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ABSTRACT

Adaptive Monte Carlo methods are specialized Monte Carlo
simulation techniques where the methods are adaptively
tuned as the simulation progresses. The primary focus of
such techniques has been in adaptively tuning importance
sampling distributions to reduce the variance of an estima-
tor. We instead focus on adaptive control variate schemes,
developing asymptotic theory for the performance of two
adaptive control variate estimators. The first estimator is
based on a stochastic approximation scheme for identifying
the optimal choice of control variate. It is easily imple-
mented, but its performance is sensitive to certain tuning
parameters, the selection of which is nontrivial. The second
estimator uses a sample average approximation approach.
It has the advantage that it does not require any tuning
parameters, but it can be computationally expensive and
requires the availability of nonlinear optimization software.

1 INTRODUCTION

Suppose that we wish to estimate µ = EX, where X is a
real-valued random variable. Suppose also that EY(θ) = 0
for any θ ∈ �, where � is a parameter set. Then X −Y (θ)

is an unbiased estimator for µ, where Y (θ) serves as a
control variate, and one is free to select the parameter θ

so as to minimize the variance of X − Y (θ). We propose
two adaptive procedures that tune the parameter θ while
estimating µ. We study the asymptotic properties of these
procedures as the simulation runlengths become large.

Our interest in this problem stems partly from the
simulation analysis of multiclass processing networks.
When the networks are heavily loaded, simulation esti-
mators can suffer from large variance. Therefore, some
form of variance reduction is needed. The simula-
tion estimators developed in Henderson and Meyn (1997),
Henderson and Meyn (2003) give large variance reductions,
but the asymptotic rates of growth in the variance are the
same as for the naive estimator; see Meyn (2003). One
approach to improving these estimators is to develop pa-
rameterized estimators. Further motivation comes from the
problem of estimating the “expected cost to absorption” in
a Markov chain. This problem has received a great deal of
attention because of its applications in radiation transport
problems; see Kollman et al. (1999).

The first of our procedures is based on a stochastic
approximation scheme. At iteration k, one has a current
parameter choice θk−1. Several instances of X − Y (θk−1)

are generated, and the sample variance is computed. The
gradient of the sample variance is also computed, and this
allows one to perform a stochastic approximation step giving
θk , and the procedure is iterated. This procedure is easily
implemented and, when the step sizes of the algorithm are
chosen appropriately, gives very good numerical results. It
has the disadvantage that the finite-time performance of the
algorithm is strongly impacted by the choice of step sizes,
which are not always easily selected.

The second procedure does not require tuning param-
eters (apart from the selection of an initial runlength) and
is based on the theory of sample average approximation.
Here a fixed sample is generated, and then the parameter θ

that minimizes the sample variance for the fixed sample is
determined. One then makes a “production run” using the
value of θ chosen in the first stage. The initial optimization
can be computationally expensive relative to the stochas-
tic approximation procedure, but for very long simulation
runs will occupy a vanishingly small fraction of the effort
required.

Henderson, Meyn, and Tadić (2003) also studied adap-
tive control variate schemes using a stochastic approx-
imation procedure for Markov chains in the steady-
state setting. They give conditions for the min-
imization of an approximation of the steady-state
variance. Tadić and Meyn (2004) give the math-
ematical analysis of the stochastic approximation
scheme described in Henderson, Meyn, and Tadić (2003).
Henderson and Simon (2004) show that under certain con-
ditions, adaptive control variate estimators can converge at
an exponential rate. One of the key assumptions there is
the existence of a “perfect” control variate, i.e., a param-
eter value θ∗ with the property that var (X − Y (θ∗)) = 0.



Kim and Henderson
For the applications we have in mind this assumption is
unlikely to hold. Maire (2003) expresses the estimation
problem as an integration problem over the unit hypercube,
and expands the integrand in an orthonormal series. An
iterative procedure for estimating the first few terms in the
expansion is given that converges exponentially fast. The
residual terms are not estimated iteratively, so that in general
the convergence rate of the procedure cannot exceed the
canonical rate. In contrast, our parameterization Y (θ) is
much more general, and we do not require an orthonormal
series of controls.

In this paper we focus attention on the case where
the optimal variance is still positive. Consequently, the
rates of convergence for our proposed estimators are typ-
ically the canonical n−1/2 as evidenced by central limit
theorems. This precludes the exponential rates of conver-
gence that are obtained in Henderson and Simon (2004).
However, we do briefly consider the case of a perfect
control variate in the linearly-parameterized case in Sec-
tion 3. This section sheds further light on the analysis in
Henderson and Simon (2004), taking a somewhat different
approach to constructing an estimator.

