Proceedings of the 2004 Winter Simulation Conference

R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

PERMUTED WEIGHTED AREA ESTIMATORS

James M. Calvin
Marvin K. Nakayama

Computer Science Department
New Jersey Institute of Technology
Newark, NJ 07102, U.S.A.

ABSTRACT

Calvin and Nakayama previously introduced permuting as a
way of improving existing standardized time series methods.
The basic idea is to split a simulated sample path into non-
overlapping segments, permute the segments to construct a
new sample path, and apply a standardized time series scaling
function to the new path. Averaging over all permuted
paths yields the permuted estimator. This paper discusses
applying permutations to the weighted area estimator of
Goldsman and Schruben. Empirical results seem to indicate
that compared to not permuting, permuting can reduce the
length and variability of the resulting confidence interval
half widths but with additional computational overhead and
some degradation in coverage; however, the decrease in
coverage is not as bad as with batching.

1 INTRODUCTION

The goal of many steady-state simulations is to construct a
confidence interval for the steady-state mean of the simu-
lated process. An approach for doing this is to apply one of
Schruben’s (1983) standardized time series (STS) methods.
Under the assumption that the simulated process satisfies
a functional central limit theorem (e.g., Billingsley 1999),
the class of methods approximates a centered and scaled
version of the simulated stochastic process by a Brown-
ian motion and applies a “scaling function” to it. This
yields an estimate of the process’s “scale,” allowing one to
build confidence intervals. Schruben (1983) introduced sev-
eral scaling functions, including the standardized maximum
and the area functions; other scaling functions include the
weighted area function of Goldsman and Schruben (1990)
and the Cramér-von Mises functions of Goldsman, Kang,
and Seila (1999).

One often desires output-analysis methods that yield
confidence intervals having good coverage and widths with
small expectation or variance, and an approach for trying to
improve STS methods is to apply batching. Also introduced

721

by Schruben (1983), the idea is rather than approximate the
entire simulated sample path by a single Brownian motion,
break up the sample path into non-overlapping batches, and
approximate each batch by a Brownian motion. The scaling
function is then applied to each batch and the resulting values
are combined to form the batched estimator.

Calvin and Nakayama (2001) proposed an alternative
way of improving STS methods based on permuting. The
basic idea is to split the original sample path into non-
overlapping segments, permute the segments to construct
a new sample path, and apply an STS scaling function to
the entire new path. Averaging over all permuted paths
yields the permuted estimator. One apparent advantage of
permuting over batching appears to be that with permuting,
the scaling function is applied to each entire permuted path,
whereas with batching, the scaling function is applied to
each batch separately. Thus, batching seems to require the
Brownian approximation to start approximately holding for
shorter run lengths, compared to permuting, and Calvin and
Nakayama (2001) showed empirically that the small-sample
performance for batching is not as good as for permuting.

In this paper we describe applying permuting to the
weighted area estimator, which was introduced by Golds-
man and Schruben (1990) and is a generalization of
Schruben’s (1983) area estimator. The weighted area scaling
function computes the absolute value of the integral over the
unit interval of the product of the centered and normalized
process and a weighting function. Goldsman, Meketon,
and Schruben (1990) showed that for appropriate choices
of the weighting function, the weighted area estimator has
better small-sample behavior than the area estimator. The
goal of our paper is to study the effect of permuting on the
weighted area method.

The rest of our paper has the following organization.
In Section 2 we provide background on STS methods,
including batching and permuting. Section 3 describes
the permuted weighted area estimator, and we discuss its
asymptotic distribution in Section 4. We then in Section 5
specialize to a specific weighting function, and Section 6

Calvin and Nakayama

presents some empirical results. Some concluding remarks
are in Section 7. Proofs of the results in this paper can be
found in Calvin and Nakayama (2004).

