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ABSTRACT

In this paper, we consider the fast simulation of traffic
groomed optical networks, in which multiple sub-rate traf-
fic streams may be carried on the same wavelength. For
real-sized systems, call blocking probabilities may be rare
events and require a large amount of CPU power to sim-
ulate. We present two importance sampling methods for
fast simulation. For a light-load case, we prove that static
IS using the Standard Clock (S-ISSC) method does indeed
have bounded relative error (BRE) even in multi-class case.
For a non-light-load case, we suggest, alternatively, adap-
tive ISSC (A-ISSC) which calculates the relative possibility
of reaching each target in every step of simulation. Using
A-ISSC, biasing methods which are proven to be optimal or
have bounded error can be extended to multi-dimensional
cases while still retaining a very favorable performance.

1 INTRODUCTION

Modern optical techniques such as wavelength division mul-
tiplexing (WDM) enable the capability of carrying several
Terabits per second by using multiple wavelengths, each of
which can carry traffic streams at the order of Gigabits per
second, in each fiber. This satisfies modern applications
which have huge bandwidth demands; however, in many
cases, a traffic stream may only need a small fraction of
the wavelength. To prevent the wasting of resources, the
bandwidth of a wavelength can be divided into smaller sub-
rate capacities called sub-wavelength units. A customer can
require one or more sub-wavelengths to a maximum of the
bandwidth of a wavelength. This technique is known as traf-
fic grooming (see Dutta and Rouskas 2002). In this paper,
we consider an optical network with single-hop groom-
ing. In single-hop grooming, a traffic stream will not be
switched to another wavelength along its source-destination
path. The nodes that connect the links are add/drop mul-
tiplexers (ADMs). An ADM is the place where some of
the traffic goes through while some other is dropped, which
means that the traffic stream is directed to local traffic.
Meanwhile, new traffic may be added from local sources,
if there is sufficient capacity remaining.

A new connection, usually referred as a new call, may
arrive at any node and have a destination of any other node.
Along its path, it will require some amount of the sub-
wavelength units according to its bandwidth requirement.
If the requirement of a call cannot be fulfilled when it arrives,
the call will be blocked. The probability that a new call will
be blocked is, thus, an important indicator of the Quality
of Service provided by this network. For Poisson arrivals
and exponential holding times, this type of system is called
a multi-service loss system (see Ross 1995). Closed form
solutions may exist for some problems of this type; however,
in real-sized networks, solutions are difficult to calculate
due to the enormous state space. Simulation is, therefore,
a favored and rather indispensable method to estimate the
blocking probability, as well as other QoS parameters.

In large optical networks, call blocking probabilities
may be rare events due to the large capacity of the network
or a very low call arrival rate. In such cases, standard
simulation may require an extremely long runtime, and
usually incurs large relative errors. Importance Sampling,
(see Heidelberger 1995) has been known as a technique
to improve the accuracy of estimates of stochastic events,
which permits large speed-ups of estimation of extremely low
blocking probabilities. The system under study is simulated
in a way that the “important" events occur more frequently
by “biasing" the underlying probability distribution.

Methods for accelerating the simulation of packet-
based networks of queues have been known for a
while (see Heidelberger 1995; Smith, Shafi, and Gao 1997;
Falkner, Devetsikiotis, and Lambadaris 1999, and refer-
ences therein). Closer to the problem at hand, several
methods have been proposed to use Importance Sampling
to estimate the blocking probabilities in a multi-service loss
network, e.g., Ross (1995) and Mandjes (1997) focused
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on the estimation of the most likely blocking link; and
Lassila and Virtamo (1999 and 2000) provided methods for
the cases in which more than one link may have contribution
to the blocking probability. These methods are based on
the product form solution and may need to calculate the
very large table for the probability distribution before the
simulation begins.