This paper is organized as follows. In Section 2 we give
a motivating example from Markov chain theory. We then
explore the linearly parameterized case in Section 3, which
is precisely that of standard control variate theory. We then
turn to the more complicated nonlinear-parameterization
case. First, in Section 4 we outline the general problem and
discuss gradient estimation. Second, in Section 5 we explore
an approach based on stochastic approximation. Third, in
Section 6 we explore the sample average approximation
approach. In Section 7 we describe the results of some
limited experiments with the example of Section 2. Section 8
contains some concluding remarks.

Space reasons prevent the inclusion of most proofs,
which may be found in Kim and Henderson (2004). Unless
otherwise stated, all vectors are column vectors and all norms
are Euclidean.

2 A MOTIVATING EXAMPLE

Let Z = (Zn : n ≥ 0) be a discrete time Markov chain
on the finite state space S. Suppose that Z reaches the
absorbing state 0 almost surely starting from any Z0 > 0,
and let T = inf{n ≥ 0 : Zn = 0} be the time till absorption.
Let f : S → R be a given cost function. Define

µ(x) = E(

T −1∑
k=0

f (Zk)|Z0 = x)

for all x ∈ S − {0} and set µ(0) = 0, so that µ is the
expected cost accrued until absorption. If we view f and
µ as column vectors, then µ satisfies µ = f + Pµ, where
P is the transition matrix of Z. Suppose that µ is unknown
and that we wish to estimate it.

Let u : S → R be a real-valued function on the state
space S with u(0) = 0, and for n ≥ 0 let

Mn(u) = u(Zn) − u(Z0) −
n−1∑
j=0

(P − I )u(Zj ),

where I is the identity matrix. Then (Mn(u) : n ≥
0) is the well-known Dynkin martingale; see, e.g.,
Karlin and Taylor (1981), p. 308). The optional sampling
theorem ensures that ExMT (u) = 0 for any u, where Ex

denotes expectation under the initial condition Z0 = x.
Therefore, one can estimate µ(x) via iid replications of

[
T −1∑
k=0

f (Zk)

]
− MT (u)

under initial state Z0 = x and MT (u) serves as a parameter-
ized control variate. In our general notational scheme, X is
the accrued cost till absorption and Y (θ) is MT (u), where
u depends on a parameter θ as described below. Since
(P − I )µ = −f ,

T −1∑
k=0

f (Zk) − MT (µ) = µ(x),

so if u = µ, then we have a zero-variance estimator.
So it is desirable to find a good choice of the function

u. Suppose that u(x) = u(x; θ), where θ ∈ � ⊆ R
p is a

p−dimensional vector of parameters. A linear parameteri-
zation arises if

u(x; θ) =
p∑

i=1

θ(i)ui(x),

where ui(·) are given basis functions, i = 1, . . . , p. In this
case Mn(u) can be shown to be a linear combination of
martingales corresponding to the basis functions ui , i =
1, . . . , p. This observation makes it easy to recompute the
value of X−Y (θ) when the value of θ changes. One simply
computes the reweighted linear combination.

The situation is more complicated when u(x; θ) has a
nonlinear parameterization. An example of such a param-
eterization is given by u(x; θ) = θ(1)xθ(2), where p = 2.
Here it is difficult to recompute the value of X−Y (θ) when
θ changes. Essentially one needs to store the sample path
of the chain, explicitly or implicitly, in order to be able to
do this.
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In the linear case,

Y (θ) =
p∑

i=1

θ(i)MT (ui)

is simply a linear combination of zero-mean random vari-
ables. In this sense, the linearly parameterized case leads
us back to the theory of linear control variates.

3 THE LINEAR CASE

The theory of linear control variates is very well under-
stood; see, for example, Glynn and Szechtman (2002) or
Glasserman (2004) for detailed treatments. The standard
theory does not cover the perfect (zero-variance) control
variate case, so after a brief review of the key ideas we turn
to this case.

Suppose that

Y (θ) =
p∑

i=1

θ(i)C(i),

where C(i) is a real-valued square-integrable random vari-
able with EC(i) = 0 for each i = 1, . . . , p. This is the
standard multiple control variates setting. Let θ and C be the
corresponding column vectors in R

p, so that Y (θ) = θT C,
where xT denotes the transpose of the matrix x. Assuming
that the covariance matrix � = cov (C, C) is nonsingular,
the optimal choice of weights θ∗ is θ∗ = �−1β, where
β = cov (X, C) is a column vector whose ith component
is cov (X, C(i)), i = 1, . . . , p. Since θ∗ involves moment
quantities that are generally unknown, it can be estimated
using the sample analogue θn = �−1

n βn where

βn = 1

n

n∑
j=1

XjCj − X̄nC̄n and

�n = 1

n

n∑
j=1

CiC
T
i − C̄nC̄

T
n .

