On the Interval-Bound Problem for Weighted Timed Automata

Karin Quaas

27th of May, 2011

- Initial filling of the tank
- Machine should never break down

- Initial filling of the tank
- Machine should never break down
- Oil tank should never be empty

- Initial filling of the tank
- Machine should never break down
- Oil tank should never be empty
- Oil tank should never overflow

Weighted Timed Systems with Constraints on Weights

- $-$ Initial value ι of resource
- System should never terminate
- Value of resource should never be less than 0
- Value of resource should never exceed upper bound b

$$
(s_1,0,2) \xrightarrow{\frac{2}{3}} (s_2,\frac{2}{3},0) \xrightarrow{\frac{1}{3}} (s_3,1,2) \xrightarrow{0} (s_1,0,2) \xrightarrow{\frac{2}{3}} (s_2,\frac{2}{3},0) \xrightarrow{\frac{1}{3}} \dots
$$

$$
(s_1,0,2)\stackrel{\frac{2}{3}}{\longrightarrow}(s_2,\tfrac{2}{3},0)\stackrel{\frac{1}{3}}{\longrightarrow}(s_3,1,2)\stackrel{0}{\longrightarrow}(s_1,0,2)\stackrel{\frac{2}{3}}{\longrightarrow}(s_2,\tfrac{2}{3},0)\stackrel{\frac{1}{3}}{\longrightarrow}\dots
$$

There is an infinite 2-run such that the value of w is always within $[0,2].$

$$
(s_1,0,\textcolor{blue}{\textbf{\textcolor{blue}{\overline{2}}}})\overset{\frac{2}{3}}{\longrightarrow}(s_2,\textcolor{blue}{\textcolor{blue}{\frac{2}{3}}},0)\overset{\frac{1}{3}}{\longrightarrow}(s_3,1,2)\overset{0}{\longrightarrow}(s_1,0,2)\overset{\frac{2}{3}}{\longrightarrow}(s_2,\textcolor{blue}{\textcolor{blue}{\frac{2}{3}}},0)\overset{\frac{1}{3}}{\longrightarrow}...
$$

There is an infinite $\mathbf{2}\text{-}$ run such that the value of w is always within $[0,2]$.

$$
(s_1,0,\hbox{\small$\begin{smallmatrix}2\\2\end{smallmatrix}$})\stackrel{\frac{2}{3}}{\longrightarrow}(s_2,\hbox{\small$\begin{smallmatrix}2\\3\end{smallmatrix}$},\hbox{\small$\begin{smallmatrix}0\end{smallmatrix}$})\stackrel{\frac{1}{3}}{\longrightarrow}(s_3,1,\hbox{\small$\begin{smallmatrix}2\end{smallmatrix}$})\stackrel{0}{\longrightarrow}(s_1,0,\hbox{\small$\begin{smallmatrix}2\\2\end{smallmatrix}$})\stackrel{\frac{2}{3}}{\longrightarrow}(s_2,\hbox{\small$\begin{smallmatrix}2\\3\end{smallmatrix}},\hbox{\small$\begin{smallmatrix}0\end{smallmatrix}$})\stackrel{\frac{1}{3}}{\longrightarrow}...
$$

There is an infinite 2-run such that the value of w is always within $\bm{[0,2]}$.

$$
(s_1,0,1\tfrac{1}{2})\stackrel{\frac{1}{2}}{\longrightarrow}(s_2,\tfrac{1}{2},0)\stackrel{\frac{1}{3}}{\longrightarrow}(s_3,\tfrac{5}{6},2)\stackrel{\frac{1}{6}}{\longrightarrow}(s_1,0,1)\stackrel{\frac{1}{3}}{\longrightarrow}(s_2,\tfrac{1}{3},0)\stackrel{\frac{1}{3}}{\longrightarrow}\dots
$$

Is there is an infinite $1\frac{1}{2}$ -run such that the value of w is always within $[0,2]$?

${\sf Input:}\qquad$ A weighted timed automaton ${\cal A}(m,n)$ with

- m clock variables,
- n weight variables,
- \vdash initial weight value $\iota \in \mathbb{Q}^n$,
- upper bound $b\in\mathbb{N}^n$.

Question: \exists infinite ι -run in ${\mathcal A}$ such that $w_i\in[0,b_i]$ for each $i\in\{1,...,n\}$?