2 BACKGROUND ON STANDARDIZED TIME
SERIES

Suppose that ¥ = [Y () : + > 0] is a continuous-
time stochastic process on D[0, co), the space of right-
continuous real-valued functions with left limits on [0, 00).
This framework can accommodate discrete-time processes
V=I[V,:n=0,12,..] by taking Y(t) = V|;), where
| -] denotes the floor function. Let C[0, 1] denote the
space of continuous real-valued functions on [0, 1]. Also,
forn=1,2,3,...,1letY, =[Y,(t) :0<t <1] € C[O0, 1]
with

nt
Y, (1) = %/0 Y(s)ds,

and note that Y, (1) is the sample mean of the process over
the first n time units. Suppose that there is a real number
w and positive number o such that if we define processes
X, =[Xy@®):0<t<1]€C[0,1] forn =1, 2, ..., with

Xu(t) = \/;(Yn(t) — ut),
then

X, B ow (1
as n — 0o, where 2 denotes convergence in distribution
in C[0, 1] with uniform topology and W is a standard
Brownian motion. Known as a functional central limit
theorem, (1) has been shown to hold under a wide spectrum
of assumptions, such as mixing conditions, which specify
a form of asymptotic independence of events far apart in
time; e.g., see Billingsley (1999).

We now describe Schruben’s (1983) STS methods. Let
Qo = {x € C[0,1] : x(t) = 0} and Qqp = {x € Qo :
x(1) = 0}. Let WT denote the non-negative real numbers,
and define the class M of continuous functions b : Qpg —
M satisfying the following conditions:

1. b(ax) =ab(x) for @« € R and x € Qoo;
2. P{h(B)>0} =1,

where B is a standard Brownian bridge. We call b € M
a scaling function, and each such b gives rise to an STS
method. For example, taking b as b(x) = | fol x(t) dt| yields
Schruben’s (1983) area estimator. Glynn and Iglehart (1990)
give examples of other scaling functions, including one for
the well-known method of batch means.

Define the function I' : Q¢ — Qqo as ['(x)(r) =
x() —tx(1) for 0 <t <1 and x € Q. It is straightfor-

722

ward to show that I is a continuous mapping and B = I'(W)
is a standard Brownian bridge; e.g., see Billingsley (1999)
for details. Also, when (1) holds and for b € M, the
continuous-mapping theorem (e.g., Billingsley 1999) im-
plies (I'(X,), X, (1)) 2) (cB,ocW(1)) as n — oo, where
B and W (1) are independent. Also, the properties of M
ensure

B -p X)X
b(I'(Yy)) Jnb(T'(Yy)) b(I'(X,))
z v)
b(B)
as n — OQ.

Now let H denote the distribution function of
W(1)/b(B), and (2) then implies that

Y, (1) —
P (M < a) — H(a)
b(T(Yn))
as n — oo. Thus, choosing the constant ap such that
H(apy) =1—a/2 for 0 < a < 1, we have that

[Ya(1) = apob(D(Y)), Ya(1) +apob(T(Ya))] (3)
is an asymptotically valid 100(1 — «)% confidence interval
for p from our simulation run of length n.

Rather than apply the scale function to the entire cen-
tered and scaled process, batching (Schruben 1983) divides
a sample path into m > 2 batches, applies the scale function
to each batch, and combines the results using an /, norm
for some p > 1. Specifically, for i = 1,2,...,m, define
Aim Q0 — Q0 as

Aim () = v/t [x (M) —x (i - 1)}
m m

for0 <t <1, s0o W, =A;,(W),i=12,...,m, are
independent standard Brownian motions. The batched STS
scaling function corresponding to b € M is then

1 m 1/p
bl () = (,71 Y (bor oAi,m<x)>P) :

i=1

where f o g(x) = f(g(x)) for functions f and g, and it
can be shown that To Ajy, =T o Aj 0.

We now review how to apply the permuting method
of Calvin and Nakayama (2001) to construct new STS
methods from existing ones. The basic idea is to split the
sample path into m non-overlapping equal-length segments.
Permute the m segments to generate another sample path,
and apply an STS scaling function b to the entire permuted

Calvin and Nakayama

path. Averaging over all permutations gives the permuted
estimator.