Here (Xj : j ≥ 1) are i.i.d. replicates of X, (Cj : j ≥ 1)

are i.i.d. replicates of the vector C, and X̄n and C̄n are the
usual sample means of the first n observations.

Since � is nonsingular and �n → � as n → ∞
almost surely componentwise, it follows that �n is also
nonsingular for sufficiently large n, so that the estimator θn

is well-defined for sufficiently large n. The corresponding
estimator for µ = EX is µn = X̄n − θT

n C̄n.
One can show that µn satisfies a central limit theorem

of the form

√
n(µn − µ) ⇒ σN(0, 1), (1)
where ⇒ denotes convergence in distribution, N(0, 1) is
a normal random variable with mean 0 and variance 1 and
σ 2 = var (X − Y (θ∗)). One can develop an alternative
estimator for θn that exploits the fact that EC = 0. This
makes no difference to the central limit theorem (1); see
Glynn and Szechtman (2002).

Hence, if σ 2 > 0, the estimator µn converges to µ

at the canonical rate n−1/2 as is well known. In the case
where σ 2 = 0 the central limit theorem (1) shows that
the convergence is faster than the canonical rate, but the
exact asymptotic behaviour is not as clear. It is worth
exploring this case in a bit more detail, partly because
it is possible to construct perfect (zero-variance) control
variates in certain settings (Henderson and Glynn 2002,
Henderson and Simon 2004). Of course, as discussed in
the introduction, the perfect-control-variate case is un-
likely to arise in the applications we have in mind but,
partly to provide another perspective on the results of
Henderson and Simon (2004) and partly for completeness,
we outline the asymptotic behavior of µn in this case.

Let

Xn =




X1
X2
...

Xn


 and Cn =




1 C1(1) · · · C1(p)

1 C2(1) · · · C2(p)
...

...
. . .

...

1 Cn(1) · · · Cn(p)




be the column vector of observations of X and the matrix
with j th row containing a 1 together with CT

j .
Define N = inf{n ≥ 1 : Cn has full column rank}.

Proposition 1 below shows that N is almost surely finite
when � is nonsingular and µN = X̄N − θT

N C̄N = µ almost
surely. Therefore, if we know that a perfect control exists,
then we can continue the simulation until time N and report
X̄N −θT

N C̄N as an estimate of µ that is almost-surely correct.
Therefore, in the case when a perfect control variate exists,
the controlled estimator gives the exact answer in finite
time.

It will typically be the case that N = p+1 a.s. However,
in certain situations N may be random.

Example 1. Suppose that with probability 0.5, C(1) is
uniformly distributed on the interval (−1, 1) and C(2) =
C(1) − 1, and with probability 0.5, C(1) and C(2) are
independent uniform random variables on (−1, 1) and (0, 2)

respectively. Suppose further that X = 2C(1) + C(2) +
µ. Then with probability 0.5n, Ci(2) = Ci(1) − 1 for
i = 1, . . . , n. Hence, P(N = 3) = 7/8 and for n ≥ 4,
P(N = n) = (1/2)n. At time N we learn the exact
coefficients of the linear function that defines X and not
before. This then gives µ. If X = 2C(1)+C(2)+µ except
at, say, C = (1, 1) then the linear relationship still holds
with probability 1, but now µN does not equal µ on all
sample paths, but instead only with probability 1. In this
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example N has an exponential tail. This observation is true
in general assuming only second moments on X and C.

Proposition 1. Suppose that X ∈ R and C ∈ R
p have

finite second moments, EC = 0, � = cov (C, C) is positive
definite and X = CT θ∗ + µ a.s. Then N as defined above
is finite a.s., µN = µ a.s., and N has an exponentially
decaying tail, i.e., P(N > n) ≤ arn for some a > 0 and
r < 1.

4 NONLINEAR PRELIMINARIES

We now turn to the case where Y (θ) is a nonlinear function
of a random element Y and a parameter vector θ .

Assumption A1 The random variable X is square in-
tegrable, and for all θ ∈ � ⊆ R

p, EY 2(θ) < ∞
and EY(θ) = Eh(Y, θ) = 0.

