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ABSTRACT 

In the analysis of a manufacturing system, the analyst is 
often interested in the change in mean cycle time as a func-
tion of different throughput (start rate) levels. Since the 
variance of the mean cycle time generally increases as the 
start rate increases, an equal allocation of simulation effort 
at each simulated throughput level will result in confidence 
intervals of different widths. This paper discusses an ap-
proach for generating nearly equal sized mean cycle time 
confidence intervals at selected throughput levels when the 
computing budget is fixed (limited). The simulation effort 
allocation procedure described in this paper determines the 
proportion of the fixed budget to allocate at each through-
put level based on the asymptotic variance.  

1 INTRODUCTION  

Cycle time – throughput curves (CT-TH) are often used as 
decision-support tools in manufacturing settings. They al-
low companies to evaluate the impact of proposed changes 
in start rate on mean cycle time so as to better plan produc-
tion. A CT-TH curve plots average cycle time versus 
throughput (start rate) for a given product or fixed product 
mix (see Figure 1).  
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Figure 1: Confidence Intervals along a Cycle 
Time - Throughput Curve 
Since most manufacturing systems are far too complex 
to model analytically, simulation is often used to generate 
various points along a CT-TH curve. However, because of 
many of the issues associated with simulation in complex 
manufacturing models (starting conditions, correlated data, 
steady state stopping conditions, etc.), simulation often re-
quires long run lengths and extensive output analysis. In 
most manufacturing environments, the time and/or budget 
available for the generation of the CT-TH curve is limited. 
The typical simulation analyst is ill equipped to effectively 
allocate the limited budget in a statistically rational way. 

We suggest an approach for allocating a fixed budget to 
previously selected throughput levels so that the resulting 
confidence interval half widths at these throughput levels are 
as equal as possible. But before we present our approach we 
need to convey some fundamental concepts regarding CT-
TH curves that influence our allocation procedure. 

A CT-TH curve is known to follow a non-linearly in-
creasing trend (Figure 1) resulting in dramatic increases in 
cycle time variance as the throughput level nears the capac-
ity of the system. A mean CT-TH curve can be estimated us-
ing simulation by modeling the system at several different 
throughput levels (design points) and obtaining their respec-
tive average cycle time values. The goal of the simulation is 
to achieve accurate estimates of mean cycle time, centered 
on the true value. Ideally, a good CT-TH curve estimation 
will present equal confidence interval half width precision. 
The closer to zero the confidence interval half-widths are, 
the more precise the estimate of the design point. Variance 
in cycle times and the estimates of mean cycle time prevent 
reaching a value of zero for confidence interval half-widths, 
even if the simulation is run for a very long time. Therefore, 
the analyst must choose a feasible goal to achieve, with re-
spect to the estimates of the cycle time values obtained from 
simulation, especially when faced with a fixed budget.   
 When simulating a real world system under a con-
strained simulation budget, it is important to use a method of 
allocation that achieves the most accurate and precise mean 
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cycle time estimates. While striving to achieve a confidence 
interval half width of zero at each design point may be im-
possible or take an arbitrarily long time, there are several 
ways of obtaining useful results. One option is to minimize 
the range of the confidence interval half-widths across the 
chosen throughput levels as given in equation (1) ,  
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where H is the selected set of design points the analyst 
chooses to simulate. The ideal minimum for this would be 
to get as close to zero as possible, where a range of zero 
indicates equal confidence interval half-widths across each 
simulated design point. 
 When faced with the task of modeling points along a 
CT-TH curve, two important decisions must be made; first, 
the throughput levels to model (i.e. the location of the design 
points) and second, the amount of effort to allocate at each 
throughput level in order to achieve the goal of a CIHW 
range of zero. There are several options for choosing what 
throughput levels to use. In order to capture the overall trend 
of the CT-TH curve it would be desirable to simulate over 
multiple throughput levels between zero and 100 percent. 
This method, while good for capturing the entire shape of 
the curve could lead to a large amount of simulation effort. 
If there is limited simulation effort available, it would be de-
sirable to choose a small number of design points limiting 
the effort needed. Park et al. (2002) suggests a d-optimal se-
quential experiment for choosing throughput levels that best 
capture the shape of the curve and thus the asymptotic ca-
pacity of the system. However, in a real world setting, a 
pragmatic analyst may deem it unnecessary to choose design 
points that span the entire throughput range, but rather only a 
small portion. While CT-TH curves are used to characterize 
system performance over a range of throughput levels, a 
manager may be only interested in a small range of through-
put levels that are feasible for the problem at hand.  
 In addition to having several options with regards to 
what design points to choose, it is also important to decide 
how to allocate simulation effort at each design point. This 
decision is also metric dependent and a function of the lim-
ited simulation budget.  Techniques to allocate the effort 
across different throughput levels are found in the literature 
(Cheng and Kleijnen, 1999 and Whitt, 1989), however this 
paper will focus on the method known as naïve sampling 
as compared to the method proposed by Leach et al. 
(2004). Naive sampling equally allocates the fixed budget 
to all design points while Leach uses the asymptotic vari-
ance constant to determine the allocation. Although 
Leach’s method involves more initial work to allocate the 
budget, it can be easily applied to any set of design points 
chosen to represent the system, allocates more effort to 
higher throughput levels, and makes intuitive sense.  
 In summary, this paper uses the method of allocation 
presented in Leach et al. (2004) to minimize the range of 
confidence interval half-widths over a narrow set of 
throughput levels. The allocation is based on a fixed 
budget of available simulation effort. The focus is to ob-
serve the performance of this method of allocation at 
achieving nearly equal confidence interval half-widths 
along a narrow range of throughput levels.  