More precisely, fix m > 2 and let S, denote
the set of permutations of {1,2,...,m}. For m =
(1), 7n2),...,m(m)) € S, define T; : Qy — o so
that T, (x) is the function obtained by gluing together the
m segments of x according to the permutation m, i.e., for
1<i<m,let A;:Qy— Qo with

i—1 i— 1 1
Ai(X)(S)=X(—+S)—x<) 0<s<—,
m m m

and set

i—1
1 i — 1
T (x)(s) = jz:; Ar(jy(x) (E) + Az (x) (s ! —)

for(i—1)/m <s <i/mand1 <i <m. Foreachmw € §,,,

T (B) 2 B, where 24 denotes equality in distribution, so
b o T, is a STS scaling function whenever b is. All m!
scaling function values obtained this way are then combined
by applying an [, norm, so we get

l/p

~ 1
bup@ = — 3 ol . @

’ TESH

which is the permuted scaling function with m segments
using scale function b and the [, norm. Calvin and
Nakayama (2003) show that this idea can be applied to
the maximum estimator, which they introduce, and to the
(unweighted) area estimator of Schruben (1983).

3 WEIGHTED AREA ESTIMATORS

Goldsman and Schruben (1990) introduced the weighted
area estimator, which we now describe. For g = [¢(?) :
0 <t < 1] a continuous weighting function, the weighted
area scaling function is defined as

1
/ q(t) x(t)dt
t

=0

bya(x) =

Examples of weighting functions ¢ are given in Golds-
man, Meketon, and Schruben (1990), Goldsman, Kang,
and Seila (1999), and Foley and Goldsman (1999). When
q(x) = 1, then by, (x) is just Schruben’s area estimator.
We now present an expression for the permuted weighted
area scaling function for m > 2 segments and p = 2. For

x € Qoo and weighting function ¢, define

1/m i—1
Cij(x) = /(; Cl(t—i- —)
(e) ()
m m

fori,j=1,2,...,m. Also, let

i/m
Qi =/ q(t)dt
(i=1D/m

fori =1,2,...,m, and define Z;(x) = x(i/m) — x((i —

1)/m) fori =1,2,..., m. Then the following holds:
Theorem 1 The permuted weighted area scaling

Sfunction by 2 with m > 1 segments and p =2 is

bwa,m,Z(x)
1
= [—chi,z(x)z
m
i=1I1=1
1 m m
+ — Cix(x) Cj1(x)
m(m — 1) 1]2::1 I; ! J
i#j k#l

1 m m
+ =D =00y Zi)?
i=2 j=1
1 m

N . _ . _ 2 !
+ mn — 1) ;(l DG —-2)Q; r; Z,(x) Zs (x)
r#s

1 m m
+ =Y GAD=1Qi Q)Y 7
i,j=2 r=1
i#j

R = . . .
+ mi;{(z—1)(1—1)—((1—1)/\(1—1))]
i#j

X Qi Q) Y Zy(x) Zs(x)

rs=1

r#s

+ %ZZC,-J(x)Zl(x) > 0;

i=1 =1 j=i+1

2 m m
sl ;;a,zm;zm)

r#l
i m ’ 12
x|) G-DQj+ > (—-20; 5)
j=2 j=i+1

for x € Qqp.

Calvin and Nakayama

We now examine the complexity of computing the per-
muted weighted area scaling function bya . 2(x). Suppose
that x € Qqp is a path of length n. We can compute each
Ci,j(x) in ©(n/m) operations, so computing all the C; ; (x)
fori,j =1,2,...,m, requires ®(mn) operations. Given
x, calculating the Z,(x), r = 1,2, ..., m, requires ©(m)
work. Also, computing each Q; requires ®(1) work, so
computing all the Q; for i = 1,2, ..., m, requires ®(m)
work. Once aﬂ of the C; j(x) and Q; are calculated, we
then compute byg ,,2(x) as in (5). For the second term in
(5), observe that

Y i) Cra)

ij=1 ki=1
i#j k#l
2 2
m m m
= | Y] => DG
i k=1 i=1 \j=1
m m 2 m
- > (Z c,-,k<x>> +) G
k=1 \i=1 i,j=1

which can be computed with work © (m?). To compute the
last term in (5), define

m
Sz = Y Z(x),

r=1
i

Soi = Y (i —-DQj. i=23....m,
j=1
m

Soni = > (-0, i=12....m—1,

j=i+1
which requires a total of ©(m?) calculations. Therefore,

m

DY G Yz ()

i=1 I=1 r=1
r#l

<> G-D0i+ > (i-20;
j=2 j=i+1
= ZCi,l(x) (Sz — Z1(x)) (So.1.i +S0.2.i) »
11=1

m

1

so calculating the last term in (5) takes ©(m?) work. It
is clear that all of the other terms in (5)~require 0 (m?)
work. Hence, the total work to compute by, 2(x) for a
simulation of length n and m segments is © (mn 4+ m?).
Generating a simulation of length n requires ® (n) work,
but the leading constant here may be large compared to the

724

leading constants in the ® (mn-+m?) work needed to compute
the permuted weighted area estimator, but nevertheless, this
suggests that m should not be taken to be too large.