Define X(θ) = X − Y (θ) and set v(θ) = var X(θ) =
var (X − Y (θ)) to be the variance as a function of θ . As
before our overall goal is to estimate µ = EX. Our
intermediate goal is to identify θ∗ which minimizes v(θ)

over θ ∈ �. In general we cannot expect to find a closed
form expression for θ∗ as in the linear case, and so we
approach this problem from the point of view of stochastic
optimization. Regardless of which stochastic optimization
method we adopt, we need to impose some structure in
order to make progress. We now give conditions under
which v(·) is differentiable.

Let H denote the support of the probability distribu-
tion of (X, Y ), i.e., H is the smallest closed set such that
P((X, Y ) ∈ H) = 1. Let H2 be the set of y values that
appear in H , i.e., H2 = {y : ∃x with (x, y) ∈ H }.

Assumption A2 The set � is compact. Also, for all
y ∈ H2, the real-valued function h(y, ·) is C1 (i.e.,
continuously differentiable) on U , where U is an
open set containing �.

Recall that a C1 function is Lipschitz on a compact set.
The following observation is then immediate.

Lemma 2. For all y ∈ H2, there exists K(y) > 0 such that
for all θ1, θ2 ∈ �,

|h(y, θ1) − h(y, θ2)| � K(y) ‖θ1 − θ2‖,

where ‖ · ‖ is a metric on R
p. Therefore,

sup
θ∈�

∣∣∣∣∂h(y, θ)

∂θ(i)

∣∣∣∣ ≤ K(y)

for all y ∈ H2 and i = 1, ..., p.
A2 implies that for each (x, y) ∈ H , (x − h(y, ·) −
µ)2 is a C1 function on U . Therefore we have pathwise
differentiability. We also need some integrability conditions.

Assumption A3 E

(
K(Y)

[
1 + sup

θ∈�

|X(θ)|
])

< ∞.

As noted below, these conditions are sufficient to ensure
that v is C1. An unbiased gradient estimator of v(θ) can
be obtained by noting that the sample variance of i.i.d.
observations is an unbiased estimator of the variance, so
that under A1, and for any m ≥ 2,

v(θ) = EV (m, θ) := E
1

m − 1

m∑
i=1

(Xi(θ) − X̄m(θ))2,

where

X̄m(θ) = 1

m

m∑
i=1

Xi(θ),

for all θ ∈ � and (X1, Y1), ..., (Xm, Ym) are i.i.d. replica-
tions of (X, Y ). Note that we include the terms h(Yi, θ) in
the sample average X̄m(θ) even though we know that they
have zero mean. We can construct an unbiased gradient
estimator from this expression as

gm(θ0) = ∇V (m, θ0)

= 1

m − 1

m∑
i=1

∇θ (Xi(θ) − X̄m(θ))2

∣∣∣∣∣
θ=θ0

.

Proposition 3. If A1-A3 hold, then v is C1 on �, and for
θ0 ∈ �,

Egm(θ0) = ∇v(θ0) =: g(θ0).

So under the assumptions A1 - A3, the variance function
v(θ) is continuously differentiable in θ ∈ �, and we have
an IPA-based unbiased gradient estimator at our disposal.
We are now equipped to attempt to minimize v(θ) over
θ ∈ �.

5 STOCHASTIC APPROXIMATION

Stochastic approximation is a class of methods used to solve
differentiable optimization problems similar to the one we
face. The general form of the algorithm is a recursion where
an approximation θn for the optimal solution is updated to
θn+1 using an estimator gn(θn) of the gradient g(θn) of
the objective function evaluated at θn. For a minimization
problem, the recursion is of the form

θn+1 = ��(θn − angn(θn)), (2)
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Initialization: Choose θ0.
For k = 1 to n

Generate the i.i.d. sample (Xk,i , Yk,i) ∼ (X, Y ),
i = 1, ..., m, independent of all else.

Compute

Ak(θk−1) = 1

m

m∑
i=1

[Xk,i − h(Yk,i , θk−1)],

gk−1(θk−1) = 1

m − 1

m∑
i=1

∇θ [Xk,i−
h(Yk,i , θ) − Ak(θ)]2|θ=θk−1 , and

θk = ��(θk−1 − ak−1gk−1(θk−1)).

Next k

Set µn = n−1 ∑n
k=1 Ak(θk−1).

Figure 1: Stochastic Approximation Algorithm

where �� denotes a projection of points outside � back
into �, and {an} is a sequence of positive real numbers.

