problem

Input: A two-counter machine M.
Question: 4 infinite computation of M 7



How to Encode a Two-Counter Machine

Weighted timed automaton A x4(2, 2)
- initial weight value (4, 0)
- upper bound (5,5)

. ded b
Two-counter machine M S22°°C Y

3 infinite computation of M
<~
3 infinite (4,0)-run in Ay such that w € [0,5] and w’ € [0, 5].

The counters C'7 and (5 are encoded by the weight variable w:

_ 1
W =93 — 5eige3

The interval-bounds and clock constraints are used to control the value of w.
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How To Encode The Counters - Example

S1

_1
2¢13°2

_x_ _ 1
w =95 5C13C2

s there is an infinite 5 — -run such that the value of w is within [0, 5]7

(s1,0, w)i>(32, 0, w — 65)%(33, L,w—60+5)—...

0 must satisfy 0 <w —-60+5<5 = o0=7%



How to Encode a Two-Counter Machine

For each instruction I, of M, we construct a corresponding A;

e.g., | increment | I;:C; :=C; +1; go to I}

— Q
—( . — 1
d — 5ey3e3 r:=0 D~ Satize

.Aj Ak

The second clock and weight variable are needed for encoding the instruction

zero test/decrement | [;:if C; =0 then go to I else (;:=C; —1; go to I,




First Main Result

Weighted timed automaton A x4(2, 2)
- initial weight value (4, 0)
- upper bound (5,5)

. ded b
Two-counter machine M S22°°C Y

3 infinite computation of M
=
3 infinite (4,0)-run in Ay such that w € [0,5] and w’ € [0, 5].

Theorem: The interval-bound problem for weighted timed automata with
two clocks, two weight variables, and without edge weights
Is undecidable.
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The Interval-Bound Problem for Discrete-Time

Weighted Discrete-Timed Automata: All time delays are in IN.

Input: A weighted discrete-timed automaton A(m,n) with
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n weight variables,

initial weight value ¢ € Q",

upper bound b € N™.

Question: 3 infinite t-run in A such that w; € [0, b;] for each i € {1,...,n} 7

Theorem: The interval-bound problem for weighted discrete-timed
automata is PSPACE-complete.
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Discrete-Timed Automaton(2)

S1 Ty >3 52 S3
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The Recurrent Reachability Problem

Input: A discrete-timed automaton A(n) with n clocks.
Question: d infinite Buchi-accepting run of A ?

The recurrent reachability problem is PSPACE-complete if n > 3.
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How to Encode a Weighted Discrete -Timed Automaton

Weighted D -T Automaton A(m,7) 0 ded by Discrete -Timed Automaton
- initial weight value t € N™ —3 A'(m+n+c)
- upper bound b € N"

3 infinite ¢-run in A such that w; € [0,b(7)] for each i € {1,...,n}
=
3 infinite Biichi-accepting run of A’

A weight variable w of A is encoded by clock variable w’ in A’.
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How to Encode a Weight Variable

S1 S2
constr ( )
wTZzO reset w = o+ 30
5 S
constr
/ a< > O’w’ oz—|—5' reset ( )w’:oz—|—35
0 d

w =
d = )

- read out value of d



How to Encode a Weight Variable

Sq S
constr
wTZzO reset ( )w = a+ 30
S S5
OO0 @O
"=« w=a+96 reset w =a+ 3
0 d

w =
d:= )

- read out value of d
- add value of d to value of w’



How to Encode a Weight Variable

S1 §2
HO constr ( )
W=« reset w=ao-+30
OO WO
o) w—oz—|—5 reset w =a+ 36
0
5

x—6+5

- read out value of d
- add value of d to value of w’

r=p04+0



How to Encode a Weight Variable

S1 52
constr
W=« reset w=a«a-+ 30
constr
w Q w—oz—|—5 reset w =a+ 30

0
5] x—6+5

- read out value of d

- add value of d to value of w’
- maintain value of z

r=p04+0



How to read out the value of a clock variable*

* Courcoubetis and Yannakakis: Minimum and Maximum Delay Problems in Real-Time Systems. CAV 1991.
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- initial weight value € N™ —3 A'(m+n+c)
- upper bound b € N"

3 infinite ¢-run in A such that w; € [0,b(i)] for each i € {1,...,n}
~
3 infinite Biichi-accepting run of A’

Theorem: The interval-bound problem for weighted discrete-timed automata
is in PSPACE.

PSPACE-hardness follows from PSPACE-completeness of recurrent reachability
problem for discrete-timed automata.
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