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ABSTRACT 

The optimizing sequence of production for a set of cus-
tomer orders – in order to minimize machine set-up time 
and costs – is one of the typical problems found in many 
manufacturing systems.  In this paper, we develop a simu-
lation model to capture a practical system of a metal cast-
ing company in Queensland, Australia, and optimize the 
production sequence for a set of customer orders. The 
method addressed in the paper can be applied to other op-
timization problems in manufacturing industry. 

1 INTRODUCTION 

In a business and manufacturing environment, most com-
panies face the pressure of rearranging and optimizing their 
production schedules and flow-lines in order to meet their 
customer orders. These concerns are considered simultane-
ously with the need to save cost and use material effi-
ciently. The main objective is to satisfy customer demands 
with incurred costs as low as possible. In the past decades, 
such issue has received extensive attention. Computer 
simulation is widely used to represent manufacturing sys-
tems for the purpose of aiding decision support systems 
and strategies at the operational shop floor levels, e.g., 
Seliger et al (1986), and Garside (1988). Udo and Gupta 
(1994) use the simulation results to predict future output 
values based on various given input conditions. As a con-
sequence, the cost, time and risks are reduced compared to 
experimenting with decision alternatives in real time sys-
tems. Shires (1988) integrates discrete event simulation 
into a decision support system at the operational planning 
and control levels of batch manufacturing, and presents 
how on-line short-term planning decisions are made. 
Rogers et al (1988) use knowledge-based to simulate and 
control automated manufacturing cells, and develop the 
knowledge-based system which can be applied to the con-
trol and scheduling of modular flexible machining cells.  

This paper develops a simulation model for a metal 
production company based in Queensland, Australia. The 
cost concerns of the metal casting company focus on the 
extra time and energy spent in changing the set-up configu-
rations in the manufacturing system. The need for chang-
ing the machine set-up is due to the various customer or-
ders that vary in material type, make and dimension. The 
objective is to minimize the cumulative total cost incurred 
in changing of machine set-up. The simulation model is 
built to assess the set-up cost of every possible combina-
tion of the orders. The paper is organized as follows. The 
next section briefly describes the company’s manufactur-
ing system, and introduces the problem on which the paper 
focuses. Section 3 builds a simulation model to assess the 
customer orders and performs a grid search for finding the 
best sequence of orders, which also results in the least total 
set-up cost. Finally, section 4 concludes the paper.  
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2 PROBLEM DESCRIPTION 

A pilot plant focuses on the production of small-sized alu-
minum alloy billets as feedstock to downstream processing 
industries. The billets production is in the range of 10 to 
150 mm sizes and the material of the billet is aluminum 
mixed with various types of alloys. Within the casting 
process, there are three types of casting structures avail-
able, the conventional, thixomold and metal-matrix. The 
thixomold castings are developed to fill a marketing niche 
where the demand for weight reduction in material is 
sought. This type of light metal provides a sustainable and 
environmentally friendly solution to improving energy ef-
ficiency in the aerospace, electronics and automotive in-
dustry. The plant layout of the manufacturing department 
is shown in Figure 1. 

In the system, molten aluminum metal and alloy are 
first mixed in the furnace. The molten material then flows 
to the casting operation and is processed into billets of 
various sizes. The feedstock production system in Figure 1 
depicts a system that runs continuously to meet various 
customer orders.  Within the furnace itself, there are  about  
100  alloy types to be selected from to mix with the alumi-
num metal. At the casting stage, there are three types of 
casting structures available for selection:  conventional,  
thixomold, and metal-matrix. The billet sizes may range 
from 10 mm to 150 mm in diameter size. Statistically, the 
alloy types from customer orders follow the uniform distri-
bution on the interval [1, 100], and the diameter sizes from 
 

customer orders follow the uniform distribution on the in-
terval [10, 150]. 
 Due to different customers wanting different sizes and 
types of products, extra costs are incurred where there is a 
huge variability in orders. For our system, there are the fol-
lowing three changes: (a) change of alloys, (b) change of 
structure types and (c) change of sizes of products.  