${\sf Input:}\qquad$ A weighted timed automaton ${\cal A}(m,n)$ with

- m clock variables,
- n weight variables,
- \vdash initial weight value $\iota \in \mathbb{Q}^n$,
- upper bound $b\in\mathbb{N}^n$.

Question: \exists infinite ι -run in ${\mathcal A}$ such that $w_i\in[0,b_i]$ for each $i\in\{1,...,n\}$?

Bouyer et al.: Infinite Runs in Weighted Timed Automata with Energy Constraints. FORMATS 2008. Bouyer et al.: Timed Automata with Observers under Energy Constraints. HSCC 2010.

${\sf Input:}\qquad$ A weighted timed automaton ${\cal A}(m,n)$ with

- m clock variables,
- n weight variables,
- \vdash initial weight value $\iota \in \mathbb{Q}^n$,
- upper bound $b\in\mathbb{N}^n$.

Question: \exists infinite ι -run in ${\mathcal A}$ such that $w_i\in[0,b_i]$ for each $i\in\{1,...,n\}$?

Bouyer et al.: Infinite Runs in Weighted Timed Automata with Energy Constraints. FORMATS 2008. Bouyer et al.: Timed Automata with Observers under Energy Constraints. HSCC 2010. Q: On the Interval-Bound Problem for Weighted Timed Automata. LATA 2011.

Two-Counter Machines

A two-counter machine is a finite sequence $\mathcal{M} = (I_1, ..., I_n)$ of instructions of the form (where $i \in \{1, 2\}, j, k, m \in \{1, ..., n\}$):

A configuration of M is a triple $\gamma \in \{I_1, ..., I_n\} \times \mathbb{N} \times \mathbb{N}$.

A computation of M is a sequence $(\gamma_i)_{i>0}$, where $\gamma_0 = (I_1, 0, 0)$ and γ_{i+1} is the result of executing I_i on γ_i .

The Infinite Computation Problem

Input: A two-counter machine M . Question: \exists infinite computation of \mathcal{M} ?

How to Encode a Two-Counter Machine

The counters C_1 and C_2 are encoded by the weight variable $w\colon$

$$
w = 5 - \frac{1}{2^{c_1} 3^{c_2}}
$$

The interval-bounds and clock constraints are used to control the value of w_{\cdot}

Is there is an infinite $5-\frac{1}{2}$ $\frac{1}{2^{c_1}3^{c_2}}$ -run such that the value of w is within $[0,5]$?

Is there is an infinite $5-\frac{1}{2}$ $\frac{1}{2^{c_1}3^{c_2}}$ -run such that the value of w is within $[0,5]$?

$$
(s_1, 0, w) \xrightarrow{\delta} (s_2, 0, w - 6\delta) \longrightarrow \dots
$$

Is there is an infinite $5-\frac{1}{2}$ $\frac{1}{2^{c_1}3^{c_2}}$ -run such that the value of w is within $[0,5]$?

$$
(s_1, 0, w) \xrightarrow{\delta} (s_2, 0, w - 6\delta) \longrightarrow \dots
$$

$$
\delta \text{ must satisfy } 0 \le w - 6\delta \le 5 \implies \frac{w - 5}{6} \le \delta \le \frac{w}{6}
$$

Is there is an infinite $5-\frac{1}{2}$ $\frac{1}{2^{c_1}3^{c_2}}$ -run such that the value of w is within $[0,5]$?

$$
(s_1, 0, w) \xrightarrow{\delta} (s_2, 0, w - 6\delta) \xrightarrow{1} (s_3, 1, w - 6\delta + 5) \longrightarrow \dots
$$

δ must satisfy $0 \leq w - 6\delta \leq 5$ \Rightarrow $\frac{w-5}{6}$ $\frac{-5}{6} \leq \delta \leq \frac{w}{6}$ 6

Is there is an infinite $5-\frac{1}{2}$ $\frac{1}{2^{c_1}3^{c_2}}$ -run such that the value of w is within $[0,5]$?