In this paper, we provide methods based on Importance
Sampling applied to the Standard Clock method (ISSC)
(Vazquez-Abad, Andrew, and Everitt 2002). In that paper,
the authors showed that in the single-class case, when the
arrival rates approach zero, a method called static ISSC has
bounded relative error in the estimation. Here, we extend
their result to a multi-class scenario. Furthermore, in the
non-light-load case, we propose using Adaptive ISSC, which
is based onAdaptive Importance Sampling (Heegaard 1996),
that tunes the probability distribution toward the most pos-
sible target in each step.

The remainder of the paper is organized as follows.
In Section 2, we provide an introduction to the model of
traffic groomed optical network. In Section 3, we describe
briefly the technique of Importance Sampling, as well as the
two ISSC methods in question. Finally, we show validating
simulation results in Section 4, and conclude in Section 5.

An example of a single-hop grooming optical network
can be found in Washington and Perros (2004). For sim-
plicity, consider a tandem network of multi-rate loss models
with simultaneous resource possession. In our simulation
method, this topology can be extended to a more generalized
mesh network without any effort. For example, Figure 2
illustrates an optical network with seven nodes and six links.
Each link is assumed to be a single fiber with W wave-
lengths. For single-hop grooming, this network can be seen
as W identical networks, each having one wavelength in
every link.

Figure 2 also shows the possible routes in the network;
that is, traffic of a call may arrive at any node a, and leave
at any other node b, where b > a. All calls, whatever
route they use, are grouped into K classes. Each class
k, k = 1, 2, . . . , K has a bandwidth demand of dk sub-
wavelength units. An arriving class k call at node a with
destination b will be accepted only when every link between
a and b has at least dk sub-wavelength units available.
All of these sub-wavelength units are assigned to the call
simultaneously at the time it is accepted. If a call is not
accepted, it is considered blocked. When a call departs, all
dk sub-wavelength units on all of the links along its route
are simultaneously released.

2 A MODEL FOR TRAFFIC GROOMED OPTICAL
NETWORKS

In general, we may assume that there are L links in an optical
network, each having a capacity of C sub-wavelength units.
1 2 3 4 5 60

Figure 1: Seven-node Network with All Routes

To one of the R routes, say i, class k calls arrive at rate λi,k

and have mean service duration of 1
µi,k

. As noted, such calls
will be accepted only if there are at least dk sub-wavelength
units available in all of the links along route i.

3 IMPORTANCE SAMPLING TECHNIQUES

3.1 Basic Idea of Importance Sampling

Importance Sampling (IS) is a Monte Carlo (MC) estimation
technique which aims to reduce the variance or other cost
function of a given simulation estimator. Consider a case
in which we want to estimate the probability P(X ∈ A)

for a random variable X with probability density function
(pdf) f (·). Traditional MC generates samples of X and
counts the number in A, that is, by calculating E[1{X∈A}].
If P(X ∈ A) is very small, this would require a large
number of samples. Using IS, we generate samples with a
pdf f ∗(·) with P ∗(X ∈ A) > P(X ∈ A). If each time we
observe an x within A, we increment our count by f (x)

f ∗(x)
instead of 1, then, effectively, we are constructing a new
“weighted" random variable, the expectation of which is
also equal to P(X ∈ A):∫

x∈A

f (x)

f ∗(x)
f ∗(x)dx =

∫
x∈A

f (x)dx = P(X ∈ A).

The function L(x) = f (x)
f ∗(x)

is called the Radon-Nikodym
derivative or likelihood ratio. For a Markovian type system,
if we have a sample path s with t steps, the Radon-Nikodym
derivative would be the multiplication of each step along
s, that is,

L(s) =
t∏

k=1

fk(xk+1)

f ∗
k (xk+1)

where fk(xk+1) and f ∗
k (xk+1) denote the original and twisted

transition probability from state xk to xk+1.
As long as L(x) can be calculated exactly [which also

implies that f ∗(x) must be absolutely continuous with re-
spect to f (x), that is, whenever f (x) > 0, f ∗(x) must
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> 0], the IS estimator is statistically unbiased. However,
deciding how to choose an appropriate L(x) so that the
simulation is most efficient and results in small variance
is far from trivial, depending on the system of application.
A widely used criterion for evaluating bias efficiency is
determining if it has bounded relative error (BRE) (see
Shahabuddin 1994 and Heidelberger 1995 among others).
The definition is as follows:

Definition 1 The unbiased IS estimator for the rare
event probability P ε(X ∈ A), E[L(x)1{x∈A}], has bounded
relative error (BRE) under f ∗(x) if there are constants
β < ∞, ε0 > 0 such that

sup
ε≤ε0

√
Var∗[L(X)1{X∈A}]

P ε(X ∈ A)
≤ β.