4 ESTIMATING CRITICAL POINTS

The complicated expression for the permuted weighted area
estimator in (5) seems to preclude exact calculation of critical
points of the distribution of W(1)/bwa m 2(B), which are
needed to construct confidence intervals as in (3). Instead,
we can estimate the critical points by sampling. To do this, let
Z; = Z;(B) and C;; = C;;(B) be normally distributed with
mean 0, and we need to calculate cov(Z;, Z;), cov(Cij, Z)
and cov(Cjj, Cyy) for all i, j, k, 1 =1,2,...,m.

Once all of the covariances have been calculated,
we can estimate the critical points of the distribution
H of W(1)/bwam2(B) by first generating Z; and Cjj,
i,j=1,2,...,m, having a joint normal distribution with
mean O and the given covariance structure. (Recall that a
multivariate normal V ~ N (0, ¥) with mean vector 0 and
covariance matrix X can be obtained by setting V = AY,
where Y ~ N(0,) and ¥ = AA’. The matrix A can be
calculated using a singular value decomposition; e.g., see
Golub and Van Loan 1989). The generate(l Z; and C;; are
then put into (5) to obtain a sample of by m 2(B). We
generate a sample of W(1) ~ N(0, 1), independent of the
Z; and Cj;, and putting these together yield a sample of
W (1)/bwam2(B). By repeating this process many times,
we can obtain the resulting empirical distribution function
as an estimate of the true distribution function H.

We now present the desired covariances, starting with
cov(Z;, Zj). Recall Z; = B(i/m) — B((i — 1)/m), where
B is a standard Brownian bridge. Then since E[Z;] = 0
and cov(B(s), B(t)) = (s A t) — st, it can be shown that

—1/m? when i # j,
cov(Z;, Zj) =

(m—1)/m?*> wheni=j.
Since E[Z;] = 0, we can compute cov(C;j, Zi) as

cov(Cij, Zk)
—Jo"q e+) 5 di

0"+ (-

Also, we can show that since E[C;;] =0,
cov(Cij, Cir)

(a5)
([t

when j # k,

L) dt when j =k.

X

Calvin and Nakayama

when j # [, and

cov(Cij, Crp)

l/m
[ol

-1 k—1
)/ (t-i——)tdtds
tO m

m

l/m -1 1/m k—1
+ / q()s/ q(t—i——)dtds
s=0 m t=s m
1/m
— (/ <s+—>sds>
m
1/m 1
X (/ <t+—)tdt)
m
when j = 1.

5 A SPECIFIC WEIGHTING FUNCTION

Goldsman and Schruben (1990) and Foley and Golds-
man (1999) consider the weighting function

q(t) = /8403t — 3t + 1/2), (6)

in which case

N

= 2m3

i =

(6; —6i+2—6im+3m+m2>.

Also, using the formulae from Section 4, we get

cov(Cij, Zx)
_ /BA0T6i —4i+1 -1 1
- m 4m* 2m3 4m?

when j # k, and

cov(Cij, Zk)

1 24+ 1
Vo (1=) [
m 4

m4

3i—1 n 1
- 2m?3 4m?
when j = k. Moreover,

cov(Cij, Crp)

6i2—4i+1 3i—1 1
= —840 — —
[4m* s T 4m2:|
y 6k? — 4k + 1 3k—1+ 1
4m*4 2m3 4m?