Our algorithm for finding θ∗ and estimating EX is
given in Figure 1, where {an}∞n=1 is a sequence of positive
numbers such that

∞∑
n=1

an = ∞ and
∞∑

n=1

a2
n < ∞, (3)

and m ≥ 2 is a fixed positive integer.
The analysis below requires that θn converge to some

θ∗. Establishing this result requires some care, so we state
our main results assuming that this convergence holds and
then give sufficient conditions for the convergence of θn.
The theory does not require that θ∗ be a minimizer of v(θ)

over � although we would certainly prefer that this is the
case. We first show consistency of the estimator µn of µ.

Proposition 4. Assume A1-A3 and that θn → θ∗ ∈ � as
n → ∞ a.s. Then µ̂n → µ a.s. as n → ∞.

We now assess the rate of convergence of µn to µ

through a central limit theorem. First we need another
assumption.

Assumption A4 There is a neighbourhood N of θ∗ such
that the collection {X2(θ) : θ ∈ N } is uniformly
integrable. In other words, for all ε > 0, there
exists Kε > 0 such that

E[X2(θ)I (X2(θ) > Kε)] ≤ ε, for all θ ∈ N .

Remark 1. A set of sufficient conditions for A4 is A1, A2
and EK2(Y ) < ∞. To see why, note that

(X − Y (θ))2 ≤ 2X2 + 2Y 2(θ).
For any fixed θ0 ∈ �,

Y 2(θ) = h2(Y, θ)

= [h(Y, θ0) + (h(Y, θ) − h(Y, θ0))]2

≤ 2h2(Y, θ0) + 2(h(Y, θ) − h(Y, θ0))
2

≤ 2h2(Y, θ0) + 2K2(Y )‖θ − θ0‖2.

But � is compact, and hence ‖θ−θ0‖2 is bounded. Therefore
X2(θ) is uniformly (in θ ) bounded by an integrable random
variable.

Theorem 5. Assume A1-A4 and that θn → θ∗ as n → ∞
a.s. Then

√
mn(µn − µ) ⇒ N(0, v(θ∗))

as n → ∞. Moreover, µn is an unbiased estimator for µ

and

mnvar µn → v(θ∗)

as n → ∞.

Hence we see that the stochastic approximation esti-
mator µn satisfies a strong law and central limit theorem
as n → ∞. Note that it will almost invariably be the case
that v(θ∗) > 0 so that the rate of convergence of µn is the
canonical rate n−1/2.

Recall that our motivation for choosing m > 1 was to
obtain an unbiased gradient estimator with low variance.
This additional averaging of m terms in each step of the
algorithm does not slow convergence, at least to first order,
in the sense that the variance of the estimator and the limiting
variance that appear in the central limit theorem are each
reduced by a factor of m. Hence the choice of m ≥ 2 is
essentially immaterial from the central-limit-theorem point
of view. Of course, these are large sample results, so
there may be some benefit to carefully choosing m in small
samples. We do not explore that possibility here.

In the rather special case where v(θ∗) = 0 the cen-
tral limit theorem above still holds in the sense that√

n(µn − µ) ⇒ 0 as n → ∞. The rate of convergence is
then faster than n−1/2, and the actual rate of convergence
depends on the rate at which θn → θ∗. We do not explore
this case further here, because we believe that the case
v(θ∗) = 0 is unlikely to arise in the applications we have in
mind. See Henderson and Simon (2004) for an exploration
of increased convergence rates when v(θ∗) = 0.

We now give conditions under which θn converges to
some fixed θ∗ as n → ∞, using Kushner and Yin (2003),
Theorem 2.1, p. 127). We first need some definitions from
that text and one more assumption.

A box B ⊂ R
p is a set of the form

B = {x ∈ R
p : a(i) ≤ x(i) ≤ b(i), i = 1, . . . , p}.
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A

A

For x ∈ B define the set C(x) as follows. For x in the
interior of B, C(x) = {0}. For x on the boundary of B,
C(x) is the convex cone generated by the outward normals
of the faces on which x lies. A first-order critical point x

of a C1 function f : B → IR satisfies

−∇f (x) ∈ C(x).

first-order critical point is either a point where the gradient
∇f (x) is zero, or a point on the boundary of B where the
gradient “points towards the interior of B.” Let S(f, B) be
the set of first-order critical points of f in B. We define
the distance from a point x to a set S to be

ρ(x, S) = inf
y∈S

‖x − y‖.

The projection y = �Bx is a pointwise projection defined
by

yi =



a(i) if x(i) ≤ a(i),

x(i) if a(i) < x(i) < b(i), and
b(i) if b(i) ≤ x(i).

for each i = 1, . . . , p.

ssumption A5 The random variables X, K(Y) and
Y (θ0) for some fixed θ0 ∈ � all have finite 4th
moments.