6

$$
(s_1, 0, w) \xrightarrow{\delta} (s_2, 0, w - 6\delta) \xrightarrow{1} (s_3, 1, w - 6\delta + 5) \longrightarrow \dots
$$

$$
\delta \text{ must satisfy } 0 \le w - 6\delta \le 5 \quad \Rightarrow \quad \frac{w - 5}{6} \le \delta \le \frac{w}{6}
$$

Is there is an infinite $5-\frac{1}{2}$ $\frac{1}{2^{c_1}3^{c_2}}$ -run such that the value of w is within $[0,5]$?

$$
(s_1, 0, w) \xrightarrow{\delta} (s_2, 0, w - 6\delta) \xrightarrow{1} (s_3, 1, w - 6\delta + 5) \longrightarrow \dots
$$

$$
\delta \text{ must satisfy } 0 \le w - 6\delta + 5 \le 5 \implies \delta = \frac{w}{6}
$$

How to Encode a Two-Counter Machine

For each instruction I_j of $\mathcal M$, we construct a corresponding $\mathcal A_j$

e.g., \mid increment \mid I_j : $C_1 := C_1 + 1$; go to I_k \mid :

The second clock and weight variable are needed for encoding the instruction zero test/decrement $\mid\, I_j\colon$ if $C_i=0$ then go to I_k else $C_i\!:=\!C_i-1;$ go to I_m

First Main Result

Theorem: The interval-bound problem for weighted timed automata with two clocks, two weight variables, and without edge weights is undecidable.

Bouyer et al.: Infinite Runs in Weighted Timed Automata with Energy Constraints. FORMATS 2008. Bouyer et al.: Timed Automata with Observers under Energy Constraints. HSCC 2010. Q: On the Interval-Bound Problem for Weighted Timed Automata. LATA 2011.

Bouyer et al.: Infinite Runs in Weighted Timed Automata with Energy Constraints. FORMATS 2008. Bouyer et al.: Timed Automata with Observers under Energy Constraints. HSCC 2010. Q: On the Interval-Bound Problem for Weighted Timed Automata. LATA 2011.

Bouyer et al.: Infinite Runs in Weighted Timed Automata with Energy Constraints. FORMATS 2008. Bouyer et al.: Timed Automata with Observers under Energy Constraints. HSCC 2010. Q: On the Interval-Bound Problem for Weighted Timed Automata. LATA 2011. Bouyer-Decitre, Markey. April 2011. Unpublished.

The Interval-Bound Problem for Discrete-Time

Weighted Discrete-Timed Automata: All time delays are in N.

Input: A weighted discrete-timed automaton $\mathcal{A}(m, n - m)$ clock variables,
 $- n$ weight variables,
 $-$ initial weight value $\iota \in \mathbb{Q}^n$,
 $-$ upper bound $b \in \mathbb{N}^n$.
 Question: \exists infinite ι -run in $\mathcal{$ $\mathcal{A}(m,n)$ with $- m$ clock variables, - n weight variables, \vdash initial weight value $\iota \in \mathbb{Q}^n$, - upper bound $b\in\mathbb{N}^n$. Question: \exists infinite ι -run in ${\mathcal A}$ such that $w_i\in[0,b_i]$ for each $i\in\{1,...,n\}$?

Theorem: The interval-bound problem for weighted discrete-timed automata is PSPACE-complete.

The Interval-Bound Problem for Discrete-Time

Weighted Discrete-Timed Automata: All time delays are in N.

Input: A weighted discrete-timed automaton $\mathcal{A}(m, n - m)$ clock variables,
 $- n$ weight variables,
 $-$ initial weight value $\iota \in \mathbb{Q}^n$,
 $-$ upper bound $b \in \mathbb{N}^n$.
 Question: \exists infinite ι -run in $\mathcal{$ $\mathcal{A}(m,n)$ with $- m$ clock variables, - n weight variables, \vdash initial weight value $\iota \in \mathbb{Q}^n$, - upper bound $b\in\mathbb{N}^n$. Question: \exists infinite ι -run in ${\mathcal A}$ such that $w_i\in[0,b_i]$ for each $i\in\{1,...,n\}$?

Theorem: The interval-bound problem for weighted discrete-timed automata is PSPACE-complete.

The Interval-Bound Problem for Discrete-Time

Weighted Discrete-Timed Automata: All time delays are in N.

Input: A weighted discrete-timed automaton $\mathcal{A}(m, n - m)$ clock variables,
 $- n$ weight variables,
 $-$ initial weight value $\iota \in \mathbb{Q}^n$,
 $-$ upper bound $b \in \mathbb{N}^n$.
 Question: \exists infinite ι -run in $\mathcal{$ $\mathcal{A}(m,n)$ with $- m$ clock variables, - n weight variables, \vdash initial weight value $\iota \in \mathbb{Q}^n$, - upper bound $b\in\mathbb{N}^n$. Question: \exists infinite ι -run in ${\mathcal A}$ such that $w_i\in[0,b_i]$ for each $i\in\{1,...,n\}$?

