On the Interval-Bound Problem for Weighted Timed Automata

Karin Quaas

27th of May, 2011

- Initial filling of the tank
- Machine should never break down

- Initial filling of the tank
- Machine should never break down
- Oil tank should never be empty

- Initial filling of the tank
- Machine should never break down
- Oil tank should never be empty
- Oil tank should never overflow

Weighted Timed Systems with Constraints on Weights

- Initial value ι of resource
- System should never terminate
- Value of resource should never be less than $\boldsymbol{0}$
- Value of resource should never exceed upper bound \boldsymbol{b}

$$(s_1, 0, 2) \xrightarrow{\frac{2}{3}} (s_2, \frac{2}{3}, 0) \xrightarrow{\frac{1}{3}} (s_3, 1, 2) \xrightarrow{0} (s_1, 0, 2) \xrightarrow{\frac{2}{3}} (s_2, \frac{2}{3}, 0) \xrightarrow{\frac{1}{3}} \dots$$

$$(s_1, 0, 2) \xrightarrow{\frac{2}{3}} (s_2, \frac{2}{3}, 0) \xrightarrow{\frac{1}{3}} (s_3, 1, 2) \xrightarrow{0} (s_1, 0, 2) \xrightarrow{\frac{2}{3}} (s_2, \frac{2}{3}, 0) \xrightarrow{\frac{1}{3}} \dots$$

There is an infinite 2-run such that the value of w is always within [0, 2].

$$(s_1, 0, 2) \xrightarrow{\frac{2}{3}} (s_2, \frac{2}{3}, 0) \xrightarrow{\frac{1}{3}} (s_3, 1, 2) \xrightarrow{0} (s_1, 0, 2) \xrightarrow{\frac{2}{3}} (s_2, \frac{2}{3}, 0) \xrightarrow{\frac{1}{3}} \dots$$

There is an infinite 2-run such that the value of w is always within [0, 2].

$$(s_1, 0, \underline{2}) \xrightarrow{\frac{2}{3}} (s_2, \underline{\frac{2}{3}}, \underline{0}) \xrightarrow{\frac{1}{3}} (s_3, 1, \underline{2}) \xrightarrow{0} (s_1, 0, \underline{2}) \xrightarrow{\frac{2}{3}} (s_2, \underline{\frac{2}{3}}, \underline{0}) \xrightarrow{\frac{1}{3}} \dots$$

There is an infinite 2-run such that the value of w is always within [0,2].

$$(s_1, 0, 1\frac{1}{2}) \xrightarrow{\frac{1}{2}} (s_2, \frac{1}{2}, 0) \xrightarrow{\frac{1}{3}} (s_3, \frac{5}{6}, 2) \xrightarrow{\frac{1}{6}} (s_1, 0, 1) \xrightarrow{\frac{1}{3}} (s_2, \frac{1}{3}, 0) \xrightarrow{\frac{1}{3}} \dots$$

Is there is an infinite $1\frac{1}{2}$ -run such that the value of w is always within [0,2]?

Input: A weighted timed automaton $\mathcal{A}(m, n)$ with

- m clock variables,
- n weight variables,
- initial weight value $\iota \in \mathbb{Q}^n$,
- upper bound $b \in \mathbb{N}^n$.

Question: \exists infinite ι -run in \mathcal{A} such that $w_i \in [0, b_i]$ for each $i \in \{1, ..., n\}$?

Input: A weighted timed automaton $\mathcal{A}(m, n)$ with

- m clock variables,
- n weight variables,
- initial weight value $\iota \in \mathbb{Q}^n$,
- upper bound $b \in \mathbb{N}^n$.

Question: \exists infinite ι -run in \mathcal{A} such that $w_i \in [0, b_i]$ for each $i \in \{1, ..., n\}$?

	$\mathcal{A}(1,1)$			
∃ infinite run.	without edge weight	with edge weight		
$w_i \in [0,\infty)$	Р	EXPTIME		
$w_i \in [0, b]$?	?		

Bouyer et al.: Infinite Runs in Weighted Timed Automata with Energy Constraints. FORMATS 2008. Bouyer et al.: Timed Automata with Observers under Energy Constraints. HSCC 2010.

Input: A weighted timed automaton $\mathcal{A}(m, n)$ with

- m clock variables,
- n weight variables,
- initial weight value $\iota \in \mathbb{Q}^n$,
- upper bound $b \in \mathbb{N}^n$.

Question: \exists infinite ι -run in \mathcal{A} such that $w_i \in [0, b_i]$ for each $i \in \{1, ..., n\}$?