When A1, A2 and A5 hold, EY 4(θ) is bounded in θ ∈ �, as
can be shown using a similar argument to that of Remark 1.

Proposition 6. Let � be a box in R
p and suppose A1 -

A3, A5 hold. Then ρ(θn, S(v, �)) → 0 as n → ∞ a.s.

Proposition 6 does not ensure that θn converges to a
fixed θ∗ as n → ∞. For that we need to impose further
conditions. One simple condition is that the set of first-order
critical points S(v, �) consists of a single element θ∗. This
condition is unlikely to be easily verified in practice.

In experiments we have found that the stochastic ap-
proximation procedure works well so long as the parameters
of the procedure are chosen appropriately. However, as with
any stochastic approximation procedure, it can be difficult to
select good values for these parameters. For this reason we
also consider a second estimator based on quite a different
approach.

6 SAMPLE AVERAGE APPROXIMATION

In the stochastic approximation method the estimation of
θ∗ occurs simultaneously with the estimation of µ. An
alternative is to first compute an estimate θ̂ of θ∗, where
θ∗ solves the optimization problem

P : min
θ∈�

v(θ).

We can then use θ̂ in a second phase where µ is estimated
using

µ̂n = 1

n

n∑
i=1

[Xi − h(Yi, θ̂ )]. (4)

If θ̂ is a deterministic approximation for θ∗, then we have
the following immediate consequence of the ordinary strong
law and central limit theorem.

Theorem 7. Suppose that θ̂ is deterministic and E|X1 −
h(Y1, θ̂ )| < ∞. Then µ̂n → µ as n → ∞ a.s. If, in
addition, E[X1 − h(Y1, θ̂ )]2 < ∞ then

√
n(µ̂n − µ) ⇒ N(0, v(θ̂))

as n → ∞.

It will typically be the case, however, that θ̂ is a random
variable depending on some initial sample. This is exactly
what happens in the sample average approximation method;
see Shapiro (2003) for an introduction to this approach. Let
m be a positive integer and suppose that we generate, and then
fix, the random sample (X̃1, Ỹ1), (X̃2, Ỹ2), ..., (X̃m, Ỹm).
Let X̃i(θ) = X̃i − h(Ỹi , θ). Then for a fixed θ , the sample
variance of (X̃i(θ) : 1 ≤ i ≤ m) is

V (m, θ) = 1

m − 1

m∑
i=1

(X̃i(θ) − X̄m(θ))2

where

X̄m(θ) = 1

m

m∑
i=1

X̃i(θ).

Then an approximation to the problem (P) is

Pm : min
θ∈�

V (m, θ).

We refer to Pm as the sample average approximation (SAA)
problem corresponding to the original problem P . Once
the sample is fixed, the SAA problem can be solved using
any convenient optimization software. The software can
exploit the IPA gradients derived earlier, which are exact
gradients of V (m, θ). In our implementation we used a
quasi-Newton procedure that exploits the IPA gradients.

Strictly speaking, the term “sample average approxi-
mation” refers to an approximation of a function f (·) by
a sample average m−1 ∑m

i=1 f (·, ξi) of random functions.
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The function V (m, ·) is not of this form. It is, instead, es-
sentially a nonlinear function of sample averages, because
we can write

V (m, θ) = m

m − 1

(
1

m

m∑
i=1

X̃2
i (θ) − X̄2

m(θ)

)
. (5)

The standard theory for sample average approximation is
readily extended to this setting. We give extensions that we
require below.

Let θ̂m be a first-order critical point for the problem
Pm. We can then estimate µ via (4), using θ̂m in place of θ̂ .
Note that now θ̂m is a random variable, and it is no longer
clear a priori that versions of the strong law and central limit
theorem of Theorem 7 hold. Nevertheless, versions of these
results do hold, and can be shown using a uniform version
of the strong law and some straightforward arguments.

We now state a version of Theorem 7 for the case where
θ̂ is random. In this result there is no need for θ̂ to be a
solution of Pm; it can be any random variable taking values
in �. To emphasize the dependence of µ̂n on θ we write
µ̂n(θ).

Theorem 8. Suppose that A1 and A2 hold, that EK(Y ) <

∞, and that the samples used in constructing θ̂ are inde-
pendent of those used in computing µ̂n. Then µ̂n(θ̂) → µ

as n → ∞ a.s., and

√
n(µ̂n(θ̂) − µ) ⇒ v1/2(θ̂)N(0, 1)

as n → ∞, where N(0, 1) is independent of θ̂ .

