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Concentration Inequalities and
Martingale Inequalities:
A Survey
Fan Chung and Linyuan Lu

Abstract. We examine a number of generalized and extended versions of concentration
inequalities and martingale inequalities. These inequalities are effective for analyzing
processes with quite general conditions as illustrated in an example for an infinite Polya
process and web graphs.

1. Introduction

One of the main tools in probabilistic analysis is the concentration inequalities.
Basically, the concentration inequalities are meant to give a sharp prediction
of the actual value of a random variable by bounding the error term (from the
expected value) with an associated probability. The classical concentration in-
equalities such as those for the binomial distribution have the best possible error
estimates with exponentially small probabilistic bounds. Such concentration in-
equalities usually require certain independence assumptions (i.e., the random
variable can be decomposed as a sum of independent random variables).

When the independence assumptions do not hold, it is still desirable to have
similar, albeit slightly weaker, inequalities at our disposal. One approach is
the martingale method. If the random variable and the associated probability
space can be organized into a chain of events with modified probability spaces
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and if the incremental changes of the value of the event is “small,” then the
martingale inequalities provide very good error estimates. The reader is referred
to numerous textbooks [Alon and Spencer 92, Janson et al. 00, McDiarmid 98]
on this subject.

In the past few years, there has been a great deal of research in analyzing
general random graph models for realistic massive graphs that have uneven de-
gree distribution, such as the power law [Abello et al. 98, Aiello et al. 00, Aiello
et al. 02, Albert and Barabási 02, Barabási and Albert 99]. The usual con-
centration inequalities and martingale inequalities have often been found to be
inadequate and in many cases not feasible. The reasons are multifold: due to
uneven degree distribution, the error bound of those very large degrees offset the
delicate analysis in the sparse part of the graph. For the setup of the martin-
gales, a uniform upper bound for the incremental changes are often too poor to
be of any use. Furthermore, the graph is dynamically evolving, and therefore
the probability space is changing at each tick of the time.

In spite of these difficulties, it is highly desirable to extend the classical con-
centration inequalities and martingale inequalities so that rigorous analysis for
random graphs with general degree distributions can be carried out. Indeed, in
the course of studying general random graphs, a number of variations and gen-
eralizations of concentration inequalities and martingale inequalities have been
scattered around. It is the goal of this survey to put together these extensions
and generalizations to present a more complete picture. We will examine and
compare these inequalities, and complete proofs will be given. Needless to say,
this survey is far from complete since all the work is quite recent and the se-
lection is heavily influenced by our personal learning experience on this topic.
Indeed, many of these inequalities have been included in our previous papers
[Chung and Lu 02b, Chung and Lu 02a, Chung et al. 03b, Chung and Lu 04].

In addition to numerous variations of the inequalities, we also include an ex-
ample of an application on a generalization of Polya’s urn problem. Due to the
fundamental nature of these concentration inequalities and martingale inequali-
ties, they may be useful for many other problems as well.

This paper is organized as follows:

1. Introduction: overview, recent developments and summary.

2. Binomial distribution and its asymptotic behavior: the normalized bino-
mial distribution and Poisson distribution.

3. General Chernoff inequalities: sums of independent random variables in
five different concentration inequalities.
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4. More concentration inequalities: five more variations of the concentration
inequalities.

5. Martingales and Azuma’s inequality: basics for martingales and proofs for
Azuma’s inequality.

6. General martingale inequalities: four general versions of martingale in-
equalities with proofs.

7. Supermartingales and submartingales: modifying the definitions for mar-
tingale and still preserving the effectiveness of the martingale inequalities.

8. The decision tree and relaxed concentration inequalities: instead of the
worst case incremental bound (the Lipschitz condition), only certain “lo-
cal” conditions are required.

9. A generalized Polya’s urn problem: an application for an infinite Polya
process by using these general concentration and martingale inequalities.
For web graphs generated by the preferential attachment scheme, the con-
centration for the power law degree distribution can be derived in a similar
way.

2. The Binomial Distribution and Its Asymptotic Behavior

Bernoulli trials, named after James Bernoulli, can be thought of as a sequence
of coin flips. For some fixed value p, where 0 ≤ p ≤ 1, the outcome of the
coin tossing process has probability p of getting a “head.” Let Sn denote the
number of heads after n tosses. We can write Sn as a sum of independent random
variables Xi as follows:

Sn = X1 + X2 + · · ·+ Xn,

where, for each i, the random variable X satisfies

Pr(Xi = 1) = p,

Pr(Xi = 0) = 1− p. (2.1)

A classical question is to determine the distribution of Sn. It is not too difficult
to see that Sn has the binomial distribution B(n, p):

Pr(Sn = k) =
(

n

k

)
pk(1− p)n−k, for k = 0, 1, 2, . . . , n.
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Figure 1. The binomial distribution
B(10000, 0.5).
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Figure 2. The standard normal distribu-
tion N(0, 1).

The expectation and variance of B(n, p) are

E(Sn) = np and Var(Sn) = np(1− p),

respectively.
To better understand the asymptotic behavior of the binomial distribution,

we compare it with the normal distribution N(α, σ), whose density function is
given by

f(x) =
1√
2πσ

e−
(x−α)2

2σ2 , −∞ < x <∞,

where α denotes the expectation and σ2 is the variance.
The case N(0, 1) is called the standard normal distribution whose density func-

tion is given by

f(x) =
1√
2π

e−x2/2, −∞ < x <∞.

When p is a constant, the limit of the binomial distribution, after scaling,
is the standard normal distribution and can be viewed as a special case of the
Central-Limit Theorem, sometimes called the DeMoivre-Laplace limit Theorem
[Feller 71].

Theorem 2.1. The binomial distribution B(n, p) for Sn, as defined in (2.1), satisfies,
for two constants a and b,

lim
n→∞ Pr(aσ < Sn − np < bσ) =

∫ b

a

1√
2π

e−x2/2dx,

where σ =
√

np(1− p) provided that np(1− p)→∞ as n→∞.
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Figure 3. The binomial distribution
B(1000, 0.003).
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Figure 4. The Poisson distribution P (3).

When np is upper bounded (by a constant), Theorem 2.1 is no longer true.
For example, for p = λ

n , the limit distribution of B(n, p) is the so-called Poisson
distribution P (λ):

Pr(X = k) =
λk

k!
e−λ, for k = 0, 1, 2, · · · .

The expectation and variance of the Poisson distribution P (λ) are given by

E(X) = λ and Var(X) = λ.

Theorem 2.2. For p = λ
n , where λ is a constant, the limit distribution of binomial

distribution B(n, p) is the Poisson distribution P (λ).

Proof. We consider

lim
n→∞ Pr(Sn = k) = lim

n→∞

(
n

k

)
pk(1− p)n−k

= lim
n→∞

λk
∏k−1

i=0 (1− i
n )

k!
e−p(n−k)

=
λk

k!
e−λ.

As p decreases from Θ(1) to Θ( 1
n ), the asymptotic behavior of the binomial

distribution B(n, p) changes from the normal distribution to the Poisson distri-
bution. (Some examples are illustrated in Figures 5 and 6.) Theorem 2.1 states
that the asymptotic behavior of B(n, p) within the interval (np− Cσ, np + Cσ)
(for any constant C) is close to the normal distribution. In some applications,
we might need asymptotic estimates beyond this interval.
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Figure 5. The binomial distribution
B(1000, 0.1).
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Figure 6. The binomial distribution
B(1000, 0.01).

3. General Chernoff Inequalities

If the random variable under consideration can be expressed as a sum of indepen-
dent variables, it is possible to derive good estimates. The binomial distribution
is one such example where Sn =

∑n
i=1 Xi and the Xi are independent and iden-

tical. In this section, we consider sums of independent variables that are not
necessarily identical. To control the probability of how close a sum of random
variables is to the expected value, various concentration inequalities are in play.
A typical version of the Chernoff inequalities, attributed to Herman Chernoff,
can be stated as follows:

Theorem 3.1. [Chernoff 81] Let X1, . . . , Xn be independent random variables with
E(Xi) = 0 and |Xi| ≤ 1 for all i. Let X =

∑n
i=1 Xi, and let σ2 be the variance

of Xi. Then,
Pr(|X| ≥ kσ) ≤ 2e−k2/4n,

for any 0 ≤ k ≤ 2σ.

If the random variables Xi under consideration assume nonnegative values,
the following version of Chernoff inequalities is often useful.

Theorem 3.2. [Chernoff 81] Let X1, . . . , Xn be independent random variables with

Pr(Xi = 1) = pi, Pr(Xi = 0) = 1− pi.

We consider the sum X =
∑n

i=1 Xi, with expectation E(X) =
∑n

i=1 pi. Then,
we have

(Lower tail) Pr(X ≤ E(X)− λ) ≤ e−λ2/2E(X),

(Upper tail) Pr(X ≥ E(X) + λ) ≤ e−
λ2

2(E(X)+λ/3) .
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Theorem 3.6 Theorem 3.7

Theorem 3.4 Theorem 3.5

Theorem 3.3

Theorem 3.2

Theorem 4.1 Theorem 4.4 Theorem 4.5Theorem 4.2

Upper tails Lower tails

Figure 7. The flowchart for theorems on the sum of independent variables.

We remark that the term λ/3 appearing in the exponent of the bound for
the upper tail is significant. This covers the case when the limit distribution is
Poisson as well as normal.

There are many variations of the Chernoff inequalities. Due to the fundamen-
tal nature of these inequalities, we will state several versions and then prove the
strongest version from which all the other inequalities can be deduced. (See Fig-
ure 7 for the flowchart of these theorems.) In this section, we will prove Theorem
3.6 and deduce Theorems 3.4 and 3.3. Theorems 4.1 and 4.2 will be stated and
proved in the next section. Theorems 3.7, 3.5, 4.4, and 4.5 on the lower tail can
be deduced by reflecting X to −X.

The following inequality is a generalization of the Chernoff inequalities for the
binomial distribution:

Theorem 3.3. [Chung and Lu 02b] Let X1, . . . , Xn be independent random variables
with

Pr(Xi = 1) = pi, Pr(Xi = 0) = 1− pi.