	$\mathcal{A}(1,1)$		$\mathcal{A}(2,2)$	
∃ infinite run.	without edge weight	with edge weight	without edge weight	with edge weight
$w_i \in [0,\infty)$	Р	EXPTIME	?	?
$w_i \in [0, b]$?	?	undecidable	undecidable

Bouyer et al.: Infinite Runs in Weighted Timed Automata with Energy Constraints. FORMATS 2008.Bouyer et al.: Timed Automata with Observers under Energy Constraints. HSCC 2010.Q: On the Interval-Bound Problem for Weighted Timed Automata. LATA 2011.

Two-Counter Machines

A two-counter machine is a finite sequence $\mathcal{M} = (I_1, ..., I_n)$ of instructions of the form (where $i \in \{1, 2\}$, $j, k, m \in \{1, ..., n\}$):

increment	$I_j\!:\!C_i:=C_i+1;$ go to I_k
zero test/decrement	I_j :if $C_i=0$ then go to I_k else $C_i\!:=\!C_i-1$; go to I_m
stop	$I_j: \texttt{stop}$

A configuration of \mathcal{M} is a triple $\gamma \in \{I_1, ..., I_n\} \times \mathbb{N} \times \mathbb{N}$.

A computation of \mathcal{M} is a sequence $(\gamma_i)_{i\geq 0}$, where $\gamma_0 = (I_1, 0, 0)$ and γ_{i+1} is the result of executing I_i on γ_i .

The Infinite Computation Problem

Input: A two-counter machine \mathcal{M} . Question: \exists infinite computation of \mathcal{M} ?

How to Encode a Two-Counter Machine

The counters C_1 and C_2 are encoded by the weight variable w:

$$w = 5 - \frac{1}{2^{c_1} 3^{c_2}}$$

The interval-bounds and clock constraints are used to control the value of w.

Is there is an infinite $5 - \frac{1}{2^{c_1}3^{c_2}}$ -run such that the value of w is within [0, 5]?

Is there is an infinite $5 - \frac{1}{2^{c_1}3^{c_2}}$ -run such that the value of w is within [0, 5]?

$$(s_1, 0, w) \xrightarrow{\delta} (s_2, 0, w - 6\delta) \longrightarrow \dots$$

Is there is an infinite $5 - \frac{1}{2^{c_1}3^{c_2}}$ -run such that the value of w is within [0, 5]?

$$(s_1, 0, w) \xrightarrow{\delta} (s_2, 0, w - 6\delta) \longrightarrow ...$$

 δ must satisfy $0 \le w - 6\delta \le 5 \implies \frac{w-5}{6} \le \delta \le \frac{w}{6}$

Is there is an infinite $5 - \frac{1}{2^{c_1}3^{c_2}}$ -run such that the value of w is within [0, 5]?

$$(s_1, 0, w) \xrightarrow{\delta} (s_2, 0, w - 6\delta) \xrightarrow{1} (s_3, 1, w - 6\delta + 5) \longrightarrow \dots$$

 δ must satisfy $0 \le w - 6\delta \le 5 \implies \frac{w-5}{6} \le \delta \le \frac{w}{6}$

Is there is an infinite $5 - \frac{1}{2^{c_1}3^{c_2}}$ -run such that the value of w is within [0, 5]?

$$(s_1, 0, w) \xrightarrow{\delta} (s_2, 0, w - 6\delta) \xrightarrow{1} (s_3, 1, w - 6\delta + 5) \longrightarrow \dots$$

 δ must satisfy $0 \le w - 6\delta \le 5 \implies \frac{w-5}{6} \le \delta \le \frac{w}{6}$

Is there is an infinite $5 - \frac{1}{2^{c_1}3^{c_2}}$ -run such that the value of w is within [0, 5]?

$$(s_1, 0, w) \xrightarrow{\delta} (s_2, 0, w - 6\delta) \xrightarrow{1} (s_3, 1, w - 6\delta + 5) \longrightarrow \dots$$

 δ must satisfy $0 \le w - 6\delta + 5 \le 5 \Rightarrow \delta = \frac{w}{6}$

How to Encode a Two-Counter Machine

For each instruction I_j of \mathcal{M} , we construct a corresponding \mathcal{A}_j

e.g., increment $I_j:C_1:=C_1+1$; go to I_k :

The second clock and weight variable are needed for encoding the instruction zero test/decrement I_j : if $C_i = 0$ then go to I_k else $C_i := C_i - 1$; go to I_m

First Main Result

Theorem: The interval-bound problem for weighted timed automata with two clocks, two weight variables, and without edge weights is undecidable.