Hence the strong law and central limit theorem continue
to hold in the case where θ̂ is random. In particular, if
we first solve, or approximately solve, Pm to get θ̂m, and
then compute µn(θ̂m), then the resulting estimator is “well
behaved” as the number of samples n gets large.

As the computational budget gets large, one would
naturally want to eventually zero in on a fixed θ∗ that
solves P using some vanishing fraction of the budget, and
use the remainder of the budget to estimate µ. We can
model this by assuming that m = m(n) is a function of n

such that m(n) → ∞ as n → ∞. In this case, µ̂n(θ̂m(n))

behaves the same as µ̂n(θ
∗) as n → ∞, at least to first

order.

Theorem 9. Suppose that θ̂m(n) → θ∗ as n → ∞ a.s.,
for some fixed θ∗ ∈ �. Suppose further that A1 - A3
hold and the samples used in computing θ̂m(n) are inde-
pendent of those used to compute µ̂n for every n. Then
Eµ̂n(θ̂m(n)) = µ for every n, µ̂n(θ̂m(n)) → µ as n → ∞
a.s., and nvar µ̂n(θ̂m(n)) → v(θ∗) as n → ∞. If, in addi-
tion, EK2(Y ) < ∞, then

√
n(µ̂n(θ̂m(n)) − µ) ⇒ N(0, v(θ∗))

as n → ∞.

It remains to give conditions under which θ̂m → θ∗ as
m → ∞ a.s. If we could guarantee that θm solved problem
Pm exactly then, as in Shapiro (2003), this would follow
using standard arguments and an extension of a uniform law
of large numbers to nonlinear functions of means. (Recall
from (5) that V (m, θ) is essentially a nonlinear function of
sample means, rather than a sample mean itself.) However,
the best that we can hope for from a computational point
of view is that θ̂m is a first-order critical point for the
problem Pm. So to obtain convergence to a fixed θ∗ we
first prove convergence of first-order critical points to those
of the true problem P . Our next result extends Theorem 3.1
in Bastin, Cirillo, and Toint (2004) for sample averages to
nonlinear functions of sample averages.

Let f (θ, ξ) be a IRq -valued function of θ ∈ � ⊂ IRp

and a random vector ξ and let f (θ) = Ef (θ, ξ). Let

f̄m(·) = 1

m

m∑
i=1

f (·, ξi)

denote a sample average of m i.i.d. realizations of the
function f (·, ξ). We seek conditions under which first-
order critical points of g ◦ f̄m = g(f̄m(·)) on � converge
to those of g ◦ f . We say that f (θ, ξ) is dominated by φ

if |f (θ, ξ)| ≤ φ(ξ) for all θ ∈ � with probability 1.

Theorem 10. Consider the functions defined immediately
above. Let H denote the support of the probability distri-
bution of ξ . Suppose that � is convex and compact, the
samples ξ1, ..., ξm are i.i.d. and

(i) for all ξ ∈ H , f (·, ξ) = (f1(·, ξ), . . . , fq(·, ξ)) is
C1 on �,

(ii) the component functions fj (θ, ξ) (j = 1, . . . , q)

are dominated by an integrable function, and
(iii) the gradient components ∂fj (θ, ξ)/∂θ(i) are dom-

inated by an integrable function (i = 1, ...p, j =
1, . . . , q).

Suppose that g : IRq → IR is C1 on an open set D, where
D contains the range of f and f̄m for all m (and all
realizations). Let θ̂m ∈ S(g ◦ f̄m, �), the set of first-order
critical points of g◦ f̄m on �. Then ρ(θ̂m, S(g◦f, �)) → 0
as m → ∞ a.s.

Corollary 11. Suppose that A1-A3 hold and EK2(Y ) < ∞.
Then ρ(θ̂m, S(v, �)) → 0 as m → ∞ a.s.
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Corollary 11 shows that θ̂m converges to the set of
first-order critical points of f as m → ∞. This does not
guarantee that the sequence {θ̂m} is convergent of course.
A simple sufficient condition that ensures this is that there
is a unique first-order critical point, but this condition is
clearly difficult to verify in practice.

7 NUMERICAL RESULTS

In this section, we return to the example presented in Sec-
tion 2 in the context of nonlinear parameterizations.

Let u(·; θ) be given, where u(0, θ) = 0 for all
θ ∈ �. Let MT (u(·; θ)) = −u(x; θ) − ∑T −1

j=0 (P −
I )u(Zj ; θ) under some fixed initial state Z0 = x. Then
X(θ) = X − MT (u(·; θ)) is an estimator of µ(x).
Kim and Henderson (2004) show that A1-A5 are satisfied
in the following examples, so that all of our previous results
apply.