For X =
∑n

i=1 aiXi with ai > 0, we have E(X) =
∑n

i=1 aipi, and we define
ν =

∑n
i=1 a2

i pi. Then, we have

Pr(X ≤ E(X)− λ) ≤ e−λ2/2ν , (3.1)

Pr(X ≥ E(X) + λ) ≤ e−
λ2

2(ν+aλ/3) , (3.2)

where a = max{a1, a2, . . . , an}.
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Figure 8. Chernoff inequalities.

To compare inequalities (3.1) to (3.2), we consider an example in Figure 8. The
cumulative distribution is the function Pr(X > x). The dotted curve in Figure 8
illustrates the cumulative distribution of the binomial distribution B(1000, 0.1),
with the value ranging from 0 to 1 as x goes from −∞ to ∞. The solid curve at
the lower-left corner is the bound e−λ2/2ν for the lower tail. The solid curve at
the upper-right corner is the bound 1− e−

λ2
2(ν+aλ/3) for the upper tail.

The inequality (3.2) in the Theorem 3.3 is a corollary of the following general
concentration inequality (also see Theorem 2.7 in the survey paper by McDiarmid
[McDiarmid 98]).

Theorem 3.4. [McDiarmid 98] Let Xi (1 ≤ i ≤ n) be independent random variables
satisfying Xi ≤ E(Xi) + M , for 1 ≤ i ≤ n. We consider the sum X =

∑n
i=1 Xi

with expectation E(X) =
∑n

i=1 E(Xi) and variance Var(X) =
∑n

i=1 Var(Xi).
Then, we have

Pr(X ≥ E(X) + λ) ≤ e−
λ2

2(Var(X)+Mλ/3) .

In the other direction, we have the following inequality.

Theorem 3.5. If X1,X2, . . . , Xn are nonnegative independent random variables, we
have the following bounds for the sum X =

∑n
i=1 Xi:

Pr(X ≤ E(X)− λ) ≤ e
− λ2

2
�n

i=1 E(X2
i
) .
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A strengthened version of Theorem 3.5 is as follows:

Theorem 3.6. Suppose that the Xi are independent random variables satisfying
Xi ≤ M , for 1 ≤ i ≤ n. Let X =

∑n
i=1 Xi and ‖X‖ =

√∑n
i=1 E(X2

i ). Then,
we have

Pr(X ≥ E(X) + λ) ≤ e
− λ2

2(‖X‖2+Mλ/3) .

Replacing X by−X in the proof of Theorem 3.6, we have the following theorem
for the lower tail.

Theorem 3.7. Let Xi be independent random variables satisfying Xi ≥ −M , for
1 ≤ i ≤ n. Let X =

∑n
i=1 Xi and ‖X‖ =

√∑n
i=1 E(X2

i ). Then, we have

Pr(X ≤ E(X)− λ) ≤ e
− λ2

2(‖X‖2+Mλ/3) .

Before we give the proof of Theorems 3.6, we will first show the implications
of Theorems 3.6 and 3.7. Namely, we will show that the other concentration
inequalities can be derived from Theorems 3.6 and 3.7.

Fact 3.8. Theorem 3.6 =⇒ Theorem 3.4.

Proof. Let X ′
i = Xi − E(Xi) and X ′ =

∑n
i=1 X ′

i = X − E(X). We have

X ′
i ≤M for 1 ≤ i ≤ n.

We also have

‖X ′‖2 =
n∑

i=1

E(X ′2
i )

=
n∑

i=1

Var(Xi)

= Var(X).

Applying Theorem 3.6, we get

Pr(X ≥ E(X) + λ) = Pr(X ′ ≥ λ)

≤ e
− λ2

2(‖X′‖2+Mλ/3)

≤ e
− λ2

2(Var(X)+Mλ/3) .
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Fact 3.9. Theorem 3.7 =⇒ Theorem 3.5.

The proof is straightforward by choosing M = 0.

Fact 3.10. Theorems 3.4 and 3.5 =⇒ Theorem 3.3.

Proof. We define Yi = aiXi. Note that

‖X‖2 =
n∑

i=1

E(Y 2
i ) =

n∑
i=1

a2
i pi = ν.

Equation (3.1) follows from Theorem 3.5 since the Yi are nonnegatives.
For the other direction, we have

Yi ≤ ai ≤ a ≤ E(Yi) + a.

Equation (3.2) follows from Theorem 3.4.

Fact 3.11. Theorem 3.6 and Theorem 3.7 =⇒ Theorem 3.1.

The proof is by choosing Y = X −E(X) and M = 1 and applying Theorems 3.6
and 3.7 to Y .

Fact 3.12. Theorem 3.3 =⇒ Theorem 3.2.

The proof follows by choosing a1 = a2 = · · · = an = 1.
Finally, we give the complete proof of Theorem 3.6 and thus finish the proofs

for all the theorems in this section on Chernoff inequalities.

Proof of Theorem 3.6. We consider

E(etX) = E(et
�

i Xi) =
n∏

i=1

E(etXi),

since the Xi are independent.
We define

g(y) = 2
∞∑

k=2

yk−2

k!
=

2(ey − 1− y)
y2

and use the following facts about g:

• g(0) = 1.
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• g(y) ≤ 1, for y < 0.

• g(y) is monotone increasing, for y ≥ 0.

• For y < 3, we have

g(y) = 2
∞∑

k=2

yk−2

k!
≤

∞∑
k=2

yk−2

3k−2
=

1
1− y/3

,

since k! ≥ 2 · 3k−2.

Then we have, for k ≥ 2,

E(etX) =
n∏

i=1

E(etXi)

=
n∏

i=1

E

( ∞∑
k=0

tkXk
i

k!

)

=
n∏

i=1

E
(

1 + tE(Xi) +
1
2
t2X2

i g(tXi)
)

≤
n∏

i=1

(
1 + tE(Xi) +

1
2
t2E(X2

i )g(tM)
)

≤
n∏

i=1

etE(Xi)+
1
2 t2E(X2

i )g(tM)

= etE(X)+ 1
2 t2g(tM)

�n
i=1 E(X2

i )

= etE(X)+ 1
2 t2g(tM)‖X‖2

.

Hence, for t satisfying tM < 3, we have

Pr(X ≥ E(X) + λ) = Pr(etX ≥ etE(X)+tλ)

≤ e−tE(X)−tλE(etX)

≤ e−tλ+ 1
2 t2g(tM)‖X‖2

≤ e−tλ+ 1
2 t2‖X‖2 1

1−tM/3 .

To minimize the above expression, we choose t = λ
‖X‖2+Mλ/3 . Therefore, tM <

3, and we have

Pr(X ≥ E(X) + λ) ≤ e−tλ+ 1
2 t2‖X‖2 1

1−tM/3

= e
− λ2

2(‖X‖2+Mλ/3) .

The proof is complete.
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4. More Concentration Inequalities

Here we state several variations and extensions of the concentration inequalities
in Theorem 3.6. We first consider the upper tail.

Theorem 4.1. Let Xi denote independent random variables satisfying Xi ≤ E(Xi) +
ai + M , for 1 ≤ i ≤ n. For X =

∑n
i=1 Xi, we have

Pr(X ≥ E(X) + λ) ≤ e
− λ2

2(Var(X)+
�n

i=1 a2
i
+Mλ/3) .

Proof. Let X ′
i = Xi − E(Xi)− ai and X ′ =

∑n
i=1 X ′

i. We have

X ′
i ≤M for 1 ≤ i ≤ n.

X ′ − E(X ′) =
n∑

i=1

(X ′
i − E(X ′

i))

=
n∑

i=1

(X ′
i + ai)

=
n∑

i=1

(Xi − E(Xi))

= X − E(X).

Thus,

‖X ′‖2 =
n∑

i=1

E(X ′2
i )

=
n∑

i=1

E((Xi − E(Xi)− ai)2)

=
n∑

i=1

E((Xi − E(Xi))2 + a2
i

= Var(X) +
n∑

i=1

a2
i .

By applying Theorem 3.6, the proof is finished.

Theorem 4.2. Suppose that the Xi are independent random variables satisfying
Xi ≤ E(Xi) + Mi, for 0 ≤ i ≤ n. We order the Xi so that the Mi are in
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increasing order. Let X =
∑n

i=1 Xi. Then, for any 1 ≤ k ≤ n, we have

Pr(X ≥ E(X) + λ) ≤ e
− λ2

2(Var(X)+
�n

i=k
(Mi−Mk)2+Mkλ/3) .

Proof. For fixed k, we choose M = Mk and

ai =
{

0 if 1 ≤ i ≤ k,
Mi −Mk if k ≤ i ≤ n.

We have
Xi − E(Xi) ≤Mi ≤ ai + Mk for 1 ≤ k ≤ n,

n∑
i=1

a2
i =

n∑
i=k

(Mi −Mk)2.

Using Theorem 4.1, we have

Pr(Xi ≥ E(X) + λ) ≤ e
− λ2

2(Var(X)+
�n

i=k
(Mi−Mk)2+Mkλ/3) .

Example 4.3. Let X1,X2, . . . , Xn be independent random variables. For 1 ≤ i ≤
n− 1, suppose that the Xi follow the same distribution with

Pr(Xi = 0) = 1− p and Pr(Xi = 1) = p

and that Xn follows the distribution with

Pr(Xn = 0) = 1− p and Pr(Xn =
√

n) = p.

Consider the sum X =
∑n

i=1 Xi.

We have

E(X) =
n∑

i=1

E(Xi)

= (n− 1)p +
√

np.

Var(X) =
n∑

i=1

Var(Xi)

= (n− 1)p(1− p) + np(1− p)

= (2n− 1)p(1− p).
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Apply Theorem 3.4 with M = (1− p)
√

n. We have

Pr(X ≥ E(X) + λ) ≤ e
− λ2

2((2n−1)p(1−p)+(1−p)
√

nλ/3) .

In particular, for constant p ∈ (0, 1) and λ = Θ(n
1
2+ε), we have

Pr(X ≥ E(X) + λ) ≤ e−Θ(nε).