725

when j # [/, and

cov(Cij, Crr)

2520i%mk

1
—[120 + 420 m — 2520 imk* —
m

— 420k — 4207 + 546 m? + 3780 imk + 2520 im*k
+70m* +315m> — 1260 mk — 1260 im

+ 1512k + 504 k> 4 504 i> — 1260 im> + 945 mk>
— 1260 m%k — 1890 ik> + 945i%m — 1890k
+2520i%k% + 420i%*m? + 420 m?k>

—D20m3k — 420im>]

6i2—4i+1 3i—1 1
— 840 - —
|: 4m* 2m3 + 4m2:|
y 6k — 4k + 1 3k—l+ 1
4m# 2m3 4m?

when j = [, which was computed using Matlab (2002).

We estimated quantile points for the permuted weighted
area estimator by running simulations as described in the
beginning of Section 4. For various values of m, the
estimates for the quantiles based on 10° independent repli-
cations are given in Table 1, which also has the same level
quantiles for the batched weighted area estimator. The
second row of the table gives the quantile levels and the
rows below give the corresponding quantile points; e.g.,
P(W(1)/bwa32(B) < 2.276) ~ 0.950. Goldsman and
Schruben (1990) show that if the scaling function b cor-
responds to the batched weighted area estimator with m
batches for our specific weighting function g in (6), then
W (1)/b(B) has a Student’s-¢ distribution with m degrees of
freedom. Thus, we did not need to estimate the quantiles
for batching. The row for m = 1 corresponds to the critical
points for the unpermuted and unbatched weighted area
estimator in both sets of columns.

For m = 2 the quantiles for permuting are significantly
larger than the corresponding quantiles for batching, while
for other values of m, the quantiles for permuting are
always smaller. It appears that the reason for this is that
Q1 = Q> = 0 when m = 2 for our choice of weighting
function ¢ in (6), so in (5), all of the terms drop out except
for the first two. When m > 2, this does not occur, so
it seems that the case of m = 2 is an anomaly, which is
reflected in the quantiles.

6 EMPIRICAL RESULTS

We now present results from some simulation experiments.
The model simulated is the embedded discrete-time Markov
chain (DTMC) of the number of customers in an M/M/1
queue with traffic intensity p = 0.8 on a truncated state space
{0,1,...,100}. We ran 10° independent replications, with
each replication consisting of 2000 simulated transitions. In

Calvin and Nakayama

Table 1: Estimated Critical Points

Permuting Batching
m || 0.950 | 0.975 | 0.995 || 0.950 | 0.975 | 0.995
1 || 6.314 | 12.71 | 65.66 || 6.314 | 12.71 | 65.66
2 || 4.827 | 7.800 | 19.52 || 2.920 | 4.303 | 9.925
3 || 2.276 | 2.993 | 5.048 || 2.353 | 3.182 | 5.841
4 || 2.071 | 2.644 | 4.108 || 2.132 | 2.776 | 4.604
5 || 1.983 | 2.508 | 3.767 || 2.015 | 2.571 | 4.032

each replication we constructed a 90% confidence interval
for u, the steady-state average number of customers in the
system, using the regular (i.e., no permuting nor batching),
permuted and batched weighted area estimators with the
weighting function in (6). Table 2 presents the results of
the observed coverages (in the column labelled “Cov”),
average half width of the confidence intervals (“Avg HW”),
and variance of the half widths (“Var HW”) for various
values of m. The row for m = 1 gives the results for the
regular weighted area estimator, and the rows for m > 2
are for the permuted and batched estimators.

As m increases, both batching and permuting lead to
smaller and less-variable half widths than the regular es-
timator but at a cost of worse coverage. The degradation
in coverage is worse for batching than for permuting. For
each value of m, batching has smaller average half width
and variance than permuting, but also worse coverage. If
we compare permuting and batching for different values
of m so that permuting and batching have about the same
coverage (e.g., comparing m = 5 for permuting and m = 3
for batching), then permuting has smaller and less variable
confidence intervals.

We also measured the CPU times to run some of our
simulations and found that runs with batching with m =5
and those with the regular estimator required about the same
amount of time, but runs with permuting with m = 5 took
about 3 times as long. However, one should keep in mind
that we simulated a very simple model (embedded DTMC
of an M/M/1 queue), so the work required to generate the
sample path is minimal. For a more complicated model,
generating the sample path might require much more work,
so the run times may not be as different for the various
methods.