For the simulation experiment, we consider a chain
on the states {0, . . . , d}, where 0 is an absorbing state.
The nonzero transition probabilities are P(x, x + 1) =
p(x) = 1 − q(x) = P(x, x − 1), valid for 1 ≤ x < d,
and P(d, d − 1) = 1. We take u(y; θ) = θ(1)yθ(2), so
that θ = (θ(1), θ(2)) ∈ �, � = {x ∈ R

2 : a(j) ≤ x(j) ≤
b(j), j = 1, 2} and a(j) ≥ 0, j = 1, 2. We take f (x) = 1,
so that the random variable X = T is the time till absorption
in state 0. We set d = 30.

The terms naive, SA and SAA represent the estima-
tors obtained through naive Monte Carlo estimation, the
stochastic approximation method and the sample average
approximation method respectively. In Algorithm 1, we
take m = 100 and

ak = e

C + kα
,

where e, C > 0 and α ∈ [1/2, 1] are tunable constants.
This form of the gain sequence is suggested in Spall (2003).
We used the sample variance of A1(θ0), ..., An(θn − 1) as
an estimator of v(θ∗)/m. This estimator is shown to be
strongly consistent in Kim and Henderson (2004). For the
SAA estimator, we first replicated m = 100 samples. We
solved Pm using a quasi-Newton method with a linesearch
(supplied as part of the MATLABTM package) using IPA
gradients. As an estimator of the variance v(θ̂), we used
the sample variance of X(θ̂) over n replicates, where θ̂ is
viewed as fixed, in the sense of Theorem 8. We used the
same CPU time for all three estimators for a given initial
state x to allow a fair comparison.

Example 2. In this example, we let p(y) = .25 and θ0 =
(1, 1). In Table 1, we show the squared standard errors
of the three estimators for varying initial states x. We
see that the SAA estimators outperform the SA estimators,
and the SA estimators outperform the naive estimator. A
problem with the SA estimator is that it is very sensitive
to the step size parameters ak and the initial point θ0. We
performed preliminary simulations with this method, tuning
the parameters heuristically until reasonable performance
was observed. A contour plot of the variance surface as a
function of θ for initial state x = 15 appears in Figure 2.
We see that the function is not convex, but appears to have
a unique first-order critical point, so that we can expect
convergence of the parameter estimates to θ∗, which from
the plot appears to be the point (2, 1).

Table 1: Estimated Squared Standard Errors in Ex-
ample 2

x CPU time (sec) Naive SA SAA
5 16.8 4.4E-4 2.3E-5 1.7E-14
10 20.2 0.0012 5.7E-5 4.1E-14
15 21.8 0.0024 7.5E-5 2.8E-14
20 25.8 0.0035 1.5E-4 5.5E-15
25 28.6 0.0047 9.4E-4 1.3E-6
30 29.8 0.0058 0.003 6.4E-5
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Figure 2: Contour Plot of v(·) for Example 2 with Initial
State x = 15 and Runlength 1000

Example 3. In this example, p(y) = .0001 + .4998/y and
θ0 = (2, 1). The results are given in Table 2 and are similar to
those of Example 2. The SAA estimator again outperforms
the other estimators, but not by as large a margin.

Table 2: Estimated Squared Standard Errors in
Example 3

x CPU time (sec) Naive SA SAA
5 15.5 3.7E-4 5.8E-5 1.1E-6
10 17.0 5.2E-4 5.5E-5 6.1E-6
15 17.6 6.8E-4 4.8E-5 1.2E-5
20 19.5 7.4E-4 3.5E-4 1.7E-5
25 21.2 8.0E-4 1.1E-4 2.2E-5
30 21.8 9.1E-4 3.5E-4 2.5E-5
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8 CONCLUSIONS

The two adaptive estimation procedures developed in this
paper have somewhat complementary characteristics. The
stochastic approximation scheme has a low computational
effort per replication, but typically requires some tuning of
the gain sequence to achieve satisfactory performance. The
sample average approximation method is more robust, but
can be computationally expensive in the initial optimization
phase.

The examples in the previous section should be viewed
as a simple demonstration of the methods rather than a
comprehensive comparison. They serve to demonstrate the
feasibility of the two approaches. Both adaptive methods
outperform a naive approach.

We are currently exploring the asymptotic theory of
variance estimators and more complicated examples with
higher-dimensional parameter vectors.
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