Now we apply Theorem 4.2 with M1 = . . . = Mn−1 = (1 − p) and Mn =√
n(1− p). Choosing k = n− 1, we have

Var(X) + (Mn −Mn−1)2 = (2n− 1)p(1− p) + (1− p)2(
√

n− 1)2

≤ (2n− 1)p(1− p) + (1− p)2n

≤ (1− p2)n.

Thus,

Pr(Xi ≥ E(X) + λ) ≤ e
− λ2

2((1−p2)n+(1−p)2λ/3) .

For constant p ∈ (0, 1) and λ = Θ(n
1
2+ε), we have

Pr(X ≥ E(X) + λ) ≤ e−Θ(n2ε).

From the above examples, we note that Theorem 4.2 gives a significantly better
bound than that in Theorem 3.4 if the random variables Xi have very different
upper bounds.

For completeness, we also list the corresponding theorems for the lower tails.
(These can be derived by replacing X by −X.)

Theorem 4.4. Let Xi denote independent random variables satisfying Xi ≥ E(Xi)−
ai −M , for 0 ≤ i ≤ n. For X =

∑n
i=1 Xi, we have

Pr(X ≤ E(X)− λ) ≤ e
− λ2

2(Var(X)+
�n

i=1 a2
i
+Mλ/3) .

Theorem 4.5. Let Xi denote independent random variables satisfying Xi ≥ E(Xi)−
Mi, for 0 ≤ i ≤ n. We order the Xi so that the Mi are in increasing order. Let
X =

∑n
i=1 Xi. Then, for any 1 ≤ k ≤ n, we have

Pr(X ≤ E(X)− λ) ≤ e
− λ2

2(Var(X)+
�n

i=k
(Mi−Mk)2+Mkλ/3) .
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Continuing the above example, we choose M1 = M2 = . . . = Mn−1 = p and
Mn =

√
np. We choose k = n− 1, so we have

Var(X) + (Mn −Mn−1)2 = (2n− 1)p(1− p) + p2(
√

n− 1)2

≤ (2n− 1)p(1− p) + p2n

≤ p(2− p)n.

Using Theorem 4.5, we have

Pr(X ≤ E(X)− λ) ≤ e
− λ2

2(p(2−p)n+p2λ/3) .

For a constant p ∈ (0, 1) and λ = Θ(n
1
2+ε), we have

Pr(X ≤ E(X)− λ) ≤ e−Θ(n2ε).

5. Martingales and Azuma’s Inequality

A martingale is a sequence of random variables X0,X1, . . . with finite means such
that the conditional expectation of Xn+1 given X0,X1, . . . , Xn is equal to Xn.

The above definition is given in the classical book of Feller [Feller 71, p. 210].
However, the conditional expectation depends on the random variables under
consideration and can be difficult to deal with in various cases. In this survey
we will use the following definition, which is concise and basically equivalent for
the finite cases.

Suppose that Ω is a probability space with a probability distribution p. Let F
denote a σ-field on Ω. (A σ-field on Ω is a collection of subsets of Ω that contains
∅ and Ω and is closed under unions, intersections, and complementation.) In a
σ-field F of Ω, the smallest set in F containing an element x is the intersection
of all sets in F containing x. A function f : Ω → R is said to be F-measurable
if f(x) = f(y) for any y in the smallest set containing x. (For more terminology
on martingales, the reader is referred to [Janson et al. 00].)

If f : Ω→ R is a function, we define the expectation E(f) = E(f(x) | x ∈ Ω) by

E(f) = E(f(x) | x ∈ Ω) :=
∑
x∈Ω

f(x)p(x).

If F is a σ-field on Ω, we define the conditional expectation E(f | F) : Ω→ R by
the formula

E(f | F)(x) :=
1∑

y∈F(x) p(y)

∑
y∈F(x)

f(y)p(y),

where F(x) is the smallest element of F that contains x.
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A filter F is an increasing chain of σ-subfields

{0, Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F .

A martingale (obtained from) X is associated with a filter F and a sequence of
random variables X0,X1, . . . , Xn satisfying Xi = E(X | Fi) and, in particular,
X0 = E(X) and Xn = X.

Example 5.1. For given independent random variables Y1, Y2, . . . , Yn, we can define
a martingale X = Y1 + Y2 + · · ·+ Yn as follows. Let Fi be the σ-field generated
by Y1, . . . , Yi. (In other words, Fi is the minimum σ-field so that Y1, . . . , Yi are
Fi-measurable.) We have a natural filter F:

{0, Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F .

Let Xi =
∑i

j=1 Yj+
∑n

j=i+1 E(Yj). Then, X0,X1,X2, . . . , Xn forms a martingale
corresponding to the filter F.

For c = (c1, c2, . . . , cn) a vector with positive entries, the martingale X is said
to be c-Lipschitz if

|Xi −Xi−1| ≤ ci (5.1)

for i = 1, 2, . . . , n. The following theorem is a powerful tool for controlling
martingales.

Theorem 5.2. (Azuma’s inequality.) If a martingale X is c-Lipschitz, then

Pr(|X − E(X)| ≥ λ) ≤ 2e
− λ2

2
�n

i=1 c2
i , (5.2)

where c = (c1, . . . , cn).

Theorem 5.3. Let X1,X2, . . . , Xn be independent random variables satisfying

|Xi − E(Xi)| ≤ ci for 1 ≤ i ≤ n.

Then, we have the following bound for the sum X =
∑n

i=1 Xi:

Pr(|X − E(X)| ≥ λ) ≤ 2e
− λ2

2
�n

i=1 c2
i .
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Proof of Azuma’s inequality. For a fixed t, we consider the convex function f(x) = etx.
For any |x| ≤ c, f(x) is below the line segment from (−c, f(−c)) to (c, f(c)). In
other words, we have

etx ≤ 1
2c

(etc − e−tc)x +
1
2

(etc + e−tc).

Therefore, we can write

E(et(Xi−Xi−1)|Fi−1)

≤ E
(

1
2ci

(etci − e−tci)(Xi −Xi−1) +
1
2

(etci + e−tci)|Fi−1

)

=
1
2

(etci + e−tci)

≤ et2c2
i /2.

Here we apply the conditions E(Xi −Xi−1|Fi−1) = 0 and |Xi −Xi−1| ≤ ci.
Hence,

E(etXi |Fi−1) ≤ et2c2
i /2etXi−1 .

Inductively, we have

E(etX) = E(E(etXn |Fn−1))

≤ et2c2
n/2E(etXn−1)

...

≤
n∏

i=1

et2c2
i /2E(etX0)

= e
1
2 t2
�n

i=1 c2
i etE(X).

Therefore,

Pr(X ≥ E(X) + λ) = Pr(et(X−E(X)) ≥ etλ)

≤ e−tλE(et(X−E(X)))

≤ e−tλe
1
2 t2
�n

i=1 c2
i

= e−tλ+ 1
2 t2
�n

i=1 c2
i .

We choose t = λ�n
i=1 c2

i
(in order to minimize the previous expression). We have

Pr(X ≥ E(X) + λ) ≤ e−tλ+ 1
2 t2
�n

i=1 c2
i

= e
− λ2

2
�n

i=1 c2
i .
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To derive a similar lower bound, we consider −Xi instead of Xi in the preceding
proof. Then, we obtain the following bound for the lower tail:

Pr(X ≤ E(X)− λ) ≤ e
− λ2

2
�n

i=1 c2
i .

6. General Martingale Inequalities

Many problems that can be set up as a martingale do not satisfy the Lipschitz
condition. It is desirable to be able to use tools similar to the Azuma inequality
in such cases. In this section, we will first state and then prove several extensions
of the Azuma inequality (see Figure 9).

Our starting point is the following well-known concentration inequality (see
[McDiarmid 98]):

Theorem 6.1. Let X be the martingale associated with a filter F satisfying

1. Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;

2. |Xi −Xi−1| ≤M , for 1 ≤ i ≤ n.

Then, we have

Pr(X − E(X) ≥ λ) ≤ e
− λ2

2(
�n

i=1 σ2
i
+Mλ/3) .

Since the sum of independent random variables can be viewed as a martingale
(see Example 5.1), Theorem 6.1 implies Theorem 3.4. In a similar way, the
following theorem is associated with Theorem 4.1.

Theorem 6.3

Theorem 6.4

Theorem 6.1

Theorem 6.2 Theorem 6.5

Theorem 6.6

Theorem 6.7

Upper tails Lower tails

Figure 9. The flowchart for theorems on martingales.
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Theorem 6.2. Let X be the martingale associated with a filter F satisfying

1. Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;

2. Xi −Xi−1 ≤Mi, for 1 ≤ i ≤ n.

Then, we have

Pr(X − E(X) ≥ λ) ≤ e
− λ2

2
�n

i=1(σ2
i
+M2

i
) .

Theorem 6.2 can be further generalized:

Theorem 6.3. Let X be the martingale associated with a filter F satisfying

1. Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;

2. Xi −Xi−1 ≤ ai + M , for 1 ≤ i ≤ n.

Then, we have

Pr(X − E(X) ≥ λ) ≤ e
− λ2

2(
�n

i=1(σ2
i
+a2

i
)+Mλ/3) .

Theorem 6.3 implies Theorem 6.1 by choosing a1 = a2 = · · · = an = 0.
We also have the following theorem corresponding to Theorem 4.2.

Theorem 6.4. Let X be the martingale associated with a filter F satisfying

1. Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;

2. Xi −Xi−1 ≤Mi, for 1 ≤ i ≤ n.

Then, for any M , we have

Pr(X − E(X) ≥ λ) ≤ e
− λ2

2(
�n

i=1 σ2
i
+
�

Mi>M (Mi−M)2+Mλ/3) .

Theorem 6.3 implies Theorem 6.4 by choosing

ai =
{

0 if Mi ≤M,
Mi −M if Mi ≥M.

It suffices to prove Theorem 6.3 so that all the above stated theorems hold.

Proof of Theorem 6.3. Recall that g(y) = 2
∑∞

k=2
yk−2

k! satisfies the following proper-
ties:
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• g(y) ≤ 1, for y < 0.

• limy→0 g(y) = 1.

• g(y) is monotone increasing, for y ≥ 0.

• When b < 3, we have g(b) ≤ 1
1−b/3 .