The following lemma is a direct consequence of the above
definition (Chang, Heodelberger, and Shahabuddin 1995).

Lemma 2 If there are constants l, u and b such that
P ε(X ∈ A) ≥ lεb and L(X)1{X∈A} ≤ uεb a.s., then the IS
estimator for P ε(X ∈ A) has BRE.

3.2 Static ISSC for Light-Load Case

The static ISSC method is introduced in
Vazquez-Abad, Andrew, and Everitt (2002) to esti-
mate the call blocking probability in a cellular telephone
network. In Andrew (2004), a dynamic method is used
to estimate the call blocking probability in wavelength
continuous WDM networks with one class of traffic. Using
a similar notation as in Andrew (2004), we define ci,j

as the union of routes that use the jth link of route i,
and Ci , which is called cluster i, to be the union of all
routes that intersect route i. For route i, valid states can
be written as {Aggregate occupancy ñ s.t. n(ci,L(m)) ≤ W

, ∀m = 1, . . . , M} , where n(ci,j ) is the total number of
sub-wavelength units used in ci,j ; i.e., capacity occupancy
of link j , L(m) ∈ {1, . . . , L} is the mth link that route i

uses, and M is the total number of links used by route i.
In other words, an aggregate occupancy ñ is said to be
valid for route i if every link that the route uses does not
exceed its capacity.

Assume inter-arrival times and call durations are expo-
nentially distributed. Under the Standard Clock simulation
approach (Vakili 1991), we consider applying Importance
Sampling. We would like to change the arrival rates and
durations of some connections so that the blocking proba-
bility for the traffic that we are interested in, say class k at
route i, becomes a non-rare event. The event rate for the
system under the system occupancy ñ(t) is then

�ñ(t) =
K∑

k=1

R∑
j=1

λj,k + µ

K∑
k=1

R∑
j=1

ñj,k(t)
where ñj,k(t) is the number of class k, route j calls in the
system at step t .

Consider the change of measure that swaps the aggregate

arrival rates to cluster i, λ =
K∑

k=1

∑
j∈Ci

λi,k with inverse

expected call duration µ. That is, in IS, arrivals at the
cluster Ci have a total rate λ∗ = µ, and the service rate
for the connection in the cluster is µ∗ = λ. Inter-arrival
and holding times outside the cluster have the original
exponential distribution. The new event rate becomes

�∗̃
n(t) = µ +

K∑
k=1

∑
j /∈Ci

λj,k + λ

K∑
k=1

∑
j∈Ci

ñj,k(t)

+µ

K∑
k=1

∑
j /∈Ci

ñj,k(t),

and the corresponding Radon-Nikodym derivative after T

steps is

LT =
T −1∏
t=1

�ñ(t)e
−�ñ(t)Tt+1

�∗̃
n(t)e

−�∗̃
n(t)

Tt+1

×
T −1∏
t=1

�∗̃
n(t)

�ñ(t)

(H(t))

where Tt+1 means the time from step t to step t + 1,

and

H(t) =


λ

µ
, event t + 1 = arrival to cluster i

µ

λ
, event t + 1 = departure from cluster i

1, o.w.

Let a be the total arrivals to cluster i in T steps, and d be
the total departures to cluster i in T steps,

LT = e
−

T −1∑
t=1

(�N(t)−�∗
N(t)

)Tt+1
(

λ

µ

)a (µ

λ

)d
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�∗
N(t) − �N(t)

=
µ +

K∑
k=1

∑
j /∈Ci

λj,k + λ

K∑
k=1

∑
j∈Ci

ñj,k(t)

+µ

K∑
k=1

∑
j /∈Ci

ñj,k(t)


−

 K∑
k=1

R∑
j=1

λj,k +
K∑

k=1

R∑
j=1

ñj,k(t)µ


= −(µ − λ)(

K∑
k=1

∑
j∈Ci

ñj,k(t) − 1).