(a) The change of alloys incurs extra time for changing 
the material in the machine. This happens after the furnace 
activity. Apart from the change of set-up, the alloy material 
has to be removed from the chambers, producing scrap 
metal which will be sent for remelting. Moreover, energy 
is spent in moving material around whenever the material 
is consumed inefficiently in the process. The estimated 
cost for the change in alloy set-up is $41.68. 

(b) The change of machine types occurs at the casting 
stage. The estimated cost for the change in structure set-up 
is $18.51. 

(c) The change of casting or product sizes also occurs 
at the casting stage. The estimated cost for the change in 
diameter set-up is $9.25. 

The beginning process of producing the first order 
usually requires no changes in set-up. However, for the 
sake of further investigation, it is assumed here that the en-
tire manufacturing process begins with an initial set-up of 
Alloy Type 1, Conventional Structure and Diameter Size 
10. We use a sample of five orders to illustrate the problem 
here. The set of orders, A, B, C, D and E, are presented in 
Table 1. These five orders are the actual orders received in 
 

Figure 1: Layout of the Manufacturing Department 
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a particular day, which is the approximate number of or-
ders that are expected to receive on a daily basis. The costs 
incurred for set-up changes of material, machine structure 
and diameter size are defined as costs X, Y and Z, respec-
tively. The set-up costs are incurred after the processing of 
every order, except for order D where the diameter 
matches that of order C, which is 15 mm.  Figure 2 shows 
the cumulative total costs incurred whenever the change of 
set-up is required in the processing of the next order. The 
total set-up cost incurred at the end of the five orders for 
the first case is $337.95. 
 

Table 1:  First Sequence of Orders 
 Order Material Machine Diameter Cost X Cost Y Cost Z 

 Type Type (mm) Incurred Incurred Incurred 

A 50 MM 25 Yes Yes Yes 

B 33 Conv 30 Yes Yes Yes 

C 50 Thix 15 Yes Yes Yes 

D 10 MM 15 Yes Yes No 

E 25 Conv 25 Yes Yes Yes 
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Figure 2: First Cumulative Total Setup Costs 

 
In the next set of sequences shown in Table 2, orders 

A and B are switched. This re-sequence of orders results in 
a matching pair of material type, orders A and C, and a 
matching pair of diameter selection, orders C and D. Since 
the set-up of the machine structure is initially the conven-
tional type, Conv, no change of set-up is required for the 
casting machine for the processing of the first order, B. 
The cumulative costs for the second sequence of orders are 
shown in Figure 3. The total set-up cost incurred at the end 
of the five orders for the second case is $277.76. 

Without doubt the higher extra set-up costs result in a 
higher total operational cost. The interesting problem is to 
find the optimal sequence of order sequence so as to mini-
mize the total machine setup cost.  For the above practical 
 

Table 2:  Second Sequence of Orders 
Order Material Machine Diameter Cost X Cost Y Cost Z 

 Type Type (mm) Incurred Incurred Incurred 

B 35 Conv 30 Yes No Yes 

A 50 MM 25 Yes Yes Yes 

C 50 Thix 15 No Yes Yes 

D 10 MM 15 Yes Yes No 

E 25 Conv 25 Yes Yes Yes 
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Figure 3: Second Cumulative Total Setup Costs 

 
system, since the number of the orders is small, we can ob-
tain the optimal sequence of the orders through permuta-
tion based on simulation.  Next section will use simulation 
to obtain the optimal sequence of the given orders by per-
mutation. 

3 SIMULATION BASED SOLUTION 

In this section, we develop a simulation model to capture 
the manufacturing system. Through the simulation model, 
we calculate the total setup costs for all the possible se-
quences, and then obtain the optimal sequence with mini-
mal total setup cost.  Similar studies of sequencing orders 
or jobs for minimizing costs in the production stream are 
conducted by Vickson (1980) and Van Wassenhove and 
Baker (1980), where all the data used are known and fixed, 
and all the uncontrollable factors such as machine break-
downs are eliminated.  