Since E(Xi|Fi−1) = Xi−1 and Xi −Xi−1 − ai ≤M , we have

E(et(Xi−Xi−1−ai)|Fi−1) = E

( ∞∑
k=0

tk

k!
(Xi −Xi−1 − ai)k|Fi−1

)

= 1− tai + E

( ∞∑
k=2

tk

k!
(Xi −Xi−1 − ai)k|Fi−1

)

≤ 1− tai + E
(

t2

2
(Xi −Xi−1 − ai)2g(tM)|Fi−1

)

= 1− tai +
t2

2
g(tM)E((Xi −Xi−1 − ai)2|Fi−1)

= 1− tai +
t2

2
g(tM)(E((Xi −Xi−1)2|Fi−1) + a2

i )

≤ 1− tai +
t2

2
g(tM)(σ2

i + a2
i )

≤ e−tai+
t2
2 g(tM)(σ2

i +a2
i ).

Thus,

E(etXi |Fi−1) = E(et(Xi−Xi−1−ai)|Fi−1)etXi−1+tai

≤ e−tai+
t2
2 g(tM)(σ2

i +a2
i )etXi−1+tai

= e
t2
2 g(tM)(σ2

i +a2
i )etXi−1 .

Inductively, we have

E(etX) = E(E(etXn |Fn−1))

≤ e
t2
2 g(tM)(σ2

n+a2
n)E(etXn−1)

...

≤
n∏

i=1

e
t2
2 g(tM)(σ2

i +a2
i )E(etX0)

= e
1
2 t2g(tM)

�n
i=1(σ

2
i +a2

i )etE(X).
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Then for t satisfying tM < 3, we have

Pr(X ≥ E(X) + λ) = Pr(etX ≥ etE(X)+tλ)

≤ e−tE(X)−tλE(etX)

≤ e−tλe
1
2 t2g(tM)

�n
i=1(σ

2
i +a2

i )

= e−tλ+ 1
2 t2g(tM)

�n
i=1(σ

2
i +a2

i )

≤ e−tλ+ 1
2

t2
1−tM/3

�n
i=1(σ

2
i +a2

i ).

We choose t = λ�n
i=1(σ

2
i +a2

i )+Mλ/3
. Clearly tM < 3 and

Pr(X ≥ E(X) + λ) ≤ e−tλ+ 1
2

t2
1−tM/3

�n
i=1(σ

2
i +a2

i )

= e
− λ2

2(
�n

i=1(σ2
i
+a2

i
)+Mλ/3) .

The proof of the theorem is complete.

For completeness, we state the following theorems for the lower tails. The
proofs are almost identical and will be omitted.

Theorem 6.5. Let X be the martingale associated with a filter F satisfying

1. Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;

2. Xi−1 −Xi ≤ ai + M , for 1 ≤ i ≤ n.

Then, we have

Pr(X − E(X) ≤ −λ) ≤ e
− λ2

2(
�n

i=1(σ2
i
+a2

i
)+Mλ/3) .

Theorem 6.6. Let X be the martingale associated with a filter F satisfying

1. Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;

2. Xi−1 −Xi ≤Mi, for 1 ≤ i ≤ n.

Then, we have

Pr(X − E(X) ≤ −λ) ≤ e
− λ2

2
�n

i=1(σ2
i
+M2

i
) .
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Theorem 6.7. Let X be the martingale associated with a filter F satisfying

1. Var(Xi|Fi−1) ≤ σ2
i , for 1 ≤ i ≤ n;

2. Xi−1 −Xi ≤Mi, for 1 ≤ i ≤ n.

Then, for any M , we have

Pr(X − E(X) ≤ −λ) ≤ e
− λ2

2(
�n

i=1 σ2
i
+
�

Mi>M (Mi−M)2+Mλ/3) .

7. Supermartingales and Submartingales

In this section, we consider further-strengthened versions of the martingale in-
equalities that have been mentioned so far. Instead of a fixed upper bound for
the variance, we will assume that the variance Var(Xi|Fi−1) is upper bounded
by a linear function of Xi−1. Here we assume this linear function is nonnegative
for all values that Xi−1 takes. We first need some terminology.

For a filter F,
{∅, Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,

a sequence of random variables X0,X1, . . . , Xn is called a submartingale if Xi

is Fi-measurable (i.e., Xi(a) = Xi(b) if all elements of Fi that contain a also
contain b and vice versa) and E(Xi | Fi−1) ≤ Xi−1, for 1 ≤ i ≤ n.

A sequence of random variables X0,X1, . . . , Xn is said to be a supermartingale
if Xi is Fi-measurable and E(Xi | Fi−1) ≥ Xi−1, for 1 ≤ i ≤ n.

To avoid repetition, we will first state a number of useful inequalities for sub-
martingales and supermartingales. Then, we will give the proof for the general
inequalities in Theorem 7.3 for submartingales and in Theorem 7.5 for super-
martingales. Furthermore, we will show that all the stated theorems follow from
Theorems 7.3 and 7.5. (See Figure 10.) Note that the inequalities for submartin-
gale and supermartingale are not quite symmetric.

Theorem 7.3

Theorem 7.1

Theorem 6.3 Theorem 7.5

Theorem 7.2

Theorem 6.5

Submartingale Supermartingale

Figure 10. The flowchart for theorems on submartingales and supermartingales.
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Theorem 7.1. Suppose that a submartingale X, associated with a filter F, satisfies

Var(Xi|Fi−1) ≤ φiXi−1

and
Xi − E(Xi|Fi−1) ≤M

for 1 ≤ i ≤ n. Then, we have

Pr(Xn ≥ X0 + λ) ≤ e
− λ2

2((X0+λ)(
�n

i=1 φi)+Mλ/3) .

Theorem 7.2. Suppose that a supermartingale X, associated with a filter F, satisfies,
for 1 ≤ i ≤ n,

Var(Xi|Fi−1) ≤ φiXi−1

and
E(Xi|Fi−1)−Xi ≤M.

Then, we have

Pr(Xn ≤ X0 − λ) ≤ e
− λ2

2(X0(
�n

i=1 φi)+Mλ/3) ,

for any λ ≤ X0.

Theorem 7.3. Suppose that a submartingale X, associated with a filter F, satisfies

Var(Xi|Fi−1) ≤ σ2
i + φiXi−1

and
Xi − E(Xi|Fi−1) ≤ ai + M

for 1 ≤ i ≤ n. Here, σi, ai, φi, and M are nonnegative constants. Then, we
have

Pr(Xn ≥ X0 + λ) ≤ e
− λ2

2(
�n

i=1(σ2
i
+a2

i
)+(X0+λ)(

�n
i=1 φi)+Mλ/3) .

Remark 7.4. Theorem 7.3 implies Theorem 7.1 by setting all σi and ai to zero.
Theorem 7.3 also implies Theorem 6.3 by choosing φ1 = · · · = φn = 0.

The theorem for a supermartingale is slightly different due to the asymmetry
of the condition on the variance.

Theorem 7.5. Suppose that a supermartingale X, associated with a filter F, satisfies,
for 1 ≤ i ≤ n,

Var(Xi|Fi−1) ≤ σ2
i + φiXi−1
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and
E(Xi|Fi−1)−Xi ≤ ai + M,

where M , ai, σi, and φi are nonnegative constants. Then, we have

Pr(Xn ≤ X0 − λ) ≤ e
− λ2

2(
�n

i=1(σ2
i
+a2

i
)+X0(

�n
i=1 φi)+Mλ/3) ,

for any λ ≤ 2X0 +
�n

i=1(σ
2
i +a2

i )
�n

i=1 φi
.

Remark 7.6. Theorem 7.5 implies Theorem 7.2 by setting all σi and ai to zero.
Theorem 7.5 also implies Theorem 6.5 by choosing φ1 = · · · = φn = 0.

Proof of Theorem 7.3. For a positive t (to be chosen later), we consider

E(etXi |Fi−1) = etE(Xi|Fi−1)+taiE(et(Xi−E(Xi|Fi−1)−ai)|Fi−1)

= etE(Xi|Fi−1)+tai

∞∑
k=0

tk

k!
E((Xi − E(Xi|Fi−1)− ai)k|Fi−1)

≤ etE(Xi|Fi−1)+
�∞

k=2
tk

k! E((Xi−E(Xi|Fi−1)−ai)
k|Fi−1)

Recall that g(y) = 2
∑∞

k=2
yk−2

k! satisfies

g(y) ≤ g(b) <
1

1− b/3

for all y ≤ b and 0 ≤ b ≤ 3.
Since Xi − E(Xi|Fi−1)− ai ≤M , we have

∞∑
k=2

tk

k!
E((Xi − E(Xi|Fi−1)− ai)k|Fi−1)

≤ g(tM)
2

t2E((Xi − E(Xi|Fi−1)− ai)2|Fi−1)

=
g(tM)

2
t2(Var(Xi|Fi−1) + a2

i )

≤ g(tM)
2

t2(σ2
i + φiXi−1 + a2

i ).

Since E(Xi|Fi−1) ≤ Xi−1, we have

E(etXi |Fi−1) ≤ etE(Xi|Fi−1)+
�∞

k=2
tk

k! E((Xi−E(Xi|Fi−1−)−ai)
k|Fi−1)

≤ etXi−1+
g(tM)

2 t2(σ2
i +φiXi−1+a2

i )

= e(t+
g(tM)

2 φit
2)Xi−1e

t2
2 g(tM)(σ2

i +a2
i ).
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We define ti ≥ 0 for 0 < i ≤ n, satisfying

ti−1 = ti +
g(t0M)

2
φit

2
i ,

while t0 will be chosen later. Then,

tn ≤ tn−1 ≤ · · · ≤ t0,

and

E(etiXi |Fi−1) ≤ e(ti+
g(tiM)

2 φit
2
i )Xi−1e

t2i
2 g(tiM)(σ2

i +a2
i )

≤ e(ti+
g(t0M)

2 t2i φi)Xi−1e
t2i
2 g(tiM)(σ2

i +a2
i )

= eti−1Xi−1e
t2i
2 g(tiM)(σ2

i +a2
i ),

since g(y) is increasing for y > 0.
By Markov’s inequality, we have

Pr(Xn ≥ X0 + λ) ≤ e−tn(X0+λ)E(etnXn)

= e−tn(X0+λ)E(E(etnXn |Fn−1))

≤ e−tn(X0+λ)E(etn−1Xn−1)e
t2i
2 g(tiM)(σ2

i +a2
i )

...