2 FIXED BUDGET  

In practice there are often limits placed on the amount of 
effort allocated to certain tasks in a manufacturing setting. 
This effort can be measured in terms of time, money spent, 
or some other form of limited resource availability. This 
paper focuses on the allocation of simulation effort across 
several design points (throughput levels) to obtain precise 
estimates of cycle time, when a fixed computing budget is 
placed on the analyst carrying out the simulation. 
 In order to define the concept of a fixed budget, some 
assumptions must be made. It will be assumed that it takes 
one unit of computer time to generate and process one 
simulated observation (Cheng and Kleijnen 1999). Let H 
be the set of all design points investigated in the simulation 
experiment. Let nh be the number of replications and mh be 
the number of observations per replication for design point 
h. The budget allocated for the simulation will then be rep-
resented as total effort of the simulation, T, and it will be 
measured in number of observations, given in (2). 
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 Using this definition of a fixed budget, T, a portion of 
this total effort can be allocated to each design point based 
upon a criterion of reaching nearly equal confidence inter-
val half-widths at each design point in absolute or relative 
terms. The scope of this paper only includes the absolute 
CIHW case.  

3 METHODOLOGY 

Several methods for allocating effort across multiple de-
sign points to obtain specific confidence interval half-
widths are known to exist. The simplest form of these 
methods is known as naïve sampling. As mentioned earlier, 
this method allocates equal amounts of effort at each de-
sign point without regard to the fact that as the throughput 
level increases, so does the variance. Another method of 
allocation, suggested by Law and Kelton (2000), is to ex-
pend a portion of the simulation effort available to a set of 
pilot runs and from these runs obtain a variance estimate of 
the mean cycle time estimates, So