The simulation model shown in Figure 4 is developed 
to represent the manufacturing system in Figure 1. Each 
activity block in the model contains the necessary time and 
cost that capture the actual situation in the manufacturing 
system. The three set-up costs, X, Y and Z costs, are exe-
cuted in the model whenever alloy type, structure type or 
diameter size of the following orders do not match. The 
model can generate any range of orders that may be keyed 
in through option menus shown in Figure 5. The alloy type 
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Figure 4: Simulation Model of the Manufacturing System 
 

 
Figure 5: User Selection Menu 
 
of each order is generated according to the uniform distri-
bution on the interval [1, 100], and the diameter size of 
each order is generated according to the uniform distribu-
tion on the interval [10, 150]. During the simulation run, 
the user may continue to key in as many orders as required, 
or select the “end of orders” option shown in Figure 6. 

Here we use the sample case presented in Section 2 as 
an illustration of our simulation results. For the five orders  
received in the particular day, the number of the total pos-
sible sequences is 5! = 120. A total of 120 simulation runs 
are performed to investigate every possible sequence com-
bination of the five sample orders. 

The order sequences and their corresponding total set-
up costs are displayed in Figure 7. 

From the results shown in Figure 7, we can obtain the 
minimum total set-up cost is $249.99 and the correspond- 
 



Yuan, Khoo, Spedding, Bainbridge, and Taplin 

 

   

 
Figure 6: User Selection for “End of Orders” 

 
   

 
Figure 7:  Total Setup Costs for Each Order Sequence 

 
ing order sequences are BECAD, BEDAC, EBCAD and 
EBDAC.  

It is obvious that the simulation method is feasible for 
solving small size problems. However, it cannot be used to 
solve large size problems, even those mediate size prob-
lems. For example, if the number of orders increases to 10, 
the number of possible combinations increases to 10!,  i.e., 
a total of 3,628,800 order sequences. It makes the simula-
tion experiment almost impossible to implement. Thus, it 
attracts us to further investigate how to mathematically 
model the problem and how to obtain its optimal solution 
through an efficient and feasible algorithm. This is one of 
our future research topics. 

4 CONCLUDING REMARK 

For the case study of a metal casting company in Queen-
sland, Australia, the optimal solutions have been obtained 
by the simulation.  The minimal set-up cost is $249.99 with 
the optimal order sequences of production, BECAD, 
BEDAC, EBCAD and EBDAC.  
 The simulation model is used for accommodating any 
of the various types and sequences of orders and will gen-
erate the corresponding results of set-up costs incurred. 
However, unless every possible sequence of orders is gen-
erated, the model does not automatically enable the user to 
find the minimum cost. Therefore, the simulation model is 
most suitable for performing various scenario analyses. 
The model presents a method for assessing customer’ or-
ders and highlights the cost consequences linking to the in-
efficient time spent in the change of set-up for the ma-
chines in the manufacturing department. The model may be 
expanded to include the concerns of more sustainable is-
sues such as the efficient use of energy and material and 
the cost and re-melting of scrap metal. This type of simula-
tion and modeling development encompasses the use of a 
systems approach where the interacting factors of a system 
under investigation is facilitated to provide a framework 
for considering all its objectives, methods and possible out-
comes (Chestnut 1967). 
 The user input conditions have considered the initial 
set-up of all three Alloy Type, Structure Type and Diameter 
Size. As presented in the previous sections, the results of 
the minimal set-up costs are based on the initial set-up 
conditions of Alloy Type 1, Conventional Structure Type 
and Diameter Size 10. Given any other initial conditions, 
the output of the simulation may differ in value and best 
order sequence. Future research work along this direction 
will focus on mathematically modeling problems of opti-
mizing sequences of production based on a generic setting 
of customers and developing feasible and efficient algo-
rithms for optimizing the sequences of production.  
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