≤ e−tn(X0+λ)E(et0X0)e
�n

i=1
t2i
2 g(tiM)(σ2

i +a2
i )

≤ e−tn(X0+λ)+t0X0+
t20
2 g(t0M)

�n
i=1(σ

2
i +a2

i ).

Note that

tn = t0 −
n∑

i=1

(ti−1 − ti)

= t0 −
n∑

i=1

g(t0M)
2

φit
2
i

≥ t0 − g(t0M)
2

t20

n∑
i=1

φi.

Hence,

Pr(Xn ≥ X0 + λ) ≤ e−tn(X0+λ)+t0X0+
t20
2 g(t0M)

�n
i=1(σ

2
i +a2

i )

≤ e−(t0− g(t0M)
2 t20

�n
i=1 φi)(X0+λ)+t0X0+

t20
2 g(t0M)

�n
i=1(σ

2
i +a2

i )

= e−t0λ+
g(t0M)

2 t20(
�n

i=1(σ
2
i +a2

i )+(X0+λ)
�n

i=1 φi).
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Now we choose t0 = λ�n
i=1(σ

2
i +a2

i )+(X0+λ)(
�n

i=1 φi)+Mλ/3
. Using the fact that

t0M < 3, we have

Pr(Xn ≥ X0 + λ) ≤ e
−t0λ+t20(

�n
i=1(σ

2
i +a2

i )+(X0+λ)
�n

i=1 φi)
1

2(1−t0M/3)

= e
− λ2

2(
�n

i=1(σ2
i
+a2

i
)+(X0+λ)(

�n
i=1 φi)+Mλ/3) .

The proof of the theorem is complete.

Proof of Theorem 7.5. The proof is quite similar to that of Theorem 7.3. The following
inequality still holds:

E(e−tXi |Fi−1) = e−tE(Xi|Fi−1)+taiE(e−t(Xi−E(Xi|Fi−1)+ai)|Fi−1)

= e−tE(Xi|Fi−1)+tai

∞∑
k=0

tk

k!
E((E(Xi|Fi−1)−Xi − ai)k|Fi−1)

≤ e−tE(Xi|Fi−1)+
�∞

k=2
tk

k! E((E(Xi|Fi−1)−Xi−ai)
k|Fi−1)

≤ e−tE(Xi|Fi−1)+
g(tM)

2 t2E((Xi−E(Xi|Fi−1)−ai)
2)

≤ e−tE(Xi|Fi−1)+
g(tM)

2 t2(Var(Xi|Fi−1)+a2
i )

≤ e−(t− g(tM)
2 t2φi)Xi−1e

g(tM)
2 t2(σ2

i +a2
i ).

We now define ti ≥ 0, for 0 ≤ i < n, satisfying

ti−1 = ti − g(tnM)
2

φit
2
i ;

tn will be defined later. Then, we have

t0 ≤ t1 ≤ · · · ≤ tn,

and

E(e−tiXi |Fi−1) ≤ e−(ti− g(tiM)
2 t2i φi)Xi−1e

g(tiM)
2 t2i (σ2

i +a2
i )

≤ e−(ti− g(tnM)
2 t2i φi)Xi−1e

g(tnM)
2 t2i (σ2

i +a2
i )

= e−ti−1Xi−1e
g(tnM)

2 t2i (σ2
i +a2

i ).



�

�

“imvol3” — 2006/6/7 — 10:07 — page 105 — #27
�

�

�

�

�

�

Chung and Lu: Concentration Inequalities and Martingale Inequalities 105

By Markov’s inequality, we have

Pr(Xn ≤ X0 − λ) = Pr(−tnXn ≥ −tn(X0 − λ))

≤ etn(X0−λ)E(e−tnXn)

= etn(X0−λ)E(E(e−tnXn |Fn−1))

≤ etn(X0−λ)E(e−tn−1Xn−1)e
g(tnM)

2 t2n(σ2
n+a2

n)

...

≤ etn(X0−λ)E(e−t0X0)e
�n

i=1
g(tnM)

2 t2i (σ2
i +a2

i )

≤ etn(X0−λ)−t0X0+
t2n
2 g(tnM)

�n
i=1(σ

2
i +a2

i ).

We note that

t0 = tn +
n∑

i=1

(ti−1 − ti)

= tn −
n∑

i=1

g(tnM)
2

φit
2
i

≥ tn − g(tnM)
2

t2n

n∑
i=1

φi.

Thus, we have

Pr(Xn ≤ X0 − λ) ≤ etn(X0−λ)−t0X0+
t2n
2 g(tnM)

�n
i=1(σ

2
i +a2

i )

≤ etn(X0−λ)−(tn− g(tnM)
2 t2n)X0+

t2n
2 g(tnM)

�n
i=1(σ

2
i +a2

i )

= e−tnλ+
g(tnM)

2 t2n(
�n

i=1(σ
2
i +a2

i )+(
�n

i=1 φi)X0).

We choose tn = λ�n
i=1(σ

2
i +a2

i )+(
�n

i=1 φi)X0+Mλ/3
. We have tnM < 3 and

Pr(Xn ≤ X0 − λ) ≤ e−tnλ+t2n(
�n

i=1(σ
2
i +a2

i )+(
�n

i=1 φi)X0)
1

2(1−tnM/3)

≤ e
− λ2

2(
�n

i=1(σ2
i
+a2

i
)+X0(

�n
i=1 φi)+Mλ/3) .
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It remains to verify that all ti are nonnegative. Indeed,

ti ≥ t0

≥ tn − g(tnM)
2

t2n

n∑
i=1

φi

≥ tn

(
1− 1

2(1− tnM/3)
tn

n∑
i=1

φi

)

= tn

⎛
⎝1− λ

2X0 +
�n

i=1(σ
2
i +a2

i )
�n

i=1 φi

⎞
⎠

≥ 0.

The proof of the theorem is complete.

8. The Decision Tree and Relaxed Concentration Inequalities

In this section, we will extend and generalize previous theorems to a martingale
that is not strictly Lipschitz but is nearly Lipschitz. Namely, the (Lipschitz-like)
assumptions are allowed to fail for relatively small subsets of the probability
space, and we can still have similar but weaker concentration inequalities. Similar
techniques have been introduced by Kim and Vu in their important work on
deriving concentration inequalities for multivariate polynomials [Kim and Vu 00].
The basic setup for decision trees can be found in [Alon and Spencer 92] and
has been used in the work of Alon, Kim, and Spencer [Alon et al. 97]. Wormald
[Wormald 99] considers martingales with a “stopping time” that has a similar
flavor. Here we use a rather general setting, and we shall give a complete proof.

We are only interested in finite probability spaces, and we use the following
computational model. The random variable X can be evaluated by a sequence
of decisions Y1, Y2, . . . , Yn. Each decision has finitely many outputs. The proba-
bility that an output is chosen depends on the previous history. We can describe
the process by a decision tree T , a complete rooted tree with depth n. Each edge
uv of T is associated with a probability puv depending on the decision made from
u to v. Note that for any node u, we have∑

v

pu,v = 1.

We allow puv to be zero and thus include the case of having fewer than r outputs,
for some fixed r. Let Ωi denote the probability space obtained after the first i

decisions. Suppose that Ω = Ωn and X is the random variable on Ω. Let
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πi : Ω → Ωi be the projection mapping each point to the subset of points with
the same first i decisions. Let Fi be the σ-field generated by Y1, Y2, . . . , Yi. (In
fact, Fi = π−1

i (2Ωi) is the full σ-field via the projection πi.) The Fi form a
natural filter:

{∅, Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F .

The leaves of the decision tree are exactly the elements of Ω. Let X0,X1, . . . , Xn =
X denote the sequence of decisions to evaluate X. Note that Xi is Fi-measurable
and can be interpreted as a labeling on nodes at depth i.

There is one-to-one correspondence between the following:

• A sequence of random variables X0,X1, . . . , Xn satisfying Xi is Fi-measur-
able, for i = 0, 1, . . . , n.

• A vertex labeling of the decision tree T , f : V (T )→ R.

In order to simplify and unify the proofs for various general types of martin-
gales, here we introduce a definition for a function f : V (T ) → R. We say f

satisfies an admissible condition P if P = {Pv} holds for every vertex v.
Here are examples of admissible conditions:

1. Supermartingale: For 1 ≤ i ≤ n, we have

E(Xi|Fi−1) ≥ Xi−1.

Thus, the admissible condition Pu holds if

f(u) ≤
∑

v∈C(u)

puvf(v),

where C(u) is the set of all children nodes of u and puv is the transition
probability at the edge uv.

2. Submartingale: For 1 ≤ i ≤ n, we have

E(Xi|Fi−1) ≤ Xi−1.

In this case, the admissible condition of the submartingale is

f(u) ≥
∑

v∈C(u)

puvf(v).

3. Martingale: For 1 ≤ i ≤ n, we have

E(Xi|Fi−1) = Xi−1.
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The admissible condition of the martingale is then

f(u) =
∑

v∈C(u)

puvf(v).

4. c-Lipschitz: For 1 ≤ i ≤ n, we have

|Xi −Xi−1| ≤ ci.

The admissible condition of the c-Lipschitz property can be described as
follows:

|f(u)− f(v)| ≤ ci, for any child v ∈ C(u),

where the node u is at level i of the decision tree.

5. Bounded variance: For 1 ≤ i ≤ n, we have

Var(Xi|Fi−1) ≤ σ2
i

for some constants σi.

The admissible condition of the bounded variance property can be de-
scribed as

∑
v∈C(u)

puvf2(v)−
⎛
⎝ ∑

v∈C(u)

puvf(v)

⎞
⎠

2

≤ σ2
i .