2. The total number of 
runs, n, can then be calculated as in (3). 
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where ε is the desired half-width, So is the standard devia-
tion of the mean response estimates and t1-α/2,n-1 is the Stu-
dent’s t distribution quantile. While this method has proven 
to outperform the naïve method, it requires a pilot run. If a 
fixed budget is a factor, this pilot run would draw directly 
from the budget. When the budget is small, this pilot run 
could be costly, taking away effort needed to obtain de-
sired confidence interval half-widths. A solution to this 
problem is to use the asymptotic variance of the design 
points. Whitt (1989) applies heavy-traffic queuing theory 
limits to estimate asymptotic variance of the desired re-
sponse, which is then used to estimate the run length of a 
single simulation run analyzed as 20 batch means. This 
method completely removes the pilot run step, replacing 
mathematical calculations to obtain variance estimates of 
the mean cycle times. As suggested in Whitt (1989), the 
asymptotic variance approximation for delay time, Wq, for 
the M/M/1 queuing model is given in equation (4). 
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 It has been suggested that many complex systems per-
form like single channel queuing systems (Whitt 1989). 
Leach et al. (2004) uses the estimate of asymptotic vari-
ance for the M/M/1 queue from Whitt (1989) as a variance 
estimate of the mean cycle time to allocate effort across the 
design points.  A portion of the fixed budget of total effort 
can be allocated to each design point based upon the confi-
dence interval half-widths desired, εh. For the CT-TH 
curve, the objective is for the half-widths to be equal at 
each design point investigated, either in absolute or relative 
terms. Assuming the situation in which the length of the 
replications at each design point, mh, are pre-determined, 
achieving equal absolute confidence interval half-widths at 
each design point such that all εh=ε corresponds to the total 
effort, T, and percent effort for each design point h, πh, 
given in (5) and (6).  
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This method is used throughout this paper.  
 While this method has advantages, one problem en-
countered is due to the sharply increasing nature of the cycle 
time variance combined with the constrained budget. After 
calculations are made, the highest throughput level tends to 
consume nearly all of the simulation effort. Often, the lower 
design points receive virtually no simulation effort, requiring 
the analyst carrying out the simulation to give the design 
points a minimum default value. This occurs when the de-
sign points chosen to model the CT-TH curve span a large 
portion of possible throughput level values. For example, 
when the design points chosen are at the following through-
put levels: 60, 70, 80, and 90 percent, the 90 percent design 
point claims approximately 99 percent of the budget avail-
able for the simulation effort. In a real world manufacturing 
setting, a manager may be very familiar with the flow of the 
system and already have rough estimates of points along the 
entire CT-TH curve.  It may then be that the throughput lev-
els of interest cover only a very small range of values, which 
will have a large impact on pending decisions. Results dis-
cussed in this paper focus on how this method of using as-
ymptotic variance as a means for allocating the budget, per-
forms when the design points chosen are from a fairly 
narrow range. 

4 RESULTS  

The experimentation to test the proposed method of alloca-
tion was done with the C++ discrete event simulator devel-
oped in McNeill, Mackulak, and Fowler (2003). All experi-
ments were conducted on an M/M/1 queuing system using a 
first-in, first-out policy with a service rate of µ = 1. The as-
sumption that the system throughput is equal to the arrival 
rate of λ < 1 and a yield of one allows traffic intensity, ρ = 
λ/µ, to be used to calculate system throughput. The design 
points for our experimentation fall within a range of six per-
cent and a shift of design points was tested. For example, the 
first set of design points included the throughput levels of 
78, 80, 82, and 84 percent. The shift then drops the first de-
sign point and adds one to the end. So, the next set of design 
points tested included 80, 82, 84, and 86 percent. This pat-
tern continues for a total of eight different sets of design 
points in which the proposed method was tested and com-
pared. Table 1 shows the eight design point scenarios and 
their corresponding throughput levels. 

A total effort of 40 million observations was allotted 
for the budget used for the simulation of each M/M/1 CT-
TH curve and a truncation length of 20% of each run was 
used to (hopefully) remove initialization bias. The results 
of the proposed asymptotic variance sampling method are 
compared to naïve sampling for the four different observa-
tions per replication scenarios suggested in Fowler et al. 
(2001). They are denoted Uniform (OU), Increasing (OI), 
omitting the second design point (O2), and omitting the 
third design point (O3). The percent of observations per 
replication assigned to the design points being investigated 
are shown in Table 2. As suggested by Fowler et al. 
(2001), one million observations were made available for 
assignment within the observation per replication assign-
ment scenarios. So, the number of observations per replica-
tion is given by multiplying the percent given in Table 2 by 
one million. A minimum number of replications length was 
set to 10 in order to ensure that reasonable confidence in- 
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Table 1: Experimental Sets of Design Points with Numbers of Replications for 
the OI Case Indicated 

       A8 10 10 12 128 
      A7 10 10 26 114  
     A6 10 16 34 100   
    A5 12 20 38 90    
   A4 15 23 41 81     
  A3 17 25 42 76      
 A2 19 27 43 71       
A1 20 29 43 68        
 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 
tervals are constructed. The replication assignments for the 
OI case scenario of the proposed method are shown in Ta-
ble 1. The replication assignments for the other three repli-
cations per observations scenarios are given in Table 3. 
 