Therefore,

LT = e

−(µ−λ)

[
T −1∑
t=1

(
K∑

k=1

∑
j∈Ci

ñj,k(t)−1)Tt+1

] (
λ

µ

)a−d

. (1)

Finally, assume that Bi,k to be the event that the system
reaches the blocking rate at route i for class k

P (Bi,k) = E
[
1(Bi,k)

]
= E∗ [

LT · 1(Bi,k)
]

We use the A-cycle method (see Heidelberger 1995), in
which a quasi-regenerative set A is defined. Two consecutive
entries into A from A′ is called an “A-cycle". Under this
method, the blocking probability can be expressed as

P(B) = E[TB ]
E[TA]

= E[TB |AB ]P(AB)

E[TA]
where TA, TB and AB are the A-cycle length, time spent in
blocking states in an A-cycle, and the event that an A-cycle
contains blocking state, respectively. These three are all
functions of i and k, that is, the traffic in which we are
interested. We can estimate P(AB) by turning on IS when
the system state reaches A from A′ until it reaches the
blocking state. Then we turn off IS and perform ordinary
simulation from this point until it leaves the set A, and
E[TB |AB ] can be calculated. Moreover, for E[TA], we can
simply use the ordinary simulation. This simulation can
also be used to provide the entry points for the IS to use.
Figure 2 shows the illustration of A-cycle method and also
shows that an ordinary simulation can be used in more than
one set of IS which may focus on the blocking state of
different routes or links. In this paper, we define A to be
the set of all states in which the number of calls in cluster
Ci is greater than some threshold θ.
Figure 2: A-cycle Method

We prove in the following that, if the call arrival rates
λi,k = ϕi,kε and µ > λ, when ε −→ 0, then this method
will have a Bounded Relative Error (BRE).

Proof First, we show that LT 1{AB } ≤ uεb.

When we reach a blocking state for route i, class k

calls, there are at least C
Max{dk} active calls within cluster

i at time T . Moreover, from the definition of A, the active
calls within this cluster will be at least θ

Max{dk} + 1.

Therefore,

(µ − λ)

T −1∑
t=1

(

K∑
k=1

∑
j∈Ci

ñj,k(t) − 1)Tt+1

 ≥ 0.

Furthermore, since

a − d ≥ C − θ

Max{dk} ,

we have (
λ

µ

)a−d

<

(
λ

µ

) C−θ
Max{dk }

.

From (1), we get

LT 1{AB } ≤
(

λ

µ

) C−θ
Max{dk } ≤

(
λ

µ

) C
Max{dk }

= uεb

, where

u =
∑

j∈Ci

∑
k

ϕj,k/µ


C

Max{dk }

and

b = C

Max{dk} .



Hsu and Devetsikiotis
Next, we need to show that P(AB) ≥ lεb.

Consider a sample path in which only C
Max{dk} class

k∗, route i calls arrive, where k∗ is the class such that
dk∗ = Max{dk}.

This will bring the system into a blocking state, and the
probability of this sample path is a lower bound of P(AB).

We have

P(AB) ≥
(

λi,k∗

�ñ

) C
Max{dk }

≥
(

ϕi,k∗

Cµ + ∑
i

∑
k λi,k

) C
Max{dk }

ε
C

Max{dk }

= lεb

where l =
(

ϕi,k∗
Cµ+∑

i

∑
k λi,k

) C
Max{dk }

.