6. General bounded variance: For 1 ≤ i ≤ n, we have

Var(Xi|Fi−1) ≤ σ2
i + φiXi−1,

where σi and φi are nonnegative constants and Xi ≥ 0. The admissible
condition of the general bounded variance property can be described as
follows:

∑
v∈C(u)

puvf2(v)−
⎛
⎝ ∑

v∈C(u)

puvf(v)

⎞
⎠

2

≤ σ2
i + φif(u), for f(u) ≥ 0,

where i is the depth of the node u.

7. Upper-bound: For 1 ≤ i ≤ n, we have

Xi − E(Xi|Fi−1) ≤ ai + M,



�

�

“imvol3” — 2006/6/7 — 10:07 — page 109 — #31
�

�

�

�

�

�

Chung and Lu: Concentration Inequalities and Martingale Inequalities 109

where ai and M are nonnegative constants. The admissible condition of
the upper bounded property can be described as follows:

f(v)−
∑

v∈C(u)

puvf(v) ≤ ai + M, for any child v ∈ C(u),

where i is the depth of the node u.

8. Lower-bound: For 1 ≤ i ≤ n, we have

E(Xi|Fi−1)−Xi ≤ ai + M,

where ai and M are nonnegative constants. The admissible condition of
the lower bounded property can be described as follows:

∑
v∈C(u)

puvf(v)− f(v) ≤ ai + M, for any child v ∈ C(u),

where i is the depth of the node u.

For any labeling f on T and fixed vertex r, we can define a new labeling fr as
follows:

fr(u) =
{

f(r) if u is a descedant of r,
f(u) otherwise.

A property P is said to be invariant under subtree-unification if for a vertex
r and any tree labeling f satisfying P , fr satisfies P .

We have the following theorem.

Theorem 8.1. The eight properties as stated in the preceding examples—super-
martingale, submartingale, martingale, c-Lipschitz, bounded variance, general
bounded variance, upper-bounded, and lower-bounded properties—are all invari-
ant under subtree-unification.

Proof. We note that these properties are all admissible conditions. Let P denote
any one of these. For any node u, if u is not a descendant of r, then fr and f

have the same value on v and its children nodes. Hence, Pu holds for fr since
Pu does for f .

If u is a descendant of r, then fr(u) takes the same value as f(r) as well as
its children nodes. We verify Pu in each case. Assume that u is at level i of the
decision tree T .
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1. For supermartingale, submartingale, and martingale properties, we have∑
v∈C(u)

puvfr(v) =
∑

v∈C(u)

puvf(r)

= f(r)
∑

v∈C(u)

puv

= f(r)

= fr(u).

Hence, Pu holds for fr.

2. For the c-Lipschitz property, we have

|fr(u)− fr(v)| = 0 ≤ ci, for any child v ∈ C(u).

Again, Pu holds for fr.

3. For the bounded variance property, we have

∑
v∈C(u)

puvf2
r (v)−

⎛
⎝ ∑

v∈C(u)

puvfr(v)

⎞
⎠

2

=
∑

v∈C(u)

puvf2(r)−
⎛
⎝ ∑

v∈C(u)

puvf(r)

⎞
⎠

2

= f2(r)− f2(r)

= 0

≤ σ2
i .

4. For the second bounded variance property, we have

fr(u) = f(r) ≥ 0.

∑
v∈C(u)

puvf2
r (v)−

⎛
⎝ ∑

v∈C(u)

puvfr(v)

⎞
⎠

2

=
∑

v∈C(u)

puvf2(r)−
⎛
⎝ ∑

v∈C(u)

puvf(r)

⎞
⎠

2

= f2(r)− f2(r)

= 0

≤ σ2
i + φifr(u).
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5. For the upper-bounded property, we have

fr(v)−
∑

v∈C(u)

puvfr(v) = f(r)−
∑

v∈C(u)

puvf(r)

= f(r)− f(r)

= 0

≤ ai + M,

for any child v of u.

6. For the lower-bounded property, we have
∑

v∈C(u)

puvfr(v)− fr(v) =
∑

v∈C(u)

puvf(r)− f(r)

= f(r)− f(r)

= 0

≤ ai + M,

for any child v of u.

Therefore, Pv holds for fr and any vertex v.

For two admissible conditions P and Q, we define PQ to be the property
that is only true when both P and Q are true. If both admissible conditions P

and Q are invariant under subtree-unification, then PQ is also invariant under
subtree-unification.

For any vertex u of the tree T , an ancestor of u is a vertex lying on the unique
path from the root to u. For an admissible condition P , the associated bad set
Bi over the Xi is defined to be

Bi = {v| the depth of v is i, and Pu does not hold for some ancestor u of v}.

Lemma 8.2. For a filter F,

{∅, Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,

suppose that each random variable Xi is Fi-measurable, for 0 ≤ i ≤ n. For any
admissible condition P , let Bi be the associated bad set of P over Xi. There are
random variables Y0, . . . , Yn satisfying

(1) Yi is Fi-measurable.

(2) Y0, . . . , Yn satisfy condition P .

(3) {x : Yi(x) �= Xi(x)} ⊂ Bi, for 0 ≤ i ≤ n.
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Proof. We modify f and define f ′ on T as follows. For any vertex u,

f ′(u) =
{

f(u) if f satisfies Pv for every ancestor v of u including u itself,
f(v) v is the ancestor with smallest depth so that f fails Pv.

Let S be the set of vertices u satisfying

• f fails Pu,

• f satisfies Pv for every ancestor v of u.

It is clear that f ′ can be obtained from f by a sequence of subtree-unifications,
where S is the set of the roots of subtrees. Furthermore, the order of subtree-
unifications does not matter. Since P is invariant under subtree-unifications, the
number of vertices that P fails decreases. Now we will show that f ′ satisfies P .

Suppose to the contrary that f ′ fails Pu for some vertex u. Since P is invariant
under subtree-unifications, f also fails Pu. By the definition, there is an ancestor
v (of u) in S. After the subtree-unification on the subtree rooted at v, Pu is
satisfied. This is a contradiction.

Let Y0, Y1, . . . , Yn be the random variables corresponding to the labeling f ′.
The Yi satisfy the desired properties in (1)–(3).

The following theorem generalizes Azuma’s inequality. A similar but more
restricted version can be found in [Kim and Vu 00].

Theorem 8.3. For a filter F,

{∅, Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,

suppose that the random variable Xi is Fi-measurable, for 0 ≤ i ≤ n. Let
B = Bn denote the bad set associated with the following admissible condition:

E(Xi|Fi−1) = Xi−1,

|Xi −Xi−1| ≤ ci,

for 1 ≤ i ≤ n where c1, c2, . . . , cn are nonnegative numbers. Then, we have

Pr(|Xn −X0| ≥ λ) ≤ 2e
− λ2

2
�n

i=1 c2
i + Pr(B).

Proof. We use Lemma 8.2, which gives random variables Y0, Y1, . . . , Yn satisfying
properties (1)–(3) in the statement of Lemma 8.2. Then, it satisfies

E(Yi|Fi−1) = Yi−1,

|Yi − Yi−1| ≤ ci.
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In other words, Y0, . . . , Yn form a martingale that is (c1, . . . , cn)-Lipschitz. By
Azuma’s inequality, we have

Pr(|Yn − Y0| ≥ λ) ≤ 2e
− λ2

2
�n

i=1 c2
i .

Since Y0 = X0 and {x : Yn(x) �= Xn(x)} ⊂ Bn = B, we have

Pr(|Xn −X0| ≥ λ) ≤ Pr(|Yn − Y0| ≥ λ) + Pr(Xn �= Yn)

≤ 2e
− λ2

2
�n

i=1 c2
i + Pr(B).

For c = (c1, c2, . . . , cn), a vector with positive entries, a martingale is said to
be near-c-Lipschitz with an exceptional probability η if∑

i

Pr(|Xi −Xi−1| ≥ ci) ≤ η. (8.1)

Theorem 8.3 can be restated as follows:

Theorem 8.4. For nonnegative values c1, c2, . . . , cn, suppose that a martingale X is
near-c-Lipschitz with an exceptional probability η. Then, X satisfies

Pr(|X − E(X)| < a) ≤ 2e
− a2

2
�n

i=1 c2
i + η.

Now, we can apply the same technique to relax all the theorems in the previous
sections.

Here are the relaxed versions of Theorems 6.3, 7.1, and 7.3.

Theorem 8.5. For a filter F,

{∅, Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,

suppose that a random variable Xi is Fi-measurable, for 0 ≤ i ≤ n. Let B be the
bad set associated with the following admissible conditions:

E(Xi | Fi−1) ≤ Xi−1,

Var(Xi|Fi−1) ≤ σ2
i ,

Xi − E(Xi|Fi−1) ≤ ai + M,

for some nonnegative constants σi and ai. Then, we have

Pr(Xn ≥ X0 + λ) ≤ e
− λ2

2(
�n

i=1(σ2
i
+a2

i
)+Mλ/3) + Pr(B).
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Theorem 8.6. For a filter F,

{∅, Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,

suppose that a nonnegative random variable Xi is Fi-measurable, for 0 ≤ i ≤ n.
Let B be the bad set associated with the following admissible conditions:

E(Xi | Fi−1) ≤ Xi−1,

Var(Xi|Fi−1) ≤ φiXi−1,

Xi − E(Xi|Fi−1) ≤ M,

for some nonnegative constants φi and M . Then, we have

Pr(Xn ≥ X0 + λ) ≤ e
− λ2

2((X0+λ)(
�n

i=1 φi)+Mλ/3) + Pr(B).

Theorem 8.7. For a filter F,

{∅, Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,

suppose that a nonnegative random variable Xi is Fi-measurable, for 0 ≤ i ≤ n.
Let B be the bad set associated with the following admissible conditions:

E(Xi | Fi−1) ≤ Xi−1,

Var(Xi|Fi−1) ≤ σ2
i + φiXi−1,

Xi − E(Xi|Fi−1) ≤ ai + M,

for some nonnegative constants σi, φi, ai and M . Then, we have

Pr(Xn ≥ X0 + λ) ≤ e
− λ2

2(
�n

i=1(σ2
i
+a2

i
)+(X0+λ)(

�n
i=1 φi)+Mλ/3) + Pr(B).

For supermartingales, we have the following relaxed versions of Theorems 6.5,
7.2, and 7.5.