Theorem: The interval-bound problem for weighted discrete-timed automata is PSPACE-complete.

Discrete-Timed Automaton(2)

$$
(s_1,0,0) \stackrel{4}{\longrightarrow} (s_2,4,0) \stackrel{1}{\longrightarrow} (s_3,5,1) \stackrel{0}{\longrightarrow} (s_1,0,1) \stackrel{4}{\longrightarrow} (s_2,4,0) \stackrel{0}{\longrightarrow} \ldots
$$

The Recurrent Reachability Problem

Input: \quad A discrete-timed automaton $\mathcal{A}(n)$ with n clocks. Question: \exists infinite Büchi-accepting run of ${\mathcal A}$?

The recurrent reachability problem is <code>PSPACE-complete</code> if $n\geq 3.$

Discrete-Timed Automaton(2)

All time delays are in N

$$
(s_1,0,0) \xrightarrow{4} (s_2,4,0) \xrightarrow{1} (s_3,5,1) \xrightarrow{0} (s_1,0,1) \xrightarrow{4} (s_2,4,0) \xrightarrow{0} \dots
$$

The Recurrent Reachability Problem

Input: \quad A discrete-timed automaton $\mathcal{A}(n)$ with n clocks. Question: \exists infinite Büchi-accepting run of ${\mathcal A}$?

The recurrent reachability problem is <code>PSPACE-complete</code> if $n\geq 3.$

How to Encode a Weighted Discrete -Timed Automaton

Weighted D -T Automaton $\mathcal{A}(m,n)$ encoded by Discrete -Timed Automaton Figure $D - 1$ Automaton $A(n_i, n_j)$ encoded by
- initial weight value $\iota \in \mathbb{N}^n$ $\mathcal{A}'(m+n+c)$ - upper bound $b \in \mathbb{N}^n$

 \exists infinite ι -run in ${\mathcal{A}}$ such that $w_i \in [0,b(i)]$ for each $i \in \{1,...,n\}$ ⇔ \exists infinite Büchi-accepting run of \mathcal{A}'

A weight variable w of ${\mathcal{A}}$ is encoded by clock variable w' in ${\mathcal{A}}'$.

- read out value of d

- read out value of d - add value of d to value of w'

- add value of d to value of w'

- maintain value of x

[⋆] Courcoubetis and Yannakakis: Minimum and Maximum Delay Problems in Real-Time Systems. CAV 1991.

 \star Courcoubetis and Yannakakis: Minimum and Maximum Delay Problems in Real-Time Systems. CAV 1991.

[⋆] Courcoubetis and Yannakakis: Minimum and Maximum Delay Problems in Real-Time Systems. CAV 1991.

 \star Courcoubetis and Yannakakis: Minimum and Maximum Delay Problems in Real-Time Systems. CAV 1991.

Second Main Result

Weighted D -T Automaton $\mathcal{A}(m,n)$ _{encoded by} Discrete -Timed Automaton - initial weight value $\iota \in \mathbb{N}^n$ encoded by $\mathcal{A}'(m+n+c)$

- upper bound $b \in \mathbb{N}^n$

 \exists infinite *ι*-run in $\mathcal A$ such that $w_i \in [0,b(i)]$ for each $i \in \{1,...,n\}^\perp$ ⇔ \exists infinite Büchi-accepting run of \mathcal{A}'

Theorem: The interval-bound problem for weighted discrete-timed automata is in PSPACE.

Second Main Result

Weighted D -T Automaton $\mathcal{A}(m,n)$ _{encoded by} Discrete -Timed Automaton - initial weight value $\iota \in \mathbb{N}^n$ encoded by $\mathcal{A}'(m+n+c)$

- upper bound $b \in \mathbb{N}^n$

 \exists infinite *ι*-run in A such that $w_i \in [0, b(i)]$ for each $i \in \{1, ..., n\}$ ⇔ \exists infinite Büchi-accepting run of \mathcal{A}'

Theorem: The interval-bound problem for weighted discrete-timed automata is in PSPACE.

PSPACE-hardness follows from PSPACE-completeness of recurrent reachability problem for discrete-timed automata.

Summary and Open Problems

Bouyer et al.: Infinite Runs in Weighted Timed Automata with Energy Constraints. FORMATS 2008. Bouyer et al.: Timed Automata with Observers under Energy Constraints. HSCC 2010. Q: On the Interval-Bound Problem for Weighted Timed Automata. LATA 2011. Bouyer-Decitre, Markey. April 2011. Unpublished.