From all of the above and Lemma 2, it follows that
this method has BRE. �

3.3 Adaptive ISSC

The assumption of light load in the last section does not
seem to be always practical in real networks. In this section,
we would like to consider instead the situation where the
arrival rates do not go to zero. Blocking probabilities may
still be rare events for all or some calls due to high capacity
or fast service. As to the method of IS biasing on this kind
of problem, several studies have been published. Among
the M links a route uses, if call blocking events happen
in a certain link, say l′, far more frequently than in all of
the other links, we can estimate the call blocking proba-
bility by biasing the distribution toward the overwhelming
of link l′. This is called a single target system and is dis-
cussed in Ross (1995) and Mandjes (1997). However,
modern design of optical networks would prevent the exis-
tence of this kind of bottleneck and try to balance the load
among all links. Under such a model, biasing the system
toward a certain link will cause an overbiasing problem
(Smith, Shafi, and Gao 1997) and, thus, underestimate the
blocking probability. In Lassila and Virtamo (1999) and
Lassila and Virtamo (2000), the authors provide methods
to distribute blocking among links, but these depend on the
product form solution and may have to pre-calculate a large
amount of tables before simulation.

The idea of Adaptive Importance Sampling
(Heegaard 1996) is to sample a link before each
step according to the relative importance of each link, then
bias the distribution as if the link is the only target. After
an arrival or a departure, another sampling of links is done
and the biasing distribution may also be changed. These
steps are repeated until the system reaches a blocking state.
This idea is shown in Figure 3, where a simplified model
of four links and two traffic types is shown.
Blocking at 

Link 1

Current

State

Traffic 1

T
raffic 2

B
lo

ck
in

g
 at 

L
in

k
 4

Sample Target 

Link

Figure 3: Adaptive Importance Sampling

Assume that we want to sample the links from a probabil-
ity distribution f̂ñ(t)(j), where j = 1, . . . , L, and ñ(t) is the
aggregate system state at step t . Recall that if we want to use
IS to estimate the probability that X ∈ A = {A1, . . . , AN },
the “best" biasing is to sample only the elements in A

and preserve the proportion of their relative probability
(Heidelberger 1995). Of course, this requires the under-
standing of the probability we want to estimate and, thus,
is not feasible. However, biasing the probability so that the
relative probabilities of importance samples are preserved,
does help to prevent over-biasing problems and reduce the
estimator variance. Therefore, we want f̂ñ(t)(j) to be an
approximation of the relation of the true blocking probabil-
ities among the links, starting from state ñ(t). We calculate
f̂ñ(t)(j) by estimating how easily the blocking state of link
j can be achieved from the current state ñ(t). We use the
probability that the system will be in the blocking state of
link j in the shortest path from ñ(t) to that state as the
weight of link j . f̂ñ(t)(j) is a probability distribution that
is proportional to the weight of link j .

To calculate the weight, we consider the shortest path,
which is the most likely path to reach the blocking state
from the current state. For a system with arrival and call du-
ration independent of system state, the shortest path would
be successive arrival of route i, class k traffic whose dk

λi,k

µi,k

is largest among the routes that use class j until the system
reaches the blocking state of route j. Since dk

λi,k

µi,k
is inde-

pendent of system states, this can be calculated in advance;
and in each step, we only need to calculate M weights, one
for each link used by the route in which we are interested.

If the arrival and/or the call duration are dependent on
the system state, we have to consider all possible sample
paths, which may require an excessive amount of computing
time. One possibility is to choose the largest dk

λi,k (̃n)

µi,k (̃n)
for

each step and use this resulting path as the shortest path.
This method requires O(M ·K ·N(c)) computations, where
N(c) is the mean value of the number of routes that use
link j over the M links that the route in which we are
interested is using.
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When the target link j is decided, we can then bias
the system toward that link. Exponential biasing, which is
suggested in the single target system, can be used; or, for
calculation efficiency, change of aggregate arrivals of the
routes that use link j with the aggregate service rate of
the active calls that use link j, which has asymptotically
optimal in single-class method, may also be used.

Using the Standard Clock method, our algorithm using
Adaptive ISSC is as follows:

1. For each j link that the route in which we are
interested uses, find the shortest path from current
state to the blocking state of the link and then
calculate the probability that the system will be in
the blocking state. Call this probability wj .

2. Sample a target link ĵ from the distribution that
P(j) = wj∑

k wk
.