	$\mathcal{A}(1,1)$		$\mathcal{A}(2,2)$	
∃ infinite run.	without edge weight	with edge weight	without edge weight	with edge weight
$w_i \in [0,\infty)$	Р	EXPTIME	?	?
$w_i \in [0, b]$?	?	undecidable	undecidable

Bouyer et al.: Infinite Runs in Weighted Timed Automata with Energy Constraints. FORMATS 2008.
Bouyer et al.: Timed Automata with Observers under Energy Constraints. HSCC 2010.
Q: On the Interval-Bound Problem for Weighted Timed Automata. LATA 2011.

	$\mathcal{A}(1,1)$		$\mathcal{A}(2,2)$	
∃ infinite run.	without edge weight	with edge weight	without edge weight	with edge weight
$w_i \in [0,\infty)$	Р	EXPTIME	?	?
$w_i \in [0, b]$?	?	undecidable	undecidable
		$\mathcal{A}(1)$	(1, 2)	
			without	with

edge weight	edge weight	
?	undecidable	

Bouyer et al.: Infinite Runs in Weighted Timed Automata with Energy Constraints. FORMATS 2008.
Bouyer et al.: Timed Automata with Observers under Energy Constraints. HSCC 2010.
Q: On the Interval-Bound Problem for Weighted Timed Automata. LATA 2011.

	$\mathcal{A}(1,1)$		$\mathcal{A}(2,2)$	
∃ infinite run.	without edge weight	with edge weight	without edge weight	with edge weight
$w_i \in [0,\infty)$	Р	EXPTIME	?	?
$w_i \in [0, b]$?	?	undecidable	undecidable
	$\mathcal{A}(2,1)$		$\mathcal{A}(1)$	(., 2)
	without	with	without	with

∃ infinite run.	without	with	without	with
	edge weight	edge weight	edge weight	edge weight
$w_i \in [0, b]$?	undecidable	?	undecidable

Bouyer et al.: Infinite Runs in Weighted Timed Automata with Energy Constraints. FORMATS 2008.
Bouyer et al.: Timed Automata with Observers under Energy Constraints. HSCC 2010.
Q: On the Interval-Bound Problem for Weighted Timed Automata. LATA 2011.
Bouyer-Decitre, Markey. April 2011. Unpublished.

The Interval-Bound Problem for Discrete-Time

Weighted Discrete-Timed Automata: All time delays are in \mathbb{N} .

Input: A weighted discrete-timed automaton $\mathcal{A}(m, n)$ with - *m* clock variables,

- n weight variables,
- initial weight value $\iota \in \mathbb{Q}^n$,
- upper bound $b \in \mathbb{N}^n$.

Question: \exists infinite ι -run in \mathcal{A} such that $w_i \in [0, b_i]$ for each $i \in \{1, ..., n\}$?

Theorem: The interval-bound problem for weighted discrete-timed automata is PSPACE-complete.

Q: On the Interval-Bound Problem for Weighted Timed Automata. LATA 2011.

The Interval-Bound Problem for Discrete-Time

Weighted Discrete-Timed Automata: All time delays are in \mathbb{N} .

Input: A weighted discrete-timed automaton $\mathcal{A}(m, n)$ with - *m* clock variables,

- n weight variables,
- initial weight value $\iota \in \mathbb{Q}^n$,
- upper bound $b \in \mathbb{N}^n$.

Question: \exists infinite ι -run in \mathcal{A} such that $w_i \in [0, b_i]$ for each $i \in \{1, ..., n\}$?

Theorem: The interval-bound problem for weighted discrete-timed automata is PSPACE-complete.

Q: On the Interval-Bound Problem for Weighted Timed Automata. LATA 2011.

The Interval-Bound Problem for Discrete-Time

Weighted Discrete-Timed Automata: All time delays are in \mathbb{N} .

Input: A weighted discrete-timed automaton $\mathcal{A}(m, n)$ with - *m* clock variables,

- n weight variables,
- initial weight value $\iota \in \mathbb{Q}^n$,
- upper bound $b \in \mathbb{N}^n$.

Question: \exists infinite ι -run in \mathcal{A} such that $w_i \in [0, b_i]$ for each $i \in \{1, ..., n\}$?

Theorem: The interval-bound problem for weighted discrete-timed automata is **PSPACE-complete**.

Q: On the Interval-Bound Problem for Weighted Timed Automata. LATA 2011.

Discrete-Timed Automaton(2)

$$(s_1, 0, 0) \xrightarrow{4} (s_2, 4, 0) \xrightarrow{1} (s_3, 5, 1) \xrightarrow{0} (s_1, 0, 1) \xrightarrow{4} (s_2, 4, 0) \xrightarrow{0} \dots$$

The Recurrent Reachability Problem

Input: A discrete-timed automaton $\mathcal{A}(n)$ with n clocks. Question: \exists infinite Büchi-accepting run of \mathcal{A} ?

The recurrent reachability problem is PSPACE-complete if $n \geq 3$.

Discrete-Timed Automaton(2)

All time delays are in \mathbb{N}

$$(s_1, 0, 0) \xrightarrow{\mathbf{4}} (s_2, 4, 0) \xrightarrow{\mathbf{1}} (s_3, 5, 1) \xrightarrow{\mathbf{0}} (s_1, 0, 1) \xrightarrow{\mathbf{4}} (s_2, 4, 0) \xrightarrow{\mathbf{0}} \dots$$

The Recurrent Reachability Problem

Input: A discrete-timed automaton $\mathcal{A}(n)$ with n clocks. Question: \exists infinite Büchi-accepting run of \mathcal{A} ?

The recurrent reachability problem is PSPACE-complete if $n \geq 3$.

How to Encode a Weighted Discrete - Timed Automaton

Weighted D -T Automaton $\mathcal{A}(m, n)$ encoded by Discrete -Timed Automaton - initial weight value $\iota \in \mathbb{N}^n$ \longrightarrow $\mathcal{A}'(m+n+c)$ - upper bound $b \in \mathbb{N}^n$

 $\begin{array}{l} \exists \text{ infinite } \iota\text{-run in } \mathcal{A} \text{ such that } w_i \in [0, b(i)] \text{ for each } i \in \{1, ..., n\} \\ \Leftrightarrow \\ \exists \text{ infinite Büchi-accepting run of } \mathcal{A}' \end{array}$

A weight variable w of \mathcal{A} is encoded by clock variable w' in \mathcal{A}' .

- read out value of \boldsymbol{d}

- read out value of d- add value of d to value of w'

- add value of d to value of w^\prime

- maintain value of x

Second Main Result

Weighted D -T Automaton $\mathcal{A}(m,n)$ encoded by Discrete -Timed Automaton - initial weight value $\iota \in \mathbb{N}^n$ \longrightarrow $\mathcal{A}'(m+n+c)$

- upper bound $b \in \mathbb{N}^n$

 $\begin{array}{l} \exists \text{ infinite } \iota\text{-run in } \mathcal{A} \text{ such that } w_i \in [0, b(i)] \text{ for each } i \in \{1, ..., n\} \\ \Leftrightarrow \\ \exists \text{ infinite Büchi-accepting run of } \mathcal{A}' \end{array}$

Theorem: The interval-bound problem for weighted discrete-timed automata is in PSPACE.

Second Main Result

Weighted D -T Automaton $\mathcal{A}(m,n)$ encoded by Discrete -Timed Automaton - initial weight value $\iota \in \mathbb{N}^n$ \longrightarrow $\mathcal{A}'(m+n+c)$

- upper bound $b \in \mathbb{N}^n$

 $\begin{array}{l} \exists \text{ infinite } \iota\text{-run in } \mathcal{A} \text{ such that } w_i \in [0, b(i)] \text{ for each } i \in \{1, ..., n\} \\ \Leftrightarrow \\ \exists \text{ infinite Büchi-accepting run of } \mathcal{A}' \end{array}$

Theorem: The interval-bound problem for weighted discrete-timed automata is in PSPACE.

PSPACE-hardness follows from PSPACE-completeness of recurrent reachability problem for discrete-timed automata.

Summary and Open Problems

	$\mathcal{A}(1,1)$		$\mathcal{A}(2,2)$	
∃ infinite run.	without edge weight	with edge weight	without edge weight	with edge weight
$w_i \in [0,\infty)$	Р	EXPTIME	?	?
$w_i \in [0, b]$?	?	undecidable	undecidable
	$\mathcal{A}(2,1)$		$\mathcal{A}(1)$	(., 2)

∃ infinite run.	without	with	without	with
	edge weight	edge weight	edge weight	edge weight
$w_i \in [0, b]$?	undecidable	?	undecidable

Bouyer et al.: Infinite Runs in Weighted Timed Automata with Energy Constraints. FORMATS 2008.
Bouyer et al.: Timed Automata with Observers under Energy Constraints. HSCC 2010.
Q: On the Interval-Bound Problem for Weighted Timed Automata. LATA 2011.
Bouyer-Decitre, Markey. April 2011. Unpublished.