Table 2: Observations Per Replication Assignment Sce-
narios  

ρ=1 ρ=2 ρ= 3 ρ= 4
OU 25% 25% 25% 25%

OI 12.5% 12.5% 25% 50%

O8 10% 0% 30% 60%

O9 10% 30% 0% 60%

Design Points

 
 

The results from the experiment are given in Table 3. The 
method for allocating effort to the design points proposed 
by Leach et al. (2004) exhibits superior performance to the 
naïve method in terms of reducing the absolute confidence 
interval half-width ranges. Due to the non-linear nature of 
the values for asymptotic variance, choosing a narrow de-
sign point range worked to the analyst advantage. It was 
previously known that typically all of the simulation effort 
was put towards the highest design point value. However, 
when the design points were picked from a narrow range, 
such as in this experiment, the effort given to each design 
point showed more of a steady increase across the 
throughput levels, allocating a reasonable amount of effort 
to the lower points, as opposed to having the lower design 
points default to the lowest value. 

As seen from Table 3 the proposed method generally 
outperforms the naïve method. The absolute confidence in-
terval half-widths are lower (indicated in bold) for 27 of 
the 32 scenarios using the proposed method. Four out of 
the five cases where the naïve method has a smaller CIHW 
are scenarios in which one of the design points was omit-
ted. In these cases, the proposed method and the naïve 
method have relatively similar allocations across the de-
sign points varying only slightly in replication length. The 
one other case where the naïve method outperformed the 
proposed method included the design points ranging from 
.92 to .98 (A8). Due to the high variability at these 
throughput levels, it is possible that the proposed method 
demonstrated a higher CIHW range simply due to variabil-
an cycle time estimates.   
5 CONCLUSIONS 

The method presented in this paper demonstrates the ability 
of the method of Leach et al. (2004) when applied to a nar-
row range of design points. The proposed method generally 
outperforms the naïve sampling method. In addition to illus-
trating superior performance through reduced confidence in-
terval half-width ranges, this method, when applied to a nar-
row range places significant percentage of efforts across all 
design points being evaluated. This contrasts with choosing 
a wider range of interest, where the highest point has shown 
to claim 99% of the simulation effort, forcing the analyst to 
default to the minimum specified allocations. 
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Table 3: Allocation and Absolute Confidence Interval Range Results (α = 0.05) of the M/M/1 Model 
Simulated 

OU 2.5053 1.2615
OI 1.1748 1.5636
O2 0.9398 0.1543
O3 1.0941 0.4689

OU 0.7839 0.2344
OI 0.4475 0.1580
O2 0.3545 0.0969
O3 0.3685 0.1746

OU 0.2346 0.1234
OI 0.1177 0.0989
O2 0.0271 0.1104
O3 0.0443 0.1808

OU 0.1169 0.0453
OI 0.0768 0.0564
O2 0.0120 0.0103
O3 0.0679 0.0303

OU 0.1189 0.0539
OI 0.0377 0.0108
O2 0.0128 0.0017
O3 0.0085 0.0320

OU 0.0488 0.0078
OI 0.0272 0.0124
O2 0.0154 0.0047
O3 0.0221 0.0106

OU 0.0454 0.0199
OI 0.0190 0.0149
O2 0.0175 0.0119
O3 0.0076 0.0159

OU 0.0225 0.0111
OI 0.0206 0.0105
O2 0.0265 0.0170
O3 0.0233 0.0109

Naïve Proposed
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lic
at
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ns

A8:

10 10

10 0

A7:

10 10 26

12 128
10 10 12 69

10 60
10 10 0 60

114
10 18 26 60
10 0 22 54
10 10 0 60

A6:

10 16 34

19 0 31

100
15 29 34 52

48
22 16 0 55

A5:

12 20 38

28 0 36

90
21 37 39 46

44
34 22 0 50

A4:

15 23 41

37 0 39

81
27 43 41 42

41
43 25 0 47

A3:

17 25 42

46 0 42

76
31 49 42 39

38
52 28 0 44

A1:

29 43 68

0 44 35

20
39
58

55 43 35

32 0 40
0.80 0.82 0.84 0.86 0.96 0.98

CIHW Range
0.88 0.90 0.92 0.94

A2:

19
35
52
58 0

27
53
0

30

64
0.78

Throughput

71
37
37
42

43
42
42
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