Theorem 8.8. For a filter F,

{∅, Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,

suppose that a random variable Xi is Fi-measurable, for 0 ≤ i ≤ n. Let B be the
bad set associated with the following admissible conditions:

E(Xi | Fi−1) ≥ Xi−1,

Var(Xi|Fi−1) ≤ σ2
i ,

E(Xi|Fi−1)−Xi ≤ ai + M,
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for some nonnegative constants σi, ai, and M . Then, we have

Pr(Xn ≤ X0 − λ) ≤ e
− λ2

2(
�n

i=1(σ2
i
+a2

i
)+Mλ/3) + Pr(B).

Theorem 8.9. For a filter F,

{∅, Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,

suppose that a random variable Xi is Fi-measurable, for 0 ≤ i ≤ n. Let B be the
bad set associated with the following admissible conditions:

E(Xi | Fi−1) ≥ Xi−1,

Var(Xi|Fi−1) ≤ φiXi−1,

E(Xi|Fi−1)−Xi ≤ M,

for some nonnegative constants φi and M . Then, we have

Pr(Xn ≤ X0 − λ) ≤ e
− λ2

2(X0(
�n

i=1 φi)+Mλ/3) + Pr(B),

for all λ ≤ X0.

Theorem 8.10. For a filter F,

{∅, Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,

suppose that a nonnegative random variable Xi is Fi-measurable, for 0 ≤ i ≤ n.
Let B be the bad set associated with the following admissible conditions:

E(Xi | Fi−1) ≥ Xi−1,

Var(Xi|Fi−1) ≤ σ2
i + φiXi−1,

E(Xi|Fi−1)−Xi ≤ ai + M,

for some nonnegative constants σi, φi, ai, and M . Then, we have

Pr(Xn ≤ X0 − λ) ≤ e
− λ2

2(
�n

i=1(σ2
i
+a2

i
)+X0(

�n
i=1 φi)+Mλ/3) + Pr(B),

for λ < X0.
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9. A Generalized Polya’s Urn Problem

To see the powerful effect of the concentration and martingale inequalities in the
previous sections, the best way is to check out some interesting applications. In
this section we give the probabilistic analysis of the following process involving
balls and bins:

For a fixed 0 ≤ p < 1 and a positive integer κ > 1, begin with κ bins,
each containing one ball and then introduce balls one at a time. For
each new ball, with probability p, create a new bin and place the ball
in that bin; otherwise, place the ball in an existing bin, such that
the probability that the ball is placed in a bin is proportional to the
number of balls in that bin.

Polya’s urn problem (see [Johnson and Kotz 77]) is a special case of the above
process with p = 0 so new bins are never created. For the case of p > 0, this
infinite Polya process has a similar flavor as the preferential attachment scheme,
one of the main models for generating the web graph among other information
networks (see [Albert and Barabási 02, Barabási and Albert 99]).

In Section 9.1, we will show that the infinite Polya process generates a power
law distribution so that the expected fraction of bins having k balls is asymptotic
to ck−β , where β = 1 + 1/(1 − p) and c is a constant. Then, the concentration
result on the probabilistic error estimates for the power law distribution will be
given in Section 9.2.

9.1. The Expected Number of Bins with k Balls

To analyze the infinite Polya process, we let nt denote the number of bins at
time t and let et denote the number of balls at time t. We have

et = t + κ.

The number of bins nt, however, is a sum of t random indicator variables,

nt = κ +
t∑

i=1

st,

where

Pr(sj = 1) = p,

Pr(sj = 0) = 1− p.
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It follows that
E(nt) = κ + pt.

To get a handle on the actual value of nt, we use the binomial concentration
inequality as described in Theorem 3.2. Namely,

Pr(|nt − E(nt)| > a) ≤ e−a2/(2pt+2a/3).

Thus, nt is exponentially concentrated around E(nt).
The problem of interest is the distribution of sizes of bins in the infinite Polya

process.
Let mk,t denote the number of bins with k balls at time t. First, we note that

m1,0 = κ and m0,k = 0.

We wish to derive the recurrence for the expected value E(mk,t). Note that a
bin with k balls at time t could have come from two cases, either it was a bin
with k balls at time t− 1 and no ball was added to it, or it was a bin with k− 1
balls at time t− 1 and a new ball was put in. Let Ft be the σ-algebra generated
by all the possible outcomes at time t.

E(mk,t|Ft−1) = mk,t−1

(
1− (1− p)k

t + κ

)
+ mk−1,t−1

(
(1− p)(k − 1)

t + κ− 1

)

E(mk,t) = E(mk,t−1)
(

1− (1− p)k
t + κ− 1

)
+ E(mk−1,t−1)

(
(1− p)(k − 1)

t + κ− 1

)
.

(9.1)
For t > 0 and k = 1, we have

E(m1,t|Ft−1) = m1,t−1

(
1− (1− p)

t + κ− 1

)
+ p,

E(m1,t) = E(m1,t−1)
(

1− (1− p)
t + κ− 1

)
+ p. (9.2)

To solve this recurrence, we use the following fact (see [Chung and Lu 04]):

Fact 9.1. For a sequence {at} satisfying the recursive relation at+1 = (1− bt

t )at+ct,
limt→∞ at

t exists and

lim
t→∞

at

t
=

c

1 + b
,

provided that limt→∞ bt = b > 0 and limt→∞ ct = c.

We proceed by induction on k to show that limt→∞ E(mk,t)/t has a limit Mk

for each k.
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The first case is k = 1. In this case, we apply Fact 9.1 with bt = b = 1− p and
ct = c = p to deduce that limt→∞ E(m1,t)/t exists and

M1 = lim
t→∞

E(m1,t)
t

=
p

2− p
.

Now we assume that limt→∞ E(mk−1,t)/t exists, and we apply the fact again
with bt = b = k(1 − p) and ct = E(mk−1,t−1)(1 − p)(k − 1)/(t + κ − 1), so
c = Mk−1(1− p)(k− 1). Thus, the limit limt→∞ E(mk,t)/t exists and is equal to

Mk = Mk−1
(1− p)(k − 1)
1 + k(1− p)

= Mk−1
k − 1

k + 1
1−p

. (9.3)

Thus, we can write

Mk =
p

2− p

k∏
j=2

j − 1
j + 1

1−p

=
p

2− p

Γ(k)Γ(2 + 1
1−p )

Γ(k + 1 + 1
1−p )

,

where Γ(k) is the Gamma function.
We wish to show that the distribution of the bin sizes follows a power law with

Mk ∝ k−β (where ∝ means “is proportional to”) for large k. If Mk ∝ k−β , then

Mk

Mk−1
=

k−β

(k − 1)−β
=
(

1− 1
k

)β

= 1− β

k
+ O

(
1
k2

)
.

From (9.3) we have

Mk

Mk−1
=

k − 1
k + 1

1−p

= 1−
1 + 1

1−p

k + 1
1−p

= 1−
1 + 1

1−p

k
+ O

(
1
k2

)
.

Thus, we have an approximate power-law with

β = 1 +
1

1− p
= 2 +

p

1− p
.

9.2. Concentration on the Number of Bins with k Balls

Since the expected value can be quite different from the actual number of bins
with k balls at time t, we give a (probabilistic) estimate of the difference.

We will prove the following theorem.

Theorem 9.2. For the infinite Polya process, asymptotically almost surely the number
of bins with k balls at time t is

Mk(t + κ) + O(2
√

k3(t + κ) ln(t + κ)).
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Recall that M1 = p
2−p and

Mk =
p

2− p

Γ(k)Γ(2 + 1
1−p )

Γ(k + 1 + 1
1−p )

= O(k−(1+ 1
1−p )),

for k ≥ 2. In other words, almost surely the distribution of the bin sizes for the
infinite Polya process follows a power law with the exponent β = 1 + 1

1−p .

Proof. We have shown that

lim
t→∞

E(mk,t)
t

= Mk,

where Mk is defined recursively in (9.3). It is sufficient to show that mk,t con-
centrates on the expected value.

We shall prove the following claim.

Claim 9.3. For any fixed k ≥ 1 and for any c > 0 with probability at least 1− 2(t +
κ + 1)k−1e−c2

, we have

|mk,t −Mk(t + κ)| ≤ 2kc
√

t + κ.

To see that the claim implies Theorem 9.2, we choose c =
√

k ln(t + κ). Note
that

2(t + κ)k−1e−c2
= 2(t + κ + 1)k−1(t + κ)−k = o(1).

From Claim 9.3, with probability 1− o(1), we have

|mk,t −Mk(t + κ)| ≤ 2
√

k3(t + κ) ln(t + κ),

as desired.
It remains to prove the claim.

Proof of Claim 9.3. We shall prove it by induction on k.
The base case of k = 1. For k = 1, from equation (9.2), we have

E(m1,t −M1(t + κ)|Ft−1)

= E(m1,t|Ft−1)−M1(t + κ)

= m1,t−1

(
1− 1− p

t + κ− 1

)
+ p−M1(t + κ− 1)−M1

= (m1,t−1 −M1(t + κ− 1))
(

1− 1− p

t + κ− 1

)
+ p−M1(1− p)−M1

= (m1,t−1 −M1(t + κ− 1))
(

1− 1− p

t + κ− 1

)
,

since p−M1(1− p)−M1 = 0.
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Let X1,t = m1,t−M1(t+κ)
�t

j=1(1− 1−p
j+κ−1 )

. We consider the martingale formed by

1 = X1,0,X1,1, . . . , X1,t. We have

X1,t −X1,t−1

=
m1,t −M1(t + κ)∏t

j=1(1− 1−p
j+κ−1 )

− m1,t−1 −M1(t + κ− 1)∏t−1
j=1(1− 1−p

j+κ−1 )

=
1∏t

j=1(1− 1−p
j+κ−1 )

×
[
(m1,t −M1(t + κ))− (m1,t−1 −M1(t + κ− 1))

(
1− 1− p

t + κ− 1

)]

=
1∏t

j=1(1− 1−p
j+κ−1 )

×
[
(m1,t −m1,t−1) +

1− p

t + κ− 1
(m1,t−1 −M1(t + κ− 1))−M1

]
.