7 CONCLUSIONS

Calvin and Nakayama (2003) showed that permuting im-
proves Schruben’s (1983) (unweighted) area estimator. This
paper considered applying permuting to the weighted area
estimator. Goldsman, Meketon, and Schruben (1990) pre-
viously showed the (unpermuted) weighted area estimator
to have better small-sample behavior than the (unpermuted
and unweighted) area estimator. Our results here seem to
indicate that permuting can also improve the weighted area
estimator.

726

Table 2: Empirical Results

H m H Method \ Cov (%) \ Avg HW \ Var HW H
1 Regular 86.4 5.19 32.31
2 || Permuting 85.0 4.01 18.35
2 Batching 81.0 2.45 4.47
3 || Permuting 80.4 2.04 2.64
3 Batching 78.0 1.91 1.97
4 || Permuting 79.0 1.83 1.81
4 Batching 75.4 1.65 1.12
5 || Permuting 78.1 1.72 1.46
5 Batching 72.9 1.47 0.71
ACKNOWLEDGMENTS

The authors thank David Goldsman for helpful discussions
regarding this work, and Alex Gerbessiotis for assistance in
writing the simulation programs for the experiments. This
material is based upon work supported by the National Sci-
ence Foundation under Grant No. 9900117. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation

REFERENCES

Billingsley, P. 1999. Convergence of Probability Measures,
Second Edition. New York: John Wiley.

Calvin, J. M. and M. K. Nakayama. 2001. Improving
standardized time series methods by permuting path
segments. In Proceedings of the 2001 Winter Simulation
Conference, ed. B. A. Peters, J. S. Smith, D. J. Medeiros,
and M. W. Rohrer, 348-353. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers.

Calvin, J. M. and M. K. Nakayama. 2003. Permuted
standardized time series methods. Submitted.

Calvin, J. M. and M. K. Nakayama. 2004. Permuted
weighted area estimators for steady-state simulations.
Forthcoming NJIT CS technical report.

Foley, R. D. and D. Goldsman. 1999. Confidence inter-
vals using orthonormally weighted standardized time
series. ACM Transactions on Modeling and Computer
Simulation 9: 297-325.

Glynn, P. W. and D. L. Iglehart. 1990. Simulation output
analysis using standardized time series. Mathematics
of Operations Research 14: 1-16.

Goldsman, D., K. Kang, and A. F. Seila. 1999. Cramer-von
Mises variance estimators for simulations. Operations
Research 47: 299-309.

Goldsman, D., M. S. Meketon, and L. W. Schruben. 1990.
Properties of standardized time series weighted area
variance estimators. Management Science 36: 602—
612.

Calvin and Nakayama

Goldsman, D. and L. W. Schruben. 1990. New confidence
interval estimators using standardized time series. Man-
agement Science 36: 393-397.

Golub, G. H. and C. F. Van Loan. 1989. Matrix Com-
putations, Second Edition. Baltimore: Johns Hopkins
University Press.

MATLAB 6.5 software package. 2002. Natick, Mas-
sachusetts: The MathWorks.

Schruben, L. W. 1983. Confidence interval estimation
using standardized time series. Operations Research
31:1090-1108.

AUTHOR BIOGRAPHIES

JAMES M. CALVIN is an associate professor in the De-
partment of Computer Science at the New Jersey Institute
of Technology. He received a Ph.D. in operations research
from Stanford University and is an associate editor for
ACM Transactions on Modeling and Computer Simulation.
Besides simulation output analysis, his research interests
include global optimization and probabilistic analysis of
algorithms.

MARVIN K. NAKAYAMA is an associate professor in the
Department of Computer Science at the New Jersey Institute
of Technology. He received a Ph.D. in operations research
from Stanford University. He won second prize in the 1992
George E. Nicholson Student Paper Competition sponsored
by INFORMS and is a recipient of a CAREER Award from
the National Science Foundation. He is the area editor
for the Stochastic Modeling Area of ACM Transactions
on Modeling and Computer Simulation and an associate
editor for Informs Journal on Computing. His research
interests include applied probability, statistics, simulation
and modeling.

727

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 721
	02: 722
	03: 723
	04: 724
	05: 725
	06: 726
	07: 727