3. Bias the system in favor of ĵ , sum up the arrival
and departure rates, sample the next event and
determine its attributes.

4. Calculate the Radon-Nikodym derivative for this
step as

L(t) = �ñ(t)e
−�ñ(t)Tt+1

�∗̃
n(t)e

−�∗̃
n(t)

Tt+1

×�∗̃
n(t)

�ñ(t)

(H(t))

= e
(�N(t)−�∗

N(t)
)Tt+1H(t)

where Tt+1 means the time to the next event, and

H(t) differs according to the biasing method used.
If we switch the arrival rate to ĵ with the aggregate
inverse average call duration at ĵ ,

H(t) =


λ

µ
, event = arrival to ĵ

µ

λ
, event = departure from ĵ

1, o.w.

5. Repeat steps 1-4 until the system reaches any of
the blocking states. The overall Radon-Nikodym
derivative of this sample path is the product of the
derivatives of all steps.

In Adaptive ISSC, we still apply the A-cycle method
as described in the previous section.
4 SIMULATION MODEL AND RESULTS

4.1 Simulation Model

Consider a seven-ADM tandem optical network as in Fig-
ure 2. Each link between two adjacent ADMs is modeled
as a single wavelength that is groomed to carry 24 sub-
wavelength units. All 21 possible routes are considered,
and for each route assume there are 4 classes of traffic, that
is, K=4. The demands for sub-wavelength units of the four
classes are d1 = 2, d2 = 6, d3 = 10, and d4 = 16.

Assume that the routes are numbered from 1 to 21 from
the top-left route to the very bottom one. For example, the
route between node 0 and node 1 is route 1, the route
between node 0 and node 2 is route 7, and the route that
uses all of the links is route 21, etc. The arrival rates
(packets per second) are assigned as Table 1.

Table 1: Call Arrival Rates of Simulation
Route Class 1 2 3 4

1 1 0.99 0.98 0.97
2 0.96 0.95 0.94 0.93
3 0.92 0.91 0.9 0.89
4 0.88 0.87 0.86 0.85
5 0.84 0.83 0.82 0.81
6 0.80 0.79 0.78 0.77

7-18 0.1 0.1 0.1 0.1
19-20 0.03 0.03 0.03 0.03

21 0.01 0.01 0.01 0.01

The service rate for all calls is set to be 500 packets
per second. Inter-arrival times and call duration for all calls
are assumed to be exponentially distributed with the above
rates.

Ordinary Monte-Carlo simulation, Static ISSC and
Adaptive ISSC are all performed for this scenario using
ARENA 7.0 as the simulation tool. For Monte Carlo sim-
ulation, a 5000-day simulation is done for each of 30 inde-
pendent replications. This requires more than 2 real days in
a Pentium-4 1.7G machine dedicated to the simulation. For
both of the ISSC methods, θ is set to be 0, that is, A-cycles
are defined to be the time between the beginning of two
consecutive busy periods of link j . An ordinary simulation
is done for 10 days for each method. Both methods use the
first 10, 000 entry points of their own ordinary simulation.
The method of batch means is used to calculate the vari-
ance of the blocking rate using both ISSC methods. For the
A-ISSC method, we use an interchanging of the aggregate
arrival rate with the aggregate inverse average duration.
The simulation time of the blocking probability for all 84
route/classes using S-ISSC and A-ISSC is approximately
65 minutes and 2.5 hours, respectively.



Hsu and Devetsikiotis
1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1 2 3 4 5 6

Route

B
lo

ck
in

g 
P

ro
ba

bi
lit

y

Class 1, MC

Class 2, MC

Class 3, MC

Class 4, MC

Class 1, S-ISSC

Class 2, S-ISSC

Class 3, S-ISSC

Class 4, S-ISSC

Class 1, A-ISSC

Class 2, A-ISSC

Class 3, A-ISSC

Class 4, A-ISSC

Figure 4: Routes that Use One Link

4.2 Simulation Results

The call blocking probabilities for different routes and classes
are shown in Figures 4, 5 and 6. From the figures, we see that
even for such long execution time, blocking probabilities
for some of the traffic streams are still too small to estimate
by the ordinary Monte Carlo method. This can also be
seen from the large relative error derived from the ordinary
simulation of the class 1 traffic, which typically has blocking
probabilities less than 10−7. Table 2 shows the estimation
of call probabilities and relative errors in percentage for
the class 1 calls that use two links, i.e., route 7 through
route 11, under all three methods. Notice that for route
10, traditional Monte Carlo simulation fails to estimate
the blocking probability. Meanwhile, we can see that the
relative error is much larger in ordinary simulation than in
the two IS methods that we propose.