We note that |m1,t −m1,t−1| ≤ 1, m1,t−1 ≤ t and M1 = p
2−p < 1. We have

|X1,t −X1,t−1| ≤ 1∏t
j=1(1− 1−p

j+κ−1 )
. (9.4)

Since |m1,t −m1,t−1| ≤ 1, we have

Var(m1,t|Ft−1) ≤ E((m1,t −m1,t−1)2|Ft−1)

≤ 1.

Therefore, we have the following upper bound for Var(X1,t|Ft−1):

Var(X1,t|Ft−1) = Var

(
(m1,t −M1(t + κ))

1∏t
j=1(1− 1−p

j+κ−1 )

∣∣Ft−1

)

=
1∏t

j=1(1− 1−p
j+κ−1 )2

Var(m1,t −M1(t + κ)|Ft−1)

=
1∏t

j=1(1− 1−p
j+κ−1 )2

Var(m1,t|Ft−1)

≤ 1∏t
j=1(1− 1−p

j+κ−1 )2
. (9.5)

We apply Theorem 6.2 on the martingale {X1,t} with σ2
i = 4�i

j=1(1− 1−p
j+κ−1 )2

,

M = 4�t
j=1(1− 1−p

j+κ−1 )
, and ai = 0. We have

Pr(X1,t ≥ E(X1,t) + λ) ≤ e
− λ2

2(
�t

i=1 σ2
i
+Mλ/3) .
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Here, E(X1,t) = X1,0 = 1. We will use the following approximation:

i∏
j=1

(
1− 1− p

j + κ− 1

)
=

i∏
j=1

j + κ− 2 + p

j + κ− 1

=
Γ(κ)Γ(i + κ− 1 + p)
Γ(κ− 1 + p)Γ(i + κ)

≈ C(i + κ)−1+p,

where C = Γ(κ)
Γ(κ−1+p) is a constant depending only on p and κ.

For any c > 0, we choose λ = 4c
√

t+κ
�t

j=1(1− 1−p
j )
≈ 4C−1ct3/2−p. We have

t∑
i=1

σ2
i =

t∑
i=1

4∏i
j=1(1− 1−p

j )2

≈
t∑

i=1

4C−2(i + κ)2−2p

≈ 4C−2

3− 2p
(t + κ)3−2p

< 4C−2(t + κ)3−2p.

We note that
Mλ/3 ≈ 8

3
C−2ct5/2−2p < 2C−2t3−2p,

provided that 4c/3 <
√

t + κ. We have

Pr(X1,t ≥ 1 + λ) ≤ e
− λ2

2(
�t

i=1 σ2
i
+Mλ/3)

< e
− 16C−2c2t3−2p

8C−2t3−2p+2C−2(t+κ)3−2p

< e−c2
.

Since 1 is much smaller than λ, we can replace 1 + λ by λ without loss of
generality. Thus, with probability at least 1− e−c2

, we have

X1,t ≤ λ.

Similarly, with probability at least 1− e−c2
, we have

m1,t −M1(t + κ) ≤ 2c
√

t + κ. (9.6)

We remark that inequality (9.6) holds for any c > 0. In fact, it is trivial when
4c/3 >

√
t + κ, since |m1,t −M1(t + κ)| ≤ 2t always holds.
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Similarly, by applying Theorem 6.6 on the martingale, the lower bound

m1,t −M1(t + κ) ≥ −2c
√

t + κ (9.7)

holds with probability at least 1− e−c2
.

We have proved the claim for k = 1.
The inductive step. Suppose that the claim holds for k − 1. For k, we define

Xk,t =
mk,t −Mk(t + κ)− 2(k − 1)c

√
t + κ∏t

j=1

(
1− (1−p)k

j+κ−1

) .

We have

E(mk,t −Mk(t + κ)− 2(k − 1)c
√

t + κ|Ft−1)

= E(mk,t|Ft−1)−Mk(t + κ)− 2(k − 1)c
√

t + κ

= mk,t−1

(
1− (1− p)k

t + κ− 1

)
+ mk−1,t−1

(
(1− p)(k − 1)

t + κ− 1

)

−Mk(t + κ)− 2(k − 1)c
√

t + κ.

By the induction hypothesis, with probability at least 1− 2tk−2e−c2
, we have

|mk−1,t−1 −Mk−1(t + κ)| ≤ 2(k − 1)c
√

t + κ.

By using this estimate, with probability at least 1− 2tk−2e−c2
, we have

E(mk,t −Mk(t + κ)− 2(k − 1)c
√

t + κ|Ft−1)

≤
(

1− (1− p)k
t

)
(mk,t−1 −Mk(t + κ− 1)− 2(k − 1)c

√
t + κ− 1),

by using the fact that Mk ≤Mk−1 as seen in (9.3).
Therefore, 0 = Xk,0,Xk,1, · · · ,Xk,t forms a submartingale with failure proba-

bility at most 2tk−2e−c2
.

Similar to inequalities (9.4) and (9.5), it can be easily shown that

|Xk,t −Xk,t−1| ≤ 4∏t
j=1(1− (1−p)k

j+κ−1 )
(9.8)

and

Var(Xk,t|Ft−1) ≤ 4∏t
j=1(1− (1−p)k

j+κ−1 )2
.



�

�

“imvol3” — 2006/6/7 — 10:07 — page 123 — #45
�

�

�

�

�

�

Chung and Lu: Concentration Inequalities and Martingale Inequalities 123

We apply Theorem 8.6 on the submartingale with σ2
i = 4

�i
j=1(1− (1−p)k

j+κ−1 )2
, M =

4
�t

j=1(1− (1−p)κ
j+κ−1 )

, and ai = 0. We have

Pr(Xk,t ≥ E(Xk,t) + λ) ≤ e
− λ2

2(
�t

i=1 σ2
i
+Mλ/3) + Pr(B),

where Pr(B) ≤ tk−1e−c2
by the induction hypothesis.

Here, E(Xk,t) = Xk,0 = 0. We will use the following approximation:

i∏
j=1

(
1− (1− p)k

j + κ− 1

)
=

i∏
j=1

j − (1− p)k
j + κ− 1

=
Γ(κ)

Γ(1− (1− p)k)
Γ(i + 1− (1− p)k)

Γ(i + κ)

≈ Ck(i + κ)−(1−p)k,

where Ck = Γ(κ)
Γ(1−(1−p)k) is a constant depending only on k, p, and κ.

For any c > 0, we choose λ = 4c
√

t+κ
�t

j=1(1− (1−p)k
j )

≈ 4C−1
k ct3/2−p. We have

t∑
i=1

σ2
i =

t∑
i=1

4∏i
j=1(1− (1−p)k

j )2

≈
t∑

i=1

4C−2
k (i + κ)2k(1−p)

≈ 4C−2
k

1 + 2k(1− p)
(t + κ)1+2k(1−p)

< 4C−2
k (t + κ)1+2k(1−p).

We note that

Mλ/3 ≈ 8
3
C−2

k c(t + κ)1/2+2(1−p) < 2C−2
k (t + κ)1+2(1−p),

provided that 4c/3 <
√

t + κ. We have

Pr(Xk,t ≥ λ) ≤ e
− λ2

2(
�t

i=1 σ2
i
+Mλ/3) + Pr(B)

< e
− 16C

−2
k

c2(t+κ)1+2k(1−p)

8C
−2
k

(t+κ)1+2(1−p)+2C
−2
k

(t+κ)1+2(1−p) + Pr(B)

< e−c2
+ (t + κ)k−1e−c2

≤ (t + κ + 1)k−1e−c2
.
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With probability at least 1− (t + κ + 1)k−1e−c2
, we have

Xk,t ≤ λ.

Equivalently, with probability at least 1− (t + κ + 1)k−1e−c2
, we have

mk,t −Mk(t + κ) ≤ 2ck
√

t + κ. (9.9)

We remark that inequality (9.9) holds for any c > 0. In fact, it is trivial when
4c/3 >

√
t + κ, since |mk,t −Mk(t + κ)| ≤ 2(t + κ) always holds.

To obtain the lower bound, we consider

X ′
k,t =

mk,t −Mk(t + κ) + 2(k − 1)c
√

t + κ∏t
j=1(1− (1−p)k

j+κ−1 )
.

It can be shown easily that X ′
k,t is nearly a supermartingale. Similarly, by

applying Theorem 8.9 to X ′
k,t, the lower bound

mk,t −Mk(t + κ) ≥ −2kc
√

t + κ (9.10)

holds with probability at least 1− (t + κ + 1)k−1e−c2
.

Together these prove the statement for k. The proof of Theorem 9.2 is com-
plete.

The above methods for proving concentration of the power law distribution for
the infinite Polya process can easily be carried out for many other problems. One
of the most popular models for generating random graphs (which simulate web
graphs and various information networks) is the so-called preferential attachment
scheme. The problem on the degree distribution of the preferential attachment
scheme can be viewed as a variation of the Polya process as we will see. Before we
proceed, we first give a short description for the preferential attachment scheme
[Aiello et al. 02, Mitzenmacher 04]:

• With probability p, for some fixed p, add a new vertex v, and add an edge
{u, v} from v by randomly and independently choosing u in proportion to
the degree of u in the current graph. The initial graph, say, is one single
vertex with a loop.

• Otherwise, add a new edge {r, s} by independently choosing vertices r and
s with probability proportional to their degrees. Here, r and s could be
the same vertex.

The above preferential attachment scheme can be rewritten as the following
variation of the Polya process:
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• Start with one bin containing one ball.

• At each step, with probability p, add two balls, one to a new bin and
one to an existing bin with probability proportional to the bin size. With
probability 1− p, add two balls, each of which is independently placed in
an existing bin with probability proportional to the bin size.

As we can see, the bins are the vertices; at each time step the bins that the two
balls are placed are associated with an edge; the bin size is exactly the degree of
the vertex.

It is not difficult to show the expected degrees of the preferential attachment
model satisfy a power law distribution with exponent 1 + 2/(2 − p) (see [Aiello
et al. 02, Mitzenmacher 04]). The concentration results for the power law degree
distribution of the preferential attachment scheme can be proved in a very similar
way as what we have done in this section for the Polya process. The details of
the proof can be found in a forthcoming book [Chung and Lu 06].
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