Figure 4 shows the call blocking probabilities of the
routes that use only one link, i.e., route 1 through route 6.
For these routes, we simply have a single target system.
From the figure, we see that the IS methods do very well in
estimating the probabilities. For multi-target cases, Figure
5 and Figure 6 represent the blocking probabilities for the
routes that use two links and the routes that use four to six
links, respectively. From the figures we can see that the
estimates from the two IS methods are consistent with each
other.

Moreover, besides some of the class 1 cases that can-
not be successfully estimated by MC simulation, the results
from MC and those from IS are almost the same. Thus,
we can conclude that such methods do not suffer from the
overbiasing problem and can generate very accurate, un-
biased estimates. Finally, to see the efficiency of the IS
methods, Figure 7 shows the relative error, which is de-
fined as the standard deviation divided by the mean of the
estimation, versus the call blocking probabilities. In this
graph, the relative error for the ordinary Monte Carlo sim-
ulation explodes when the blocking probability approaches
10−9, while there are only small fluctuations for both ISSC
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Table 2: Blocking Probabilities and Relative Errors

Route P(B) MC RE of MC P(B) S-ISSC
7 4.63 · 10−8 548.79 5.30 · 10−8

8 4.63 · 10−8 548.18 8.90 · 10−8

9 9.30 · 10−8 378.68 1.05 · 10−7

10 0 N/A 8.50 · 10−8

11 4.64 · 10−8 547.59 5.64 · 10−8

RE of S-ISSC P(B) of A-ISSC RE of A-ISSC
1.949 5.35 · 10−8 1.912
1.672 8.86 · 10−8 1.766
2.670 1.09 · 10−8 1.038
1.366 8.66 · 10−8 1.432
2.276 5.40 · 10−8 1.037

methods. Furthermore, we can see that the relative error of
our adaptive A-ISSC is smaller than that of S-ISSC. This
shows the efficiency of the A-ISSC for such cases that are
indeed non-light loaded.

5 CONCLUSION

In this paper, we have described two importance sampling
methods to simulate the call blocking probability in a traffic
groomed optical network that have simultaneous resource
possession. In the light-load case, we have proved that
static ISSC has a bounded relative error (BRE) in such
networks, where different classes of traffic may require dif-
ferent amounts of sub-wavelength units. In cases other than
that of light-load, we argued that adaptive ISSC may instead
provide an efficient and robust way to set biasing parame-
ters. In our simulation results, adaptive ISSC provides very
accurate estimates of the call blocking probability, as well
as extremely low relative variances.

As mentioned in the second section, these methods can
be extended to be used in more generalized, “mesh" net-
works without much additional effort. Moreover, unlike the
methods that depend on the product form solution, adaptive
ISSC may be used in single target system models in which
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there exist optimal or good biasing methods. For example,
for a network with self-similar input traffic, arrivals may
be modeled as sum of fractal modulated poisson processes,
which converges asymptotically to a Poisson arrival in fixed
time intervals (Tsybakov and Georganas 1997). In a case
like this, the asymptotically optimal bias of single target
cases exists and may be extended to multi-target systems
by using Adaptive ISSC.

Finally, in certain modern optical networks,
such as those using Optical Burst Switching
(Battestilli and Perros 2003), calls may not hold all
of the links they require at the time they arrive. On the
contrary, they may obtain the link just one hop in advance
of the traffic burst. Whether the importance sampling
provided in this paper can be applied to such network
models will be the next step